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Abstract. In the present article we describe a few simple and efficient finite volume type
schemes on moving grids in one spatial dimension. The underlying finite volume scheme is
conservative and it is accurate up to the second order in space. The main novelty consists
in the motion of the grid. This new dynamic aspect can be used to resolve better the areas
with high solution gradients or any other special features. No interpolation procedure is
employed, thus an unnecessary solution smearing is avoided. Thus, our method enjoys
excellent conservation properties. The resulting grid is completely redistributed according
the choice of the so-called monitor function. Several more or less universal choices of the
monitor function are provided. Finally, the performance of the proposed algorithm is illus-
trated on several examples stemming from the simple linear advection to the simulation
of complex shallow water waves.
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1. Introduction

The numerical simulation of conservation laws is one of the most dynamic and central
parts of modern numerical analysis. The systems of conservation laws appear in many
fields ranging from traffic modeling [34] to shallow [17] and compressible fluid mechanics
[45]. The finite volume method was proposed in a pioneering work of S. Godunov (1959)
[21, 22] and developed later by Ph. Roe [36] and many other researchers (see [19] for the
current state of the art).

Nowadays the complexity of the problems which arise in practice is such that we have
to think about the optimal usage of available computational resources. In this way the
community came with the idea of developing numerical methods on adaptive grids in order
to have higher resolution only where it is needed [6]. Historically, hp-adaptive methods
were first developed for the Finite Element-type (FEM) discretizations [7] (including the
newest discontinuous Galerkin discretizations as well [26]). The main advantage of FEM is
that this method is quite flexible in respect of local approximation spaces, thus allowing for
relatively easy p-adaptivity. FEM was applied to hyperbolic problems under the guise of
relaxation schemes [3]. The stability of these schemes was studied in [4]. Later h-adaptive
methods have been adapted for finite volume methods as well [9]. However, the widely used
approach nowadays consists in performing local grid refinement (or coarsening) with locally
nested grids [8]. For instance, it has been successfully applied to tsunami propagation and
run-up problems [20] as well as to more complex two-phase incompressible flows [35].

Adaptive mesh refinement techniques applied to the spatial variable after the computa-
tion of an approximate solution of the model equations at each time step usually consist
of the following steps:

• generation of a new spatial mesh according to prescribed adaptivity criteria,
• reconstruction or interpolation of the numerical solution on the new mesh,
• integration in time of the numerical solution on the new mesh.

The main disadvantages of this methodology is that the reconstruction of the numerical
solution on the new mesh increases the complexity of the method and also reduces the
accuracy of the method by adding more dissipation or dispersion to the solution. The
approach we propose in this study is different and does not require interpolation or recon-
struction of the solution to the new mesh (a conservative interpolation is employed in [41]).
Although the proposed method is closer to the redistribution method proposed in [2, 41],
is simpler and more elegant at the level of implementation details while it is based on
the transformation of the model equations to some new equations where the solutions are
independent of the new mesh. Namely, the method uses the same number of discretization
points of the spatial mesh during the simulation and the adaptivity is achieved by moving
the grid nodes to the places indicated by the so-called monitor function. The adapted grid
is obtained as a solution of an elliptic (or parabolic) problem, which ensures the smooth-
ness of the obtained grid. For simplicity, we focus on one-dimensional cases only and even
in this simple case some open problems are outlined throughout the manuscript. We are
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aware of only few studies which report a 2D implementation of redistributed grids (see
e.g. [5, 41]). According to our knowledge the pioneers in 1D case were [40] (for nonlinear
shallow water equations) and [1] (for the gas dynamics).

The discretization of the model equations is based on explicit, fully discrete predictor-
corrector Finite Volume schemes that are accurate up to the second order in space. Predictor-
corrector schemes have been introduced by MacCormack in [33] and can be considered as
a natural generalization of splitting schemes in higher spatial dimensions.

We have to mention that non-uniform grids can be used also to preserve some Lie
symmetry group of the equation at the discrete level (see [12, Section 3.2.2] for a brief
survey and Burgers–Hopf equation example). Originally this approach was proposed by
Dorodnitsyn [15] and developed later in [27, 28]. In our study the mesh motion is
directed solely by the equidistribution principle as in [41] without taking into account the
symmetry considerations for the moment.

The present article is organized as follows. In Section 2 we discuss in all details the
implementation of the algorithm for the linear advection equation. Then, we generalize it
to the nonlinear case in Section 3 and to systems of conservation laws in Section 4. Some
open problems are outlined in Section 5. Finally, the main conclusions and perspectives of
our study are given in Section 6.

2. Linear scalar equation

In order to present the moving grid method we shall start with the simplest scalar linear
advection equation in this section and, then, we shall increase gradually the complexity by
adding first the nonlinearities in the following section and moving to the systems by the
end of our manuscript.

We pay special attention to the linear case for the following reasons:

• The main properties of the scheme are the most transparent in the linear case
• The generalization to the nonlinear and vectorial cases will be easier once the linear

case is fully understood. So, it will allow us to go faster in the subsequent sections
• An exhaustive error analysis is possible in the linear (and presumably only in the

linear) case

In order to construct an efficient finite volume scheme on a moving mesh, we have to
choose first a robust and an accurate scheme on a fixed grid, which will be generalized
later to incorporate the motion of mesh points. Such a scheme retained for our study is
described in the next Section.

2.1. A predictor-corrector scheme on a fixed uniform mesh

Consider the following linear advection equation with a constant propagation velocity

ut + a ux = 0, a ∈ R. (2.1)
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The subscripts in this study denote the partial derivatives, i.e. ut =
∂u
∂t

, ux = ∂u
∂x

, etc.
We introduce a uniform discretization of the real space line R with nodes xj = jh, where

h > 0, j ∈ Z is the spatial discretization step, and for simplicity we do not pay attention
to the boundary conditions here. The interval Cj = [xj , xj+1] will be referred as the cell
Cj. The time step is denoted by τ and the discrete solution is computed at tn = nτ ,
n ∈ Z

+. The last equation (2.1) is discretized in space and time using an explicit fully
discrete predictor-corrector scheme

u∗
j+1/2 − un

j+1/2

τ ∗j+1/2

+ a un
x,j+1/2 = 0,

un+1
j − un

j

τ
+ a

u∗
j+1/2 − u∗

j−1/2

h
= 0, (2.2)

where τ is the time step. The intermediate quantities u∗
j±1/2 are evaluated in the middle

of cells at xj±1/2 =
xj + xj±1

2
= xj ± 1

2
h and at time instances t = tn + τ ∗j+1/2. Moreover,

the following notations have been introduced in (2.2):

un
j+1/2 =

un
j+1 + un

j

2
, un

x,j+1/2 =
un
j+1 − un

j

h
, τ ∗j+1/2 =

τ

2

(
1 + θnj+1/2

)
.

We underline the fact that the parameter θ has not been fixed for the moment and it may
vary from one cell and one time layer to another one.

The predictor-corrector scheme (2.2) can be recast as a one-step scheme by combining
two equations together:

un+1
j − un

j

τ
+ a

un
j+1 − un

j−1

2h
− τa2

2h

{(
(1 + θ)ux

)n
j+1/2

−
(
(1 + θ)ux

)n
j−1/2

}
= 0. (2.3)

The last fully discrete scheme is a canonical form of all two steps explicit schemes for
equation (2.1), since many well-known schemes can be obtained from (2.3) by choosing
carefully the parameter θ. Indeed,

Lax–Wendroff scheme [31] (θ = 0):

un+1
j − un

j

τ
+ a

un
j+1 − un

j−1

2h
− τa2

2h

{
un
x,j+1/2 − un

x,j−1/2

}
= 0.

First order upwind [14] (θ = 1
C
− 1 > 0): The number C

def
:= |a| τ

h
< 1 is the famous

Courant–Friedrichs–Lewy number [13], which controls the stability of the upwind
scheme

un+1
j − un

j

τ
+

a + |a|
2

un
x,j−1/2 +

a− |a|
2

un
x,j+1/2 = 0.

Lax–Friedrichs scheme [10] (θ = 1
C2 − 1 > 0):

un+1
j − 1

2
(un

j+1 + un
j−1)

τ
+ a

un
j+1 − un

j−1

2h
= 0.
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However, the schemes listed above are not suitable for accurate simulations, since the first
order upwind and Lax–Friedrichs schemes are too diffusive in practice and Lax–Wendroff
scheme is not monotonicity preserving. A good solution consists in choosing the parameter
θ adaptively. In a previous work [38] the following strategy was proposed:

θnj+1/2 =





0, |un
x,j+1/2| 6 |un

x,j+1/2−s| and un
x,j+1/2 · un

x,j+1/2−s > 0,

θ0(1− ξnj+1/2), |un
x,j+1/2| > |un

x,j+1/2−s| and un
x,j+1/2 · un

x,j+1/2−s > 0,

θ0, un
x,j+1/2 · un

x,j+1/2−s < 0,

with θ0
def
:= 1

C
−1 > 0, s

def
:= sign(a), ξnj+1/2

def
:=

un
x,j+1/2−s

un
x,j+1/2

. The first case corresponds to the

classical Lax–Wendroff scheme, the third case is the classical first order upwind and the
second case is detailed in the following Remark 1. However, the proposed combination of
schemes produces a robust TVD-type scheme. Its performance on fixed and mobile meshes
will be illustrated in numerical sections below.

Remark 1. We note that the canonical form (2.3) contains not only three points schemes
on a symmetric stencil. For instance, if we assume for simplicity a > 0, and set

θnj+1/2

def
:=

( 1

C
− 1

)(
1 −

un
x,j−1/2

un
x,j+1/2

)
,

then we shall obtain the following second order upwind scheme on an asymmetric stencil:

un+1
j − un

j

τ
+ a

3un
x,j−1/2 − un

x,j−3/2

2
− τa2

2

un
j − 2un

j−1 + un
j−2

h2
= 0.

Of course, the numerical properties such as the accuracy, stability and monotonicity
depend crucially on the choice of the parameter θ and have to be studied carefully in each
particular situation.

2.2. Predictor-corrector schemes on a moving grid

In this section we shall restrict our attention to bounded domains only since almost all
numerical simulations in 1D are made on finite intervals. To be more specific we assume
that the computational domain is I = [0, ℓ]. Consider also the reference domain Q = [0, 1]
and a smooth bijective time-dependent mapping x(·, t) : Q×R

+ 7→ I, which satisfies the
following boundary conditions

x(0, t) = 0, x(1, t) = ℓ. (2.4)

For our modest numerical purposes we do not even need to have the complete information
about this mapping. Consider a uniform mesh of the reference domain Qh = {qj = jh}Nj=0,

with a constant step h = 1
N

. Strictly speaking we need to know only the image of nodes qj
under the map x(q, t), since they constitute the nodes of the moving mesh:

x(qj , t
n) = xn

j .



G. Khakimzyanov, D. Dutykh et al. 8 / 34

The linear advection equation (2.1) can be rewritten on domain Q if we introduce the

composed function v(q, t)
def
:= u ◦ x ≡ u

(
x(q, t), t

)
:

vt +
ā

J
vq = 0, (2.5)

where ā
def
:= a−xt is the advection speed relative to the mesh nodes velocity and J

def
:= xq >

0 is the Jacobian of the transformation x(q, t). Equation (2.5) does possess a conservative
form as well

(Jv)t + (ā v)q = 0. (2.6)

Now we can write the predictor-corrector scheme for the linear advection equation on a
moving mesh:

v∗j+1/2 − vnj+1/2

τ ∗j+1/2

+
( ā
J
vq

)n
j+1/2

= 0, (2.7)

(Jv)n+1
j − (Jv)nj

τ
+

(
ān v∗

)
j+1/2

−
(
ān v∗

)
j−1/2

h
= 0. (2.8)

Note that the first step is based on equation (2.5) and the second one on the conservative
form (2.6). Here we introduced some new notations:

xn
t,j+1/2 =

xn
t,j + xn

t,j+1

2
, xn

t,j =
xn+1
j − xn

j

τ
,

Jnj+1/2 ≡ xn
q,j+1/2 =

xn
j+1 − xn

j

h
, Jnj ≡ xn

q,j =
Jnj+1/2 + Jnj−1/2

2
=

xn
j+1 − xn

j−1

2h
.

As before, one can recast the scheme (2.7), (2.8) in an equivalent one-stage form:

(Jv)n+1
j − (Jv)nj

τ
+

(āv)nj+1/2 − (āv)nj−1/2

h
− τ

2h

{(
(1+θ)

ā2

J
vq

)n
j+1/2

−
(
(1+θ)

ā2

J
vq

)n
j−1/2

}
= 0.

A stability study using the method of frozen coefficients [37] leads to the following restric-
tions on the scheme parameters

θnj+1/2 > 0, max
j∈{0,...,N−1}

(√
1 + θ C

)n
j+1/2

6 1, (2.9)

where Cn
j+1/2 is the local CFL number [13] defined as

Cn
j+1/2 =

τ

h

( |ā|
J

)n

j+1/2

.

In order to ensure the monotonicity of the numerical solution, it was shown in [38] that it
is sufficient to use the following choice of the scheme parameter θ:

θnj+1/2 =






0, |g̃nj+1/2| 6 |g̃nj+1/2−s| and g̃nj+1/2 · g̃nj+1/2−s > 0,(
θ0(1− ξ)

)n
j+1/2

, |g̃nj+1/2| > |g̃nj+1/2−s| and g̃nj+1/2 · g̃nj+1/2−s > 0,

θn0,j+1/2, g̃nj+1/2 · g̃nj+1/2−s < 0,

(2.10)
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where s = sign(ānj+1/2) and

θn0,j+1/2 =
1

Cn
j+1/2

− 1, g̃nj+1/2 =
(
|ā| (1− C) vq

)n
j+1/2

, ξnj+1/2 =
g̃nj+1/2−s

g̃nj+1/2

.

Using (2.10), it can be shown that stability requirements (2.9) are fulfilled under the
following single restriction on local CFL numbers:

Cn
j+1/2 6 1.

Finally, the global CFL number C is defined as

C
def
:= max

j
{Cn

j+1/2}.

It is this value, which will be reported in Tables below.
There is an additional relation, which is called the geometric conservation law. In 1D

case it looks trivial

Jt − (xt)q = 0,

since it translates a trivial fact that xqt ≡ xtq. However, it was demonstrated in [42] that it
is absolutely crucial to respect the geometric conservation law at the discrete level as well
in order to have a consistent fully discrete scheme which preserves all constant solutions
exactly, for example. It can be shown that the scheme proposed above satisfies the discrete
counterpart of the geometric conservation law in integer and half-integer nodes:

Jn+1
j − Jnj

τ
−

xn
t,j+1/2 − xn

t,j−1/2

h
= 0,

Jn+1
j+1/2 − Jnj+1/2

τ
−

xn
t,j+1 − xn

t,j

h
= 0.

2.3. Construction and motion of the grid

In the previous sections we explained in some detail the predictor-corrector schemes on
fixed and moving meshes. We saw that the mesh motion is parametrized by a bijective
mapping x(q, t) : Q × R

+ 7→ I. Now we explain how this map is effectively constructed,
since so far it was quite general. Moreover, the predictor-corrector schemes presented above
are valid for other constructions of the mesh motion.

The first step consists in choosing a positive valued function ̟(x, t) : I × R
+ 7→ R

+,
the so-called monitor function, which controls the distribution of the nodes. Without
entering into the details for the moment, we suggest as one choice for a monitor function
the following:

̟(x, t) = 1 + α |ux(x, t)|, (2.11)

where α > 0 is a real parameter. It is noted that the monitor function varies in both
space and time and takes large (positive) values in areas where the solution has important
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gradients. The monitor function ̟(x, t) specified in (2.11) can be readily discretized

̟n
j+1/2 = 1 + α

|un
j+1 − un

j |
xn
j+1 − xn

j

.

The proposed algorithm is slightly different on the very first step when the initial grid is
generated. It is important to obtain a high-quality initial mesh, since the numerical error
committed in the beginning cannot be corrected afterwards. So, the first step is explained
in detail below and the algorithm for unsteady computations is presented in the following
section.

2.3.1 Initial grid generation

At t = 0 we compute the monitor function ̟(x, 0) of the initial condition u(x, 0) and the
mapping x(q, 0) is determined as the solution to the following nonlinear elliptic problem,
which degenerates to a simple second order ordinary differential equation

(
̟(x, 0) xq

)
q
= 0,

supplemented with Dirichlet boundary conditions (2.4). This elliptic problem can be readily
discretized to produce the following finite difference approximation:

1

h

{
̟0

j+1/2

x0
j+1 − x0

j

h
− ̟0

j−1/2

x0
j − x0

j−1

h

}
= 0, j = 1, . . . , N − 1,

with boundary conditions x0
0 = 0, x0

N = ℓ. The last nonlinear system of equations is solved
iteratively (usually with some fixed point-type iterations). The iterations are initialized
with a uniform grid as the first guess. One can notice also that its solution satisfies the
equidistribution principle:

̟0
j+1/2

x0
j+1 − x0

j

h
= Ch, j = 0, . . . , N − 1, (2.12)

where the constant Ch can be computed as

Ch =
N−1∑

j=0

(∆x̟)0j+1/2, ∆x
def
:= x0

j+1 − x0
j .

So, Ch is the discrete version of the monitor function integral. The equidistribution prin-
ciple gives meaning to the monitor function: in the areas where ̟0

j+1/2 takes large values,

the spacing between two neighbouring nodes x0
j+1 and x0

j has to be inversely proportionally
small.
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2.3.2 Unsteady computations

Assume that the grid {xn
j }Nj=0 at t = tn is known and let us evolve it to the next time

layer tn+1. It is done by solving the following linear fully discrete problem:

1

h

{
̟n

j+1/2

xn+1
j+1 − xn+1

j

h
− ̟n

j−1/2

xn+1
j − xn+1

j−1

h

}
= β

xn+1
j − xn

j

τ
, j = 1, . . . , N−1,

(2.13)
with the same boundary conditions xn+1

0 = 0, xn+1
N = ℓ as above. Here the real positive

parameter β > 0 plays the rôle of the diffusion coefficient and it controls the smoothness of
nodes trajectories. It can be easily seen that the scheme (2.13) is an implicit discretization
of this nonlinear parabolic equation:

(
̟(x, t)xq

)
q
= β xt.

However, it has to be stressed out that the fully discrete problem is linear since the monitor
function ̟n

j±1/2 is taken on the previous time layer. Thus, the overall complexity of the grid
motion algorithm at every time step is equal to that of the tridiagonal matrix algorithm
[18].

2.3.3 Smoothing step

In some problems where the solution contains a lot of oscillations (i.e. many local
extrema), the monitor function ̟(x, t) has to be filtered out to ensure the smoothness
of the mesh motion. Moreover, a smoothing step allows to enlarge the set of acceptable
values of the parameter α in the definition (2.11) of the monitor function. Our numerical
experiments show that the following implicit procedure (inspired by implicit discretizations
of the heat equation) produces very robust results:

¯̟ j+1/2 = ̟j+1/2 − σ ¯̟ j+1/2 +
σ

2
( ¯̟ j−1/2 + ¯̟ j+3/2), j = 1, . . . , N − 2, (2.14)

where σ > 0 is an ad-hoc smoothing parameter to be set empirically. System (2.14) is
completed with boundary conditions

¯̟ 1/2 = ̟1/2, ¯̟N−1/2 = ̟N−1/2.

The smoothed discrete monitor function { ¯̟ j}Nj=0 is obtained by solving the linear system
(2.14) with any favourite method. In the present study we used the simplest tridiagonal
matrix algorithm [18]. In contrast, the authors of [41] used an explicit smoothing method.
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Figure 1. Discontinuous profile propagation under the linear advection equation
(2.1): (a) comparison of different profiles (thin solid line is the exact solution,
(1) is the numerical solution on the uniform mesh, (2) is the solution on the

moving mesh and (3) is the first order upwind scheme on the uniform mesh); (b):
trajectories of grid nodes in space-time. Please, notice that the panel (a) shows
only a zoom of the computational domain.

2.4. Numerical results

In order to illustrate the performance of this algorithm we take a relatively difficult
test-case which consists in simulating the propagation of a discontinuous profile:

u(x, 0) =

{
1, x 6 x∗,

0, x > x∗,
x∗ ∈ (0, ℓ).

The monitor function employed in this computation is defined in (2.11). The numerical
parameters used in this simulations are given in Table 1. The simulation results at time
t = Tf is shown in Figure 1. From the comparison of profiles obtained on fixed and moving
meshes, one can see that the moving mesh reduces significantly the “width” of the numerical
shock wave profile.

The second test-case is a smooth bell-shaped function advected by the dynamics of
(2.1). This test is used to measure the ability of the scheme to preserve the extrema (in
other words we assess the strength of the numerical diffusion on a given mesh). The exact
solution is given by

u(x, t) = e−25(x − x0 − at)2 .

Thus, the initial condition is simply given by u(x, 0) = e−25(x−x0)2 . Another particularity of
the present test-case is that we use the monitor function specifically designed with emphasis
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Parameter Value

Computational domain length, ℓ 30.0

Number of nodes, N 150

CFL number, C 0.8

Final simulation time, Tf 10.0

Propagation speed, a 1.0

Initial position of the discontinuity, x∗ 10.0

Monitor function parameter, α 10.0

Grid diffusion parameter, β 150.0

Smoothing parameter, σ 100.0

Table 1. Numerical parameters used to simulate the discontinuous profile
propagation under the linear advection equation (2.1).

Parameter Value

Computational domain length, ℓ 5.0

Number of nodes, N 150

CFL number, C 0.8

Final simulation time, Tf 3.0

Initial position of the bell, x0 1.0

Propagation speed, a 1.0

Monitor function parameter, α 20.0

Grid diffusion parameter, β 20.0

Smoothing parameter, σ 10.0

Table 2. Numerical parameters used to simulate the bell-shaped profile

propagation under the linear advection equation (2.1).

on the fine resolution of the local extrema (those with high positive or high negative values):

̟(x, t) = 1 + α|u(x, t)|. (2.15)

It is noted that there is no differentiation operator in the definition of the last monitor
function compared to the one defined in (2.11).

The parameters used in the numerical simulation are provided in Table 2. The numerical
results at t = Tf are shown in Figure 2. For the sake of comparison we show also the
numerical solution obtained with the same scheme, but on a uniform mesh. The use of
a moving grid improves dramatically the preservation of the local maximum. One cannot
even distinguish the exact solution from the numerical one up to the graphic resolution.
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Figure 2. Smooth profile propagation under the linear advection equation (2.1):
(a) comparison of different profiles (thin solid line is the exact solution, (1) is the
numerical solution on the uniform mesh, (2) is the solution on the moving mesh);

(b): trajectories of grid nodes in space-time. Please, notice that the panel (a)
shows only a zoom of the computational domain.

3. Nonlinear scalar equation

In this section we consider a general hyperbolic scalar nonlinear conservation law of the
form:

ut + [f(u)]x = 0.

As a chrestomathic example of such equations we can mention the celebrated Burgers–Hopf
equation [11]. As above, we make a change of variables to the fixed reference domain Q:

vt +
1

J

[
fq − xt vq

]
= 0,

or in the conservative form:

(Jv)t +
[
f − xt v

]
q
= 0,

where v
def
:= u ◦ x and J

def
:= xq as before.

For nonlinear equations we need an extra transport equation for the flux function:

ft + a(u) fx = 0,
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where a(u) = fu(u). The last equation transforms to the following non-conservative form
on the fixed domain Q:

ft +
a(v)

J

[
fq − xt vq

]
= 0.

Now all the preparations are done and we can write down the predictor-corrector scheme
directly on a moving grid (notice that in the nonlinear case three stages are required):

v∗j+1/2 − vnj+1/2

τ ∗j+1/2

+

(
fq − xt vq

J

)n

j+1/2

= 0,

f ∗
j+1/2 − fn

j+1/2

τ ∗j+1/2

+

(
a(fq − xt vq)

J

)n

j+1/2

= 0,

(Jv)n+1
j − (Jv)nj

τ
+

(f ∗ − xn
t v

∗)j+1/2 − (f ∗ − xn
t v

∗)j−1/2

h
= 0,

where vnj+1/2, f
n
j+1/2 were defined above. The last scheme has the second order approxima-

tion in space O(h2) provided that θ = O(h). The only point which remains to be specified
is the computation of the numerical Jacobian anj+1/2. In order to ensure good properties of

the scheme, one has to ensure the compatibility condition fq = a(v)vq at the discrete level
fn
q,j+1/2 = (a vq)

n
j+1/2 for finite differences analogue of the derivatives:

fn
q,j+1/2 =

fn
j+1 − fn

j

h
, vnq,j+1/2 =

vnj+1 − vnj
h

.

This requirement can be satisfied with the following choice [25]:

anj+1/2 =

{
fn
j+1

− fn
j

vnj+1
− vnj

, vnj+1 6= vnj ,

a(vnj ), vnj+1 = vnj .

By noticing that the corrector step contains only the combination f ∗ − xn
t u

∗, we can
write a compact two-stages form of the predictor-corrector scheme:

( f̂ − fn

τ ∗

)

j+1/2
+
( ā2
J

vq

)n
j+1/2

= 0,

(Jv)n+1
j − (Jv)nj

τ
+

(
f̂ − (xt v)

n
)
j+1/2

−
(
f̂ − (xt v)

n
)
j−1/2

h
= 0,

where ā(v, q, t) = a(v)− xt. The parameter θnj+1/2 is computed according to (2.10) which
ensures the TVD property of the scheme. As a result we obtain a generalization of Harten
scheme [25] to the case of moving meshes.

3.1. Numerical results

In order to illustrate the performance of the generalized Harten scheme on moving meshes
we take the classical example of the inviscid Burgers–Hopf equation (f(u) = u2

2
). As the
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first illustration let us take the following initial condition on the computational domain
x ∈ [0, ℓ]:

u0(x) =





ul, x 6 xl,
x− xr

xl − xr
ul +

x− xl

xr − xl
ur, xl < x < xr,

ur x > xr.

All numerical parameters are given in Table 3. The exact weak solution to this problem is
given by the following formula:

u(x, t) =





ul, x 6 xl + ul t,
x − x∗

t − t∗
, xl + ul t < x < xr + ur t,

ur, x > xr + ur t,

t < t∗.

The gradient catastrophe takes place at t = t∗ and x = x∗, which can be computed exactly
as well

t∗ = − xr − xl

ur − ul
, x∗ = xl + ul t

∗ ≡ xr + ur t
∗.

After t = t∗ we obtain a travelling shock-wave profile:

u(x, t) =

{
ul, x 6 x∗ + {u}(t − t∗),

ur, x > x∗ + {u}(t − t∗),
{u} def

:=
ul + ur

2
.

For the parameters chosen in our numerical simulation (see Table 3) the shock wave remains
stationary at t = t∗ = 5 and x = x∗ = 15 since ul = −ur. The numerical solution and
the grid motion are shown in Figure 3. It can be seen that the solution monotonicity is
preserved on both fixed and moving meshes. However, on the moving grid we obtain a
solution which cannot be distinguished from the exact one up to the graphical resolution.
On the fixed grid the shock wave has a finite width equal to two control volumes.

As another numerical illustration, we consider the same problem, but we change the value

of ur
def
:= 0 instead of −1. In this case the gradient catastrophe takes place at t = t∗ = 10

and x = x∗ = 20. The shock wave profile is not steady anymore since {u} = ul+ur

2
= 1

2
6= 0.

So, it will move in the rightward direction with a constant speed equal to 1
2
. The results

of numerical simulations are shown on Figure 4. It can be seen again that the adaptive
solution is excellent, while the fixed grid produces a shock wave smeared out on four cells
only.

4. Nonlinear system of equations

The predictor-corrector scheme for nonlinear systems on moving meshes will be presented
on a practically important case of the Nonlinear Shallow Water Equations (NSWE) [39].
This choice reflects also the scientific interests of the authors of the present article. So,
consider one-dimensional nonlinear shallow water equations written in a vectorial form:

ut +
[
f(u)

]
x

= G(u, x), (4.1)
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Parameter Value

Computational domain length, ℓ 30.0

Number of nodes, N 60

Final simulation time, Tf 10.0

CFL number, C 0.2

Left transition coordinate, xl 10.0

Right transition coordinate, xr 20.0

Left constant state, ul 1.0

Right constant state, ur −1.0

Monitor function parameter, α 15.0

Grid diffusion parameter, β 80.0

Smoothing parameter, σ 60.0

Table 3. Numerical parameters used to simulate a stationary shock-wave
formation under the Burgers–Hopf equation dynamics.
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Figure 3. Stationary shock wave formation in the Burgers–Hopf equation: (a)
comparison of different profiles (thin solid line is the exact solution, (1) is the
numerical solution on the uniform mesh, (2) is the solution on the moving mesh);

(b): trajectories of grid nodes in space-time. Please, notice that the panel (a)
shows only a zoom of the computational domain.
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Figure 4. Stationary shock wave formation in the Burgers–Hopf equation: (a)
comparison of different profiles (thin solid line is the exact solution, (1) is the
numerical solution on the uniform mesh, (2) is the solution on the moving mesh);

(b): trajectories of grid nodes in space-time. Please, notice that the panel (a)
shows only a zoom of the computational domain.

where u is the vector of conservative variables, f(u) is the flux function and G(u, x)
contains the source terms:

u =

(
H

Hu

)
, f(u) =

(
Hu

Hu2 + g
2
H2

)
, G(u, x) =

(
0

gHhx

)
.

Here u(x, t) is the depth-averaged velocity and H(x, t) = η(x, t) + h(x) is the total water
depth defined as the sum of the bathymetry function h(x) and the free surface elevation
η(x, t) over the mean water level. The sketch of the physical domain with all these defini-
tions is shown in Figure 5. The system (4.1) is considered on a finite segment I = [0, ℓ]
with appropriate boundary conditions. As before, we consider a smooth bijective time-
dependent transformation x = x(q, t) from the reference domain Q = [0, 1] into I. The
NSWE on the reference domain are written in the form:

vt +
1

J
[f q − xt vq] =

1

J
G(v, q),

where v(q, t) = u ◦ x = u
(
x(q, t), t

)
and the source term contains a derivative with respect

to q:

G(v, q) =

(
0

gHhq

)
, h(q, t) = h

(
x(q, t)

)
.

It is noted that the bathymetry becomes time-dependent under this change of variables,
even if initially the bottom was fixed. There exists also a conservative form NSWE on the



Conservation laws on moving grids 19 / 34

z

x
l

0

z=   (x,t)η

z=-h(x)

H(x,t)

Figure 5. Sketch of the fluid domain in shallow water flows.

reference domain:

(Jv)t + [f − xt v]q = G(v, q), J
def
:= xq > 0.

Finally, the flux vector satisfies the following equation:

f t +
1

J
A [f q − xtvq] =

1

J
A G(v, q),

where A is the advective flux’s Jacobian matrix, which can be easily computed:

A (v) =
Df(v)

Dv
=

(
0 1

−v2 + gH 2v

)
.

Since the system of NSWE (4.1) is hyperbolic, the Jacobian A can be decomposed into
the product of left L and right R eigenvectors:

A = R · D · L ,

where the matrices L , R and D are defined as

L =
1

c2

(
−λ2 1

−λ1 1

)
, R =

c

2

(
−1 1

−λ1 λ2

)
, D =

(
λ1 0

0 λ2

)
.

Here λ1,2 = v ∓ c (c =
√
gH being the speed of gravity waves) are eigenvalues of the

Jacobian A (v). They are real and distinct provided that H(q, t) > 0. Mathematically it
implies the strict hyperbolicity property for the system (4.1).
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4.1. Finite volume discretization

The reference domain Q is discretized into N equal control volumes [qj , qj+1] of the width
∆q ≡ 1

N
. The nodes xn

j are obtained as images of uniform nodes under the mapping x(q, t):

xn
j = x(qj , t

n).

In the predictor-corrector scheme on the first step we evaluate the flux vector in cell centers:

f̂ j+1/2 =
fn

j + fn
j+1

2
− τ

2

[1
J

R ·D · D̄ · (D̄ · P − L ·G)
]n
j+1/2

, P
def
:= L vq.

The corrector step is based on the conservative form of the equation:

(Jv)n+1
j − (Jv)nj

τ
+

(
f̂ − (xt v)

n
)
j+1/2

−
(
f̂ − (xt v)

n
)
j−1/2

∆q
= G

∗
j , (4.2)

where τ is the time step and the following discretizations are used

G
n
j+1/2 =

(
0

g(Hhq)
n
j+1/2

)
, G

∗
j =

(
0

g(Hhq)
n+1/2
j

)
, Dn

j+1/2 =

(
1 + θ1,nj+1/2 0

0 1 + θ2,nj+1/2

)
.

The total water depth H and local depth gradient hq have to be computed in the following
way:

H
n+1/2
j =

Hn+1
j+1 +Hn+1

j−1 +Hn
j+1 +Hn

j−1

4
, h

n+1/2
q,j =

hn+1
j+1 − hn+1

j−1 + hn
j+1 − hn

j−1

4∆q
, hn

q, j+1/2 =
hn
j+1 − hn

j

∆q
.

Despite the fact that Hn+1
j±1 is present in the formulas above, the scheme remains explicit,

since we compute first {Hn+1
j }N−1

j=1 from the mass conservation and, then, this value is used
in the correction of the momentum conservation equation.

The matrix D̄ plays the rôle of ā (the wave speed relative to the grid nodes) in the scalar
case:

D̄
def
:= D

n
j+1/2 − xn

t, j+1/2 · I, D
n
j+1/2 =

(
λn
1, j+1/2 0

0 λn
2, j+1/2

)
, I =

(
1 0

0 1

)
.

Here λn
k, j+1/2, k = 1, 2 are eigenvalues of the Jacobian matrix A n

j+1/2:

A
n
j+1/2 =

(
0 1

−vnj v
n
j+1 + gHn

j+1/2 2vnj+1/2

)
, (λ1,2)

n
j+1/2 = (v ∓ c)nj+1/2,

the local gravity wave speed cnj+1/2 can be computed analytically:

cnj+1/2 =
√
(vnj+1/2)

2 − vnj v
n
j+1 + gHn

j+1/2 >

√
gHn

j+1/2 > 0.

This choice of the Jacobian A discretization is dictated by the requirement to preserve
the compatibility condition f q = A (v)vq at the discrete level as well. It is analogous to a
similar algebraic condition on the Jacobian in Roe’s scheme [36].
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Finally, the scheme parameter θkj+1/2 is computed according to the same strategy as
above, with the only difference being that it is computed separately for each component
k = 1, 2:

θkj+1/2 =






0, |g̃kj+1/2| 6 |g̃kj+1/2−sk
| and g̃kj+1/2 · g̃kj+1/2−sk

> 0,

θk0,j+1/2(1 − ξkj+1/2), |g̃kj+1/2| > |g̃kj+1/2−sk
| and g̃kj+1/2 · g̃kj+1/2−sk

> 0,

θk0,j+1/2, g̃kj+1/2 · g̃kj+1/2−sk
< 0,

(4.3)

where ξkj+1/2

def
:=

g̃k
j+1/2−sk

g̃k
j+1/2

, sk ≡ snk,j+1/2

def
:= sign

(
λ̄n
k,j+1/2

)
. Here λ̄n

k,j+1/2 = (λk − xt)
n
j+1/2 are

simply the diagonal elements of the matrix D̄ . The coefficient θk0,j+1/2 is related to the
local CFL number as

θk0,j+1/2

def
:=

1

C n
k, j+1/2

− 1, C n
k, j+1/2

def
:=

τ

∆q

( |λ̄k|
J

)n

j+1/2

.

Finally, we have to specify how to compute the indicators

g̃kj+1/2

def
:=
(
|λ̄k| (1 − Ck) p̃

k
)n
j+1/2

,

where p̃k, k = 1, 2 are components of the following vector:

p̃k, nj+1/2

def
:=

1

(cnj+1/2)
2

(
−cηq + Hvq
cηq + Hvq

)n

j+1/2

.

The fully discrete scheme is stable under the following CFL-type restriction [13] on the
time step τ :

max
k, j

{
C n

k, j+1/2

}
6 1.

4.1.1 Well-balanced property

For the scheme presented above one can show the following

Theorem 1. Assume that we have a fixed, but possibly non-uniform, grid {xn
j }. If on the

nth time layer we have the lake at rest state, i.e.

ηnj ≡ 0, vnj ≡ 0, (4.4)

then, the predictor–corrector scheme described above will preserve this state at the (n+1)th

time layer.

Proof. Since xt,j ≡ 0, ∀j and taking into account the definition (4.4) of the lake at rest
state, we have: (

D̄ · P − L ·G
)n
j+1/2

≡ 0.

Consequently, the predictor step leads

f̂ j+1/2 =
fn

j + fn
j+1

2
.
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Then, from the obvious identities hn+1
j ≡ hn

j , J
n+1
j ≡ Jnj and the way how we compute G

∗
j ,

it follows that ηn+1
j ≡ 0, vn+1

j ≡ 0. Thus, the lake at rest state is preserved at the next
time layer as well. �

The well-balanced property is absolutely crucial to compute qualitatively correct nu-
merical solutions to conservation (balance) laws [23]. The Theorem 1 shows that the
discretization proposed above does possess this property regardless some complications
coming from the grid motion.

4.1.2 Conservation property on moving grids

For conservation laws with source terms (the so-called balance laws), the conservation
property of a numerical scheme is understood in the sense that the fully discrete solution
verifies some thouroughly chosen finite difference analogues of continuous balance laws.
For the NSWE we have the conservation of mass and the balance of horizontal (depth-
averaged) momentum. Please, notice that on a flat bottom the balance of momentum
becomes a conservation law as well. The conservation property is crucial as well to compute
qualitatively correct numerical solutions [23].

On moving grids we have an additional difficulty: the computation of the speeds of mesh
nodes has to be consistent with the calculation of the cell volumes. If it is done in the right
way, the discrete geometric conservation law will be verified as well [42]. In 1D it can be
written as

Jn+1
j = Jnj + τ xn

tq,j . (4.5)

We shall show below that other schemes can by put into the conservative form similar
to (4.2). The pecularity here consists in the fact that the Jacobian matrix A is non-
constant, in contrast to the linear advection equation, for which any reasonable scheme
is conservative (see also Remark 2 below about a nonlinear scalar equation). Moreover,
the moving mesh is another complication, which makes this task rather non-trivial. For
example, the scheme parameter θkj±1/2 can be chosen as

θkj±1/2 = θk0,j±1/2, k = 1, 2.

This choice corresponds to the first order upwind scheme (as it was discussed above in
Section 2.1). So, the scheme (4.2) can be rewritten as

(Jv)n+1
j − (Jv)nj

τ
+

1

h

[(fn
j+1 + fn

j

2
−
(
Ā + − Ā −

)n
j+1/2

2
(vn

j+1 − vn
j ) − (xt v)

n
j+1/2 +

h

2
(RSLG)nj+1/2

)
−

(fn
j + fn

j−1

2
−
(
Ā + − Ā −

)n
j−1/2

2
(vn

j −vn
j−1) − (xt v)

n
j−1/2 +

h

2
(RSLG)nj−1/2

)]
= G

∗
j ,
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where Ā ± = RΛ̄±L , λ̄±
k = 1

2
(λ̄k ± |λ̄k|) and

S =

(
sign(λ1) 0

0 sign(λ2)

)
, Λ̄± =

(
λ̄±
1 0

0 λ̄±
2

)
.

One can see also that the following identities hold:

Λ̄ ≡ Λ̄+ + Λ̄−, Ā
+ + Ā

− ≡ Ā ≡ A − xt I.

By using these identities and the discrete geometric conservation law (4.5), one can derive
also the following equivalent form of the scheme (4.2):

vn+1
j − vn

j

τ
+

1

J
n+1
j

[(
A

+vq

)n
j−1/2

+
(
A

−vq

)n
j+1/2

]
=

1

J
n+1
j

[
G

∗
j − 1

2

(
(RSLG)nj+1/2 − (RSLG)nj−1/2

)]
.

The choice (4.3) of the scheme parameter θkj±1/2 leads to a conservative scheme as well,

but the underlying computations (to show it) are less elegant.

Remark 2. In order to illustrate even better the interplay between conservative and non-
conservative forms, let us take again the inviscid Burgers–Hopf equation [32]:

ut +
(u2

2

)

x
= 0.

For the sake of simplicity let us discretize this equation on a uniform grid using the following
non-conservative scheme:

un+1
j − un

j

τ
+

un
j + un

j−1

2
·
un
j − un

j−1

∆x
= 0.

It is not difficult to see that this non-conservative scheme is equivalent to the following
conservative upwind scheme:

un+1
j − un

j

τ
+

1

∆x

(
(un

j )
2

2
−

(un
j−1)

2

2

)
= 0.

However, if one takes a different non-conservative scheme∗

un+1
j − un

j

τ
+ un

j ·
un
j − un

j−1

∆x
= 0, (4.6)

it is not difficult to see that one cannot transform it in a conservative form. Moreover, one
can even show that scheme (4.6) is not converging. So, the conservation and convergence
properties are intrinsically related.

∗The difference is in the estimation of propagation speed, cf. u
n
j vs. 1

2
(un

j + u
n
j−1

).



G. Khakimzyanov, D. Dutykh et al. 24 / 34

4.2. Numerical results

In this section we present two test cases of complex wave propagation in shallow water
equations. The first test case is a validation against an implicit analytic solution, derived
below specifically for this purpose, while the second test case is related to real world
applications.

4.2.1 Exact solution derivation

In order to validate the numerical scheme, we derive an exact solution to nonlinear
shallow water equations which will serve as a reference solution. We already saw this
particular solution in the literature [44], however, the derivation procedure is published for
the first time to our knowledge.

First of all, we assume that the bottom is flat, i.e. h(x) = h0 = const > 0 and we
consider an initial value problem on the real line:

η(x, 0) = η0(x), u(x, 0) = u0(x).

The nonlinear shallow water equations are rewritten using Riemann invariants [43]:

rt +
3r + s

4
rx = 0, st +

r + 3s

4
sx = 0,

where

r
def
:= u − 2c, s

def
:= u + 2c, c

def
:=

√
gH.

We seek for a particular solution in the form of an r-wave propagating in the leftward
direction. In other words we assume s = s0 = const. Assuming that at the infinity the
water is at rest, we deduce that s0 = 2c0 = 2

√
gh0. Then, from formula u + 2c = s0 we

deduce that the speed u(x, t) is related to the total depth:

u(x, t) = s0 − 2c = 2c0 − 2
√

gH(x, t). (4.7)

Consequently, taking the limit t → 0 we have a similar relation between the initial condi-
tions:

u0(x) = 2c0 − 2
√

g(η0(x) + h0).

If we introduce a new variable

p(x, t)
def
:=

3r(x, t) + s0
4

the governing equation for the r-invariant becomes simply the Burgers–Hopf equation:

pt + p px = 0.

The solution can be obtained using the method of characteristics by the following implicit
formula [37, 45]:

p(x, t) = p0
(
x − p(x, t)t

)
,
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where p0(x) is the initial condition

p0(x) =
3r(x, 0) + s0

4
= 2c0 − 3

√
g(η0(x) + h0).

Consequently, the solution p(x, t) can be obtained at any space location x and time instance
t by solving the following implicit equation

p(x, t) = 2c0 − 3
√

g(η0
(
x− p(x, t) t

)
+ h0). (4.8)

Once, p(x, t) is found, the free surface elevation η(x, t) can be reconstructed by using this
formula

η(x, t) =

(
2c0 − p(x, t)

3
√
g

)2

− h0,

and the flow speed u(x, t) from (4.7).

Remark 3. Please, note that this method works only until the gradient catastrophe occurs
at some time instance t = t∗, which depends on the initial condition.

Remark 4. In order to guarantee the solvability of equation (4.8), it is enough to check
that the following function

f(p; x, t) = p + 3
√
g(η0

(
x− p t

)
+ h0) − 2c0

is monotonic in p for 0 < t < t∗.

4.2.2 Validation

Using the method described above, we obtain the analytical solution for the following
initial value problem:

η0(x) =

{
a
2

[
1 + cos

(2π(x − xw)
λ

)]
, |x − xw| 6 λ/2,

0, |x − xw| > λ/2,

where xw is the wave crest position and a is the wave amplitude. For 0 < t < t∗ the profile
η0(x) will propagate to the left with the speed c0 preserving its wavelength λ and amplitude
a. However, the gradient catastrophe will inevitably take place since the characteristics
dx
dt

= p0(x) departing from the interval (xw − λ/2, xw) form a converging beam. On the
other hand, the characteristics from (xw, xw+λ/2) diverge. Thus, the solution looks like a
compression wave followed by a rarefaction wave. With the parameters specified in Table 4
the gradient catastrophe takes place about t = t∗ ≈ 5.57. Numerical results are shown in
Figure 6 right before the gradient catastrophe occurs. The adaptive grid was constructed
using the following monitor function, which contains an additional term with respect to
(2.11)

̟(x, t) = 1 + α0 |η(x, t)| + α1 |ηx(x, t)|, (4.9)
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Parameter Value

Computational domain length, ℓ 40.0

Number of nodes, N 100

Final simulation time, Tf 5.0

CFL number, C 0.95

Gravity acceleration, g 9.81

Initial wave amplitude, a 0.2

Wave crest initial position, xw 30.0

Initial wavelength, λ 10.0

Undisturbed water depth, h0 1.0

Monitor function parameter, α0 10.0

Monitor function parameter, α1 10.0

Grid diffusion parameter, β 5.0

Smoothing parameter, σ 5.0

Table 4. Numerical parameters used in validations of the nonlinear shallow

water equations solver.

which is discretized as

̟n
j+1/2 = 1 + α0 |ηnj+1/2| + α1

|ηnj+1 − ηnj |
xn
j+1 − xn

j

. (4.10)

Thin solid line in Figure 6 represents the exact solution computed by solving equation (4.8)
as it was explained in the previous Section. The agreement between these two profiles is
exemplary. On the right panel (b) one can see how the nodes follow the wave propagation
and how their density increases around the steep gradient. On the other hand, the use of
a fixed grid leads to a noticeable smearing of the numerical solution.

4.2.3 Solitary wave run-up

As the last test-case we consider a practically important problem of a solitary wave
run-up on a sloping beach. The main difficulty here consists in the fact that the fluid
domain may vary in time and its evolution is not known a priori. It has to be determined
dynamically during the simulation. The wetting/drying algorithm was described in detail
in our previous study [30]. Here we focus mainly on the mesh motion algorithm behaviour.

Consider a closed 1D channel with the bathymetry prescribed by the following function

z = −h(x) =

{
h0 − x tan θ 0 6 x 6 xs,

−h0, xs 6 x 6 ℓ,
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Figure 6. Shock wave formation in nonlinear shallow water equations: (a)
comparison of different profiles (thin solid line (1) is the exact solution, (2) is the
numerical solution on the moving mesh, (3) is the solution on the fixed uniform

mesh); (b): trajectories of grid nodes in space-time. Please, notice that the panel
(a) shows only a zoom of the computational domain.

where θ is the sloping beach angle. The variable bathymetry region is located leftwards
from xs = 2 cot θ ≈ 38.16. At the initial time the shoreline is located at x00 = cot θ ≈ 19.08.

The initial condition is a solitary wave prescribed by the following formulas (which come
from the analytical solitary wave solution to the Serre equations, see [16] for example):

η(x, 0) = a sech2

[ √
3ga

2h0

√
g(h0 + a)

(x − x0,w)

]
,

u(x, 0) = −
√

g(h0 + a)
η(x, 0)

h0 + η(x, 0)
,

Variables a and x0,w = xs+30 ≈ 68.16 are the initial solitary wave amplitude and position
correspondingly. The right boundary is located at ℓ = x0,w + 30 ≈ 98.16. All numerical
parameters used in this experiment are provided in Table 5.

The considered situation is complex enough so that the analytical solution is not avail-
able. However, we can simulate it numerically with the predictor–corrector scheme on
moving grids presented above. The wave run-up process simulated in silico is depicted in
Figure 7(a), while the nodes motion is illustrated in the right panel (b). Please, notice
that only every fifth node is depicted in Figure 7(b) in order to improve the visibility of the
image. The rightmost node is fixed (i.e. its trajectory is a straight line), while th leftmost
node’s trajectory coincides with the shoreline motion. One can see that even on domains



G. Khakimzyanov, D. Dutykh et al. 28 / 34

Parameter Value

Computational domain length, ℓ 98.16

Number of nodes, N 1000

Final simulation time, Tf 30.0

CFL number, C 0.95

Gravity acceleration, g 9.81

Initial wave amplitude, a/h0 0.05

Wave crest initial position, x0,w 68.16

Beach slope position, xs 38.16

Beach slope, θ 3◦

Undisturbed water depth, h0 1.0

Monitor function parameter, α 60.0

Grid diffusion parameter, β 20.0

Smoothing parameter, σ 10.0

Table 5. Numerical parameters used in a solitary wave run-up simulation in

nonlinear shallow water equations.

with variable spatial extent, the mesh motion algorithm is robust enough and it puts the
resolution where it is needed.

The monitor function used in this computation is

̟(x, t) = 1 + α |η(x, t)|. (4.11)

It is important to use the wave elevation η(x, t) instead of the total water depth H(x, t)
because of the solutions such as the lake at rest state. In these situations the total depth H
varies in space, while the free surface elevation η(x, t) ≡ 0. Thus, the usage of the monitor
function (4.11) leads to the well-balanced property shown in Theorem 1.

Some further validation tests and numerical experiments with this moving grid technique
were presented in our preceding work [30] (without giving many details about the algorithm
in use). So, we invite the interested reader to consult the work [30] as well.

5. Open problems

Only in very simple problems (linear and steady) one can study theoretically the choice
of the optimal monitoring function. Recently we performed such an analysis for a singularly
perturbed Sturm–Liouville problem [29]. In particular, we showed that a judicious choice
of the monitoring function allows to increase the convergence order from the 2nd to the
4th order (the so-called supraconvergence phenomenon), even if the scheme is just 2nd

order accurate on uniform meshes. So, the first open problem consists in providing a
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Figure 7. Solitary wave run-up simulation on a sloping beach with nonlinear

shallow water equations: (a) free surface elevation evolution; (b): trajectories of
grid nodes in space-time.

similar analysis for, at least, 1D unsteady or nonlinear problem. The method employed
in [29] is suitable for smooth solutions. For discontinuous ones a different technique has
to be proposed. Even a linear transport equation is not completely understood from
the perspective of constructing a suitable moving grid. It is even possible that for every
discretization scheme there is its own “optimal” monitoring function. So, one choice clearly
does not fit all possible schemes. Moreover, even if we choose the monitoring function as in
(4.11), it was shown in [29] that the error may depend non-monotonically on the coefficient
α. Thus, even if the monitoring function form is fixed, one has to set optimal values
of coefficients in this function. In the present work our goal was to present the moving
grid methodology, which does not involve any interpolation procedure (thus, avoiding the
unnecessary smearing of the numerical solution). We showed some reasonable choices of
the monitoring function, which are currently used in practice, but these choices have to be
refined further in the forthcoming works.

6. Discussion

The main conclusions and perspectives of this study are outlined below.
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6.1. Conclusions

In this manuscript we presented a detailed description of a family of predictor-corrector
schemes up to the second order in space, which were generalized to the case of non-uniform
moving meshes. The method described above has several important advantages:

• No interpolation or solution reconstruction procedures are required (thus avoiding
unnecessary numerical diffusion)

• The implementation is made easy (comparing to e.g. AMR-type methods based on
octrees [8]): the user solves a PDE on a uniform grid in Qh space

• A great potential for multi-dimensional (Cartesian) generalizations Q× Q× . . .Q︸ ︷︷ ︸
n times

This is the main novelty and main contributions of our study to the growing field of adaptive
numerical methods. The stability of the proposed scheme on non-uniform meshes can be
rigorously shown for the linear advection equation. The use of this method was illustrated
on a number of relatively difficult tests coming from linear, nonlinear and vectorial cases.
Every time the gain of using a moving grid (with respect to the fixed one) was clearly
visible. Consequently, we can only encourage the community to use these (or similar)
adaptive strategies to improve the quality and efficiency of their numerical simulations.

6.2. Perspectives

The adaptive moving mesh technology presented in this study relies on the choice of the
monitoring function along with several free real parameters. Numerical experiments show
that the method performance may depend crucially on the choice of these real numbers.
Consequently, it would be highly desirable to obtain some theoretical estimations of the
optimal choice of these parameters at least in the case of the simplest linear advection
equation (2.1). It constitutes one of the main challenges raised by our study. In the
absence of such theoretical indications, one might envisage extensive numerical studies
in order to issue some practical recommendations on how to choose reasonable values of
parameters. Most probably the case of nonlinear systems of conservation laws will remain
essentially empiric in the foreseeable future due to the important theoretical difficulties in
its analysis. The stability of the resulting scheme should be studied for genuinely nonlinear
equations.

From more practical point of view, the predictor-corrector schemes on moving grids
presented in this study have to be generalized at least to two-dimensional case as it was
done for the Godunov scheme in [5]. Moreover, the spatial adaptivity has to be coupled
with time-adaptive strategies such as the PI step size control [24] in order to achieve the
full adaptivity.
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