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2Université Paris Descartes, Sorbonne Paris Cité
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Abstract

In a proximity region graph G in Rd, two distinct points x, y of a point process µ

are connected when the ‘forbidden region’ S(x, y) these points determine has empty
intersection with µ. The Gabriel graph, where S(x, y) is the open disc with diameter the
line segment connecting x and y, is one canonical example. Under broad conditions on
the process µ and regions S(x, y), bounds on the Kolmogorov and Wasserstein distances
to the normal are produced for functionals of G, including the total number of edges,
and total length.

1 Introduction

The family of graphs that we study here, all with vertex sets given by a point process µ in
Rd, are motivated by two canonical examples considered in [1], the Gabriel graph and the
relative neighborhood graph. Two distinct points x and y of µ are connected by an edge in
the Gabriel graph if and only if there does not exist any point z of the process µ lying in the
open disk whose diameter is the line segment connecting x and y. The relative neighborhood
graph has an edge between x and y if and only if there does not exist a point z of µ such
that

max(‖x− z‖, ‖z − y‖) < ‖x− y‖,
that is, if and only if there is no point z of µ that is closer to either x or y than these points
are to each other.

These two examples are special cases of ‘proximity graphs’ as defined in [3], where distinct
points x and y of µ are connected if and only if a region S(x, y) determined by x and y contains
no points of µ, that is, when µ∩ S(x, y) = ∅. As S(x, y) must be free of points of µ in order
for x and y to be joined, we call S(x, y) the ‘forbidden region’ determined by x and y. In
particular, with B(x, r) and Bo(x, r) denoting the closed and open ball of radius r centered
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at x, respectively, we see that the Gabriel and relative neighborhood graphs correspond to
the forbidden regions

S(x, y) = Bo((x+ y)/2, ‖y − x‖/2) (1)

and

S(x, y) = Bo(x, ‖y − x‖) ∩ Bo(y, ‖x− y‖) (2)

respectively. It is easy to check that the forbidden regions S(x, y) of the Gabriel graph is
contained in those of the relative neighbor graph, and hence edges of latter are also edges of
former.

We refer to the graphs formed in this manner also as ‘forbidden region graphs’. Indeed,
when coining the label ‘proximity graphs’ in [3], one reads that ‘this term could be misleading
in some cases.’ Indeed, forbidden region graphs may depend on ‘non-proximate’ information,
such as the graph considered in Example 5 of [3], whose forbidden region S(x, y) is the infinite
strip bounded by the two parallel hyperplanes containing x and y, each perpendicular to y−x.
Allowing forbidden regions to depend on larger sets of points and to be determined by more
complex rules yield well studied graphs with additional structure, including the Minimum
Spanning Tree and the Delaunay triangulation, see [1].

For a forbidden region graph G and µ a Poisson or binomial point process in some bounded
observation window we study the distribution of

L(µ) =
1

2

∑

{x,y}⊆µ,x 6=y

1(µ ∩ S(x, y) = ∅)ψ(x− y), (3)

for some ψ : Rd → R. For instance, taking ψ(x) = ‖x‖α for some α ≥ 0, for α = 0 and α = 1
the value of L(µ) is the number of edges and the total length of G, respectively.

Theorem 1, our main result, is a bound on the normal approximation of L, in both the
Wasserstein and Kolmogorov metric, that holds under broad conditions on the forbidden
regions and underlying point process. First, we will assume that the collection of forbidden
regions {S(x, y) : {x, y} ⊆ Rd, x 6= y} are nonempty subsets of Rd that are symmetric in
that

S(x, y) = S(y, x) for all {x, y} ⊆ Rd, x 6= y. (4)

Nonsymmetric sets S(x, y) would be natural for the construction of directed forbidden region
graphs, and though we do not consider them here our methods would apply. We assume
also that

{x, y} ⊆ S(x, y) \ S(x, y), (5)

and that the normalized diameter of the collection of forbidden regions is finite, that is,

D <∞ where D = sup

{ ‖s− t‖
‖x− y‖ ; {s, t} ⊆ S(x, y), {x, y} ⊆ Rd, x 6= y

}
. (6)

Assumption 1 below requires that as x and y become farther apart, the forbidden regions
S(x, y) contain increasingly large balls. Note, for instance, that if all forbidden regions have
empty interior, then the graph determined by a Poisson input process would be the complete
graph almost surely. Also, to ensure that the graph, and functional L(µ) of (3), are finite,
we restrict the graph to some bounded measurable ‘viewing window’ X.
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Assumption 1 (Scaled ball condition). For some δ > 0, it holds for all {x, y} ⊆ X that
S(x, y) ∩ X contains a ball of radius δ‖x− y‖.

With some slight abuse of notation, | · | will be used to denote both the Lebesgue measure
of a measurable subset of Rd and also cardinality of a finite set; use will be clear from context.
We assume the following condition on the process ηt.

Assumption 2. Let λ be a probability measure on X satisfying

cλ|B| ≤ λ(B) ≤ bλ|B| for all measurable B ⊆ X

for some 0 < cλ ≤ bλ. The point process ηt is either Poisson on X with intensity λt = tλ, t >
0, or a set of i.i.d. variables X1, . . . , Xt with common distribution λ, for t ∈ N.

For the function ψ in (3) we will assume:

There exists C > 0 and α ≥ 0 such that |ψ(x)| ≤ C‖x‖α for all x ∈ Rd. (7)

Lastly, we require the following variance lower bound.

Assumption 3. For some vα > 0,

VarL(ηt) ≥ vαt
1−2α/d for all t ≥ 1.

Assumption 3 is a serious one, and we separately address the question of when it is
satisfied in Section 4.

We write dW (X, Y ) and dK(X, Y ) for the Wasserstein and Kolmogorov distances, respec-
tively, between the laws of the random variables X and Y . We inform the reader that the
C that appears in our bounds denotes a positive constant that may not be the same at each
occurrence.

Theorem 1. Let X be a bounded measurable subset of Rd, and let {S(x, y) : x, y ∈ X, x 6= y}
be a collection of forbidden regions satisfying (4)–(6) and Assumption 1. Let ηt be a point
process on X satisfying Assumption 2, and let

Ft := L(ηt), for t ≥ 1,

where L(·) is given in (3) with ψ satisfying (7).
If Assumption 3 holds, then there exists a constant C not depending on t such that

max
[
dW (F̃t, N), dK(F̃t, N)

]
≤ Ct−1/2 for all t ≥ 1,

where F̃t = (Ft − EFt)/VarFt, and N is a standard Gaussian.

In [9], the authors prove a central limit theorem for statistics of point processes, which
is then applied to the Gabriel graph and the nearest neighbor graph on Poisson or binomial
input processes. Their result does not give the rate of convergence to normal, however.
We note that a variance decay of order t−1/2 is typical for stationary Euclidean functionals,
meaning the rates obtained in Theorem 1 are likely to be optimal, and could be shown so
for discrete valued variables, such as the number of edges, using the methods in [4].
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We now address Assumption 3, the lower bound on VarL(ηt). Penrose and Yukich give
a general lower bound for the variance of Poisson and binomial statistics in [9]. Their result
requires a statistic f to be strongly stabilized. (This notion of stabilization is also referred to
as stabilization for add-one cost or as external stabilization—see [10] for a general survey.)
We cannot apply this result because our statistic L is not strongly stabilized unless we impose
additional constraints on the forbidden regions, such as requiring them to be convex. Another
possible approach would be to use the results of [7, Section 5]. These are applicable to L, but
only for the easier case of Poisson input. We are thus forced to give a new argument to prove
that Assumption 3 holds in some generality. We state one additional technical condition
required, followed by a sufficient condition for Assumption 3. Let the boundary of a set B
be denoted by ∂B.

Assumption 4. For all {w, z} ⊂ B(0, 1) there exists y ∈ ∂S(w, z) such that z /∈ ∂S(w, y)
and w /∈ ∂S(z, y).

Theorem 2. Suppose the forbidden regions {S(x, y), {x, y} ⊆ Rd, x 6= y} form a regular
(S, u0) isotropic family as in Remark 4 below and satisfy Assumption 4. Assume further that
the scaled ball condition is satisfied with the role of X played by t1/dX∩B(x, r) for any t and
r. Also assume that ψ(x) = xα in the definition of L. Then there is a constant vα > 0 such
that Assumption 3 holds when ηt satisfies Assumption 2.

An immediate consequence of this theorem is the following result for our two motivating
examples, taking, say X = B(0, 1), for concreteness.

Corollary 3. Let X = B(0, 1), and suppose that ηt is either a Poisson process with intensity t
on X, or a binomial process of t independent and uniformly distributed points on X. Then
the bound of Theorem 1 holds for the Gabriel graph and the relative neighborhood graph on
ηt.

Theorem 1 is based on the methods of [7], in particular on second order Poincaré inequal-
ities, and also the key notion of stabilization. To define stabilization, let f(µ) be a function
of a point process µ in Rd. For x ∈ Rd consider the difference (or derivative) at x given by

Dxf(µ) = f(µ ∪ {x})− f(µ), (8)

which is the amount that f changes upon the insertion of the point x into µ. Higher order
differences are defined iteratively, for instance D2

x,yf(µ) = Dx(Dyf(µ)), so

D2
x,yf(µ) = f(µ ∪ {x, y})− f(µ ∪ {y})− f(µ ∪ {x}) + f(µ). (9)

There are a number of related notions of a stabilization radius for a functional f . The
one we will use is a radius R(x;µ) such that

D2
x,yf(µ) = 0 if ‖y − x‖ > R(x;µ). (10)

We say in this case that R(x;µ) is stabilizing for f around x.
When µ is a Poisson process with growing intensity λt, one key condition from [7] required

to obtain bounds to the normal for a properly standardized functional f is that over the
observation window X,

sup
x∈X,t≥1

∫
P (D2

x,yf(ηt) 6= 0)aλt(dy) <∞, (11)
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for a some small number, depending on low moments of the derivatives of f . If there exists a
stabilization radius for f that is small with sufficiently high probability, then (11) holds. In
Section 2, we construct such a radius and prove that it exhibits exponential decay under very
weak conditions on the forbidden regions. We end this section by introducing some additional
concepts and terminology about forbidden regions, such as the normalized diameter D and
the notion of ‘family based’ and ‘isotropic’ forbidden regions.

As already stated, the graph with vertex set a locally finite point configuration µ in Rd

is the S(x, y) forbidden region graph on µ when an edge exists between points x and y of µ
if and only if x 6= y and S(x, y)∩ µ = ∅. That is, we connect points x and y of µ if and only
if they are distinct, and there are no points of µ lying in the forbidden region S(x, y) that
these two points generate. Hence, for x ∈ µ, the set of edges GS(x;µ) incident to x in µ, and
the edge set GS(µ) of the forbidden region graph are given, respectively, by

GS(x;µ) = {{x, y} : {x, y} ⊆ µ, x 6= y, S(x, y)∩ µ = ∅} and GS(µ) =
⋃

x∈µ

GS(x;µ).

We may denote, GS(µ) by G(µ), say, if S is clear from context.
We say the collection of forbidden regions are translation invariant when

S(x+ z, y + z) = S(x, y) + z for all {x, y, z} ⊆ Rd, x 6= y.

In many natural examples the forbidden region S(x, y) is determined by a ‘template’ which
is shifted and scaled in accordance with the positions of x and y. More precisely, with Sd−1

denoting the unit sphere in Rd we say that the collection of forbidden regions is based on
the family of subsets {S(u) : u ∈ Sd−1} of Rd when

S(x, y) = (x+ y)/2 + ‖x− y‖S
(

x− y

‖x− y‖

)
for all {x, y} ⊆ Rd, x 6= y.

In other words, forbidden regions are based on a family when S(x, y) is a set that depends
only on the direction vector from y to x, which is then scaled by the distance between y and
x and shifted to have its ‘center’ at their midpoint.

Regions based on families enjoy properties (4) and (5) when

S(−u) = S(u) and {−u, u} ⊆ 2(S(u) \ S(u)) for all u ∈ Sd−1, (12)

are always translation invariant, and have normalized diameter given by

D = sup{‖p− q‖ : {p, q} ⊆ S(u), u ∈ Sd−1}.

Remark 4. A particularly simple collection of forbidden regions are the ones we term (S, u0)
isotropic, which are regions based on a family {S(u) : u ∈ Sd−1} determined by a bounded
measurable subset S ⊆ Rd and a unit vector u0 ∈ Rd such that any rotation leaving u0 invari-
ant also leaves S invariant, that is, u0 specifies a symmetry axis for S. Assume furthermore
that {−u0, u0} ⊆ 2(S \ S). Given any unit vector u, let ρu be any rotation transforming u0
into u, and set S(u) = ρu(S). The set S(u) is well defined as ρu(S) does not depend on the
choice of rotation. Indeed, if ρ and ρ′ are any two such rotations, the rotation ρ−1ρ′ leaves
u0 invariant, and hence also leaves S invariant, whence ρ′(S) = ρρ−1(ρ′(S)) = ρ(S). For
definiteness, given u0 ∈ Sd−1, for all u ∈ Sd−1 let ρu denote the rotation mapping u0 to u,
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leaving invariant the orthogonal complement of the space spanned by {u0, u}. We say the
(S, u0) isotropic family is regular when S contains an open ball and has negligible boundary.

We note that in R2 an isotropic family can be generated by any non-empty subset S and
any unit vector u0, as only the identity rotation leaves u0 invariant, which necessarily leaves
S invariant.

Our two canonical examples, the Gabriel graph and the relative neighborhood graph, are
both isotropic families. With u0 = (1, 0, . . . , 0), the Gabriel graph is obtained by setting
S = Bo(0, 1/2), and the relative neighborhood graph for S = Bo(u0/2, 1) ∩ Bo(−u0/2, 1).
For the Gabriel graph, we then have

S(u) = Bo(0, 1/2) for all u ∈ Sd−1,

as we may write (1) as

Bo((x+ y)/2, ‖(y − x)‖/2) = (x+ y)/2 +Bo(0, ‖y − x‖/2) = (x+ y)/2 + ‖y − x‖S(u).

Rotating the ‘base set’ S given above for the relative neighborhood graph we obtain

S(u) = Bo(u/2, 1) ∩Bo(−u/2, 1),

and for given x 6= y, with u = (x− y)/‖x− y‖, we have (2) expressed as

Bo(x, ‖y − x‖) ∩ Bo(y, ‖x− y‖)
= (x+ y)/2 +Bo((x− y)/2, ‖y − x‖) ∩Bo((y − x)/2, ‖x− y‖)
= (x+ y)/2 + ‖x− y‖ (Bo(u/2, 1) ∩Bo(−u/2, 1))
= (x+ y)/2 + ‖x− y‖S(u).

We note that (12), and hence both (4) and (5), are satisfied for these two basic examples.

2 Radius of stabilization

We begin this section by constructing a set in (13) that will serve as a stabilizing region
about a point x ∈ Rd, or more generally around a subset U ⊆ Rd. Our radius RS(U ;µ) is
then constructed in (15) in terms of this set, and prove in Lemma 7 that it satisfies (10), that
is, that it is stabilizing for L(µ) around x, is monotone in µ as a consequence of Lemma 5,
and show in Proposition 9, under a simple condition on the forbidden regions, that it has
exponentially decaying tails with standard Poisson or binomial input.

For U ⊆ Rd, let

RS(U ;µ;X)

=
⋃{

S(w, z) : {w, z} ⊆ X such that S(w, z) ∩ µ = ∅ and U ∩ S(w, z) 6= ∅
}
. (13)

Intuitively, this set consists of all forbidden regions affected by the addition of a point
somewhere in U . The most important case for us is U = {x}, which we write as RS(x;µ;X).

First, we show RS(U ;µ;X) satisfies a monotonicity property in µ.
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Lemma 5. If µ ⊆ ν, then

RS(U ; ν;X) ⊆ RS(U ;µ;X),

with equality if ν \ µ lies outside of RS(U ;µ;X).

Proof. Suppose that S(w, z) satisfies S(w, z) ∩ ν = ∅ and U ∩ S(w, z) 6= ∅. Then this
forbidden region also satisfies S(w, z) ∩ µ = ∅, showing that RS(U ; ν;X) ⊆ RS(U ;µ;X).

Now, assume that ν\µ lies outside ofRS(U ;µ;X). Suppose that S(w, z) satisfies S(w, z)∩
µ = ∅ and U ∩ S(w, z) 6= ∅. Then S(w, z) ⊆ RS(U ;µ;X), and hence µ = ν on S(w, z).
This implies that S(w, z) ∩ ν = ∅, which means that S(w, z) ⊆ RS(U ; ν;X). Therefore
RS(U ;µ;X) ⊆ RS(U ; ν;X), proving the two sets equal.

Now we consider the relation between RS(U ;µ;X) and the graphs G(µ) and G(µ ∪ {x}).
Let E+

x (µ) denote the edges found in G(µ ∪ {x}) but not in G(µ), and let E−
x (µ) denote the

edges found in G(µ) but not in G(µ ∪ {x}), that is

E+
x (µ) = G(µ ∪ {x}) \ G(µ) and E−

x (µ) = G(µ) \ G(µ ∪ {x}). (14)

Lemma 6. Suppose that µ and ν are supported on X1 and X2, respectively, and that U ⊆
X1 ∩ X2. If RS(U ;µ;X1) = RS(U ; ν;X2) and µ and ν agree on the closure of this set, then
E±

x (µ) = E±
x (ν) for any x ∈ U .

Proof. Suppose that x ∈ U and {x, y} ∈ E+
x (µ). Then, by {x, y} ⊆ X1, S(x, y) ∩ µ = ∅

and (5) we have S(x, y) ⊆ RS(U ;µ;X1) = RS(U ; ν;X2). Again by (5) the closure of this
set contains y, and µ and ν agree on it. Thus y ∈ ν and S(x, y) ∩ ν = ∅, implying that
{x, y} ∈ E+

x (ν). Therefore E+
x (µ) ⊆ E+

x (ν). By symmetry, the opposite inclusion holds as
well.

Now suppose that x ∈ U and {w, z} ∈ E−
x (µ). As {w, z} ∈ G(µ) we have {w, z} ⊆ X1 and

S(w, z)∩µ = ∅. Hence S(w, z) ⊆ RS(U ;µ;X1), and so is also a subset of RS(U ; ν;X2). As ν
agrees with µ on the closure of this set we have {w, z} ⊆ X2 and S(w, z)∩ν = ∅, so {w, z} ∈
G(ν). As {w, z} 6∈ G(µ ∪ {x}) we have x ∈ S(w, z), and therefore S(w, z) ∩ (ν ∪ {x}) = {x}.
Hence {w, z} 6∈ G(ν ∪ {x}), showing E−

x (µ) ⊆ E−
x (ν). By symmetry, the opposite inclusion

also holds.

Next, for U ⊆ X and µ supported on X, define

RS(U ;µ) = sup
{
‖y − x‖ : y ∈ RS(U ;µ;X), x ∈ U

}
, (15)

writing this quantity as RS(x;µ) if U = {x}. The next lemma shows that RS(x;µ) is
stabilizing.

Lemma 7. For any x ∈ U the radius RS(U ;µ) given in (15) is stabilizing for L(µ), the
statistic defined in (3). That is,

D2
x,yL(µ) = 0 for all {x, y} ⊆ X with x ∈ U and ‖y − x‖ > RS(U ;µ).

Further for any x ∈ Rd and r > 0 such that RS(x;µ) ≤ r, and {x1, . . . , xn} ⊆ B(x, r)c we
have

DxL(µ) = DxL(µ ∪ {x1, . . . xn}). (16)
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Proof. Assume that x ∈ U and ‖y − x‖ > RS(U ;µ). We need to show that DxL(µ ∪ {y}) =
DxL(µ). To do so, we will show that E±

x (µ ∪ {y}) = E±
x (µ). Since ‖y − x‖ > RS(U ;µ), the

point y lies outside of RS(U ;µ;X). By Lemma 5, RS(U ;µ ∪ {y};X) = RS(U ;µ;X). On the
closure of this set, µ and µ ∪ {y} agree, and so applying Lemma 6 with ν = µ ∪ {y} and
X1 = X2 = X yields the first conclusion.

For the second claim, the first claim yields that for x1 ∈ B(x, r)c we have

DxL(µ) = DxL(µ ∪ {x1}).

By Lemma 5, we have RS(x;µ ∪ {x1}) ≤ r. Thus applying the first claim again yields

DxL(µ ∪ {x1}) = DxL(µ ∪ {x1, x2}).

Repeating this argument proves (16).

To prove that our stabilization radius has exponential tails under Poisson or binomial
input we now use the scaled ball condition to show that lower and upper bounding RS(U ;µ)
implies that there exists a ball empty of points of µ.

Lemma 8. Assume the collection of forbidden regions S(x, y) satisfies the scaled ball con-
dition with δ > 0 and let µ be supported on X. If for some t > 0 and 0 < r1 < r2 we have
B(u, t) ⊆ X and 0 < r1 < RS(B(u, t);µ) ≤ r2, then with D the normalized diameter in (6),
there exists a ball of radius (r1 − 2t)δ/D lying within B(u, r2)∩X that contains no points of
µ.

Proof. Since RS(B(u, t);µ) > r1, there exist {w, z} ⊆ X such that

• S(w, z) contains no points of µ;

• S(w, z) contains some point of B(u, t);

• and there exists y ∈ S(w, z) and x ∈ B(u, t) with ‖y − x‖ > r1.

The diameter of S(w, z) is then greater than r1 − 2t by the triangle inequality, and by the
definition of the normalized diameter D, we have ‖z −w‖ > (r1 − 2t)/D. By the scaled ball
condition, S(w, z) ∩ X contains a ball of radius δ(r1 − 2t)/D. Since RS(B(u, t);µ) ≤ r2, the
set S(w, z) is contained within B(u, r2) (in fact, it is contained in B(u, r2 − t), but we will
not need this fact), and so the ball is also contained within B(u, r2) ∩X. By virtue of being
a subset of S(w, z), the ball contains no points of µ.

Using Lemma 8 we now show our stabilization radius has exponential tails.

Proposition 9. If the scaled ball condition (Assumption 1) holds for δ > 0, and ηt satisfies
Assumption 2 with cλ > 0, then for any 0 ≤ ǫ < 1/2 and r such that B(x, ǫr) ⊆ X,

P(RS(B(x, ǫr); ηt) ≥ r) ≤ C(1− 2ǫ)−d exp(−cλκtrd) for all r > 0 (17)

with κ = ((1−2ǫ)δ/D
√
d)d, and C a constant that depends only on d, D, and δ. In particular,

P(RS(x; ηt) ≥ r) ≤ C exp(−cλκtrd) for all r > 0. (18)

8



Proof. Let πd be the volume of the d-dimensional ball of radius 1. First, we show that for
any s > 0 and 0 ≤ ǫ < 1/2,

P[s < RS(B(x, ǫs);µ) ≤ 2s] ≤ (2D
√
d)dπd

(δ(1− 2ǫ))d
exp
(
−cλκtsd

)
. (19)

To prove this claim, suppose that s < RS(B(x, ǫs);µ) ≤ 2s and apply Lemma 8 to conclude
that there exists a ball of radius (1 − 2ǫ)δs/D within B(x, 2s) ∩ X containing no points of
µ. Now, consider the lattice ((1 − 2ǫ)δsd−1/2/D)Zd. By a volume argument, B(x, 2s) ∩ X
contains at most |B(0, 2s)|/((1− 2ǫ)δsd−1/2/D)d = (2D

√
d/(1 − 2ǫ)δ)dπd lattice cells. Any

ball of radius (1− 2ǫ)δs/D contains a cell of this lattice.
In all, we have shown that if s < RS(B(x, ǫs);µ) ≤ 2s, then at least one of the at most

(2D
√
d/(1− 2ǫ)δ)dπd lattice cells within B(x, 2s)∩X contains no point of µ. With binomial

input, applying (2), the empty cell probability is bounded by

[
1− cλ

(
(1− 2ǫ)δ

D
√
d

)d

sd

]t
≤ exp

[
−cλ

(
(1− 2ǫ)δ

D
√
d

)d

tsd

]
. (20)

With Poisson input, each lattice cell contains no point of µ with probability at most the
right hand side of (20). A union bound now proves (19).

Now consider r > 0, arbitrary. If exp
(
−cλκtrd

)
> 1/2, then (17) is trivially satisfied with

C = 2. Otherwise, applying a union bound using (19) with s = r, 2r, 4r, . . . gives

P[RS(B(x, ǫr);µ) > r] ≤ (2D
√
d)dπd

((1− 2ǫ)δ)d

∞∑

i=0

exp
(
−cλκt(2ir)d

)
.

Using exp
(
−cλκtrd

)
≤ 1/2, inequality (18) may now be established by bounding the sum in

the above inequality by a geometric series summing to 2 exp
(
−cλκtrd

)
.

3 Functionals of forbidden regions graphs satisfy a Berry-

Esseen bound

In this section we prove Theorem 1, starting with the Poisson case. For t ≥ 1, let ηt be a
Poisson process with intensity λt = tλ for some fixed finite measure λ on X. For a functional
Ft on ηt with finite, non-zero variance, let

F̃t = (Ft − EFt)/
√
Var(Ft).

Proposition 10 (Proposition 1.3, Last, Peccati and Schulte [7]). Let EF 2
t <∞, t ≥ 1, and

assume there are finite positive constants p1, p2 and c such that

E|DxFt|4+p1 ≤ c λ-a.e. x ∈ X, t ≥ 1 (21)

and

E|D2
x,yFt|4+p2 ≤ c λ2-a.e. (x, y) ∈ X2, t ≥ 1. (22)

9



Moreover, assume that for some v > 0

Var(Ft)

t
> v for all t ≥ 1, (23)

and that

m := sup
x∈X,t≥1

∫
P(D2

x,yFt 6= 0)p2/(16+4p2)λt(dy) <∞. (24)

Then there exists a finite constant C, depending uniquely on c, p1, p2, v,m and λ(X) such that
for N a standard Gaussian random variable,

max
{
dW (F̃t, N), dK(F̃t, N)

}
≤ Ct−1/2 for all t ≥ 1.

We first prove Lemma 11, a bound on the derivative of the functional L in (3), which is
used when considering both Poisson and binomial input processes. In preparation, for any
finite point configuration µ ⊆ X and x ∈ X \ µ, we let

A(x;µ)

= {z ∈ µ : ∃w ∈ µ, w 6= z, S(w, z) ∩ (µ ∪ {x}) = {x}}
⋃

{z ∈ µ : S(x, z) ∩ µ = ∅}.

Recalling (13), we see

A(x;µ) ⊆
⋃{

S(w, z) : {w, z} ⊆ X, S(w, z) ∩ µ = ∅, x ∈ S(w, z)
}
⊆ RS(x;µ;X). (25)

Let NX denote the set of all locally finite point processes supported on X.

Lemma 11. Let µ ∈ NX and x ∈ X, and let F = L(µ) where L(·) is given in (3) with
|ψ(x)| ≤ C‖x‖α for some α ≥ 0, C > 0. Then there is a constant Cα, depending only on α,
such that

|DxF | ≤ Cα

∑

z∈A(x;µ)

‖z − x‖α. (26)

Proof. Let µ ∈ NX. For x ∈ µ we have DxF = 0. Otherwise, we define

I(zw; µ) = 1(µ ∩ S(z, w) = ∅)‖z − w‖α.

Noting that the insertion of x into µ can only break existing edges and form new edges
incident to x, we have

DxF =
1

2

∑

{z,w}⊆µ
z 6=w

[
I(zw; µ ∪ {x})− I(zw; µ)

]
+
∑

z∈µ

I(zx; µ ∪ {x})

=
1

2

∑

{z,w}⊆µ
z 6=w,S(z,w)∩(µ∪{x})={x}

[
I(zw; µ ∪ {x})− I(zw; µ)

]
+

∑

z∈µ,S(z,x)∩µ=∅

I(zx; µ ∪ {x})

= −1

2

∑

{z,w}⊆µ
z 6=w,S(z,w)∩(µ∪{x})={x}

ψ(z − w) +
∑

z∈µ,S(z,x)∩µ=∅

ψ(z − x).

10



For the first term we note

|ψ(z − w)| ≤ C‖z − w‖α ≤ Cα (‖z − x‖α + ‖w − x‖α) where Cα = Cmax(1, 2α−1),

so that

|DxF | ≤ Cα

∑

{z,w}⊆µ
z 6=w,S(z,w)∩(µ∪{x})={x}

‖z − x‖α + C
∑

z∈µ,S(z,x)∩µ=∅

‖z − x‖α

≤ Cα

∑

z∈A(x;µ)

‖z − x‖α,

completing the argument.

Proof of Theorem 1, Poisson input. We apply Proposition 10 to Ft = tα/dL(ηt), with L as
given in (3). First, the condition EF 2

t < ∞ is seen to be satisfied in light of the inequality
|Ft| ≤ tα/dC

(
sup{x,y}⊆X ‖y − x‖

)α |ηt|2, where |ν| denotes the number of points of the point
process ν.

As Assumption 3 holds by hypothesis, we have

Var(tα/dL(ηt)) ≥ vαt,

verifying (23).
Next, choosing p1 and p2 both equal to 1 in (21), (22) and (24), we verify, respectively,

E|DxFt|5 ≤ c, λ-a.e., x ∈ X, t ≥ 1, (27)

E|D2
x,yFt|5 ≤ c, λ2-a.e., (x, y) ∈ X× X, t ≥ 1, (28)

and

sup
x∈X,t≥1

t

∫

X
P(D2

x,yFt 6= 0)1/20λ(dy) <∞. (29)

We first note that by (25),

y ∈ A(x;µ) implies RS(x;µ) ≥ ‖y − x‖. (30)

Let A be any finite subset of X. Applying (26) in the first line, the version (2.10) of [8] of
Mecke’s formula in the second line, Fubini’s theorem in the third, (30) in the fourth, Lemma 5
providing the monotonicity of R(x; ·) in the fifth, Proposition 9 in the sixth, Assumption 2

11



in the seventh, and letting σd denote the surface measure of the sphere Sd−1 in Rd, we obtain

C−5
α E|DxFt(ηt ∪A)|5 ≤ t5α/dE

∑

y1,...,y5

∏

1≤i≤5

‖yi − x‖α1(yi ∈ A(x; ηt ∪A))

= t5α/dE
∫

X5

∏

1≤i≤5

‖yi − x‖α1({y1, . . . , y5} ⊆ A(x; ηt ∪A ∪ {y1, . . . , y5}))t5λ(dy1) · · ·λ(dy5)

= t5(1+α/d)

∫

X5

∏

1≤i≤5

‖yi − x‖αP({y1, . . . , y5} ⊆ A(x; ηt ∪ A ∪ {y1, . . . , y5}))λ(dy1) · · ·λ(dy5)

≤ t5(1+α/d)

∫

X5

∏

1≤i≤5

‖yi − x‖αP(RS(x; ηt ∪A ∪ {y1, . . . , y5}) ≥ max
1≤i≤5

‖yi − x‖)λ(dy1) · · ·λ(dy5)

≤ t5(1+α/d)

∫

X5

∏

1≤i≤5

‖yi − x‖αP(RS(x; ηt) ≥ max
1≤i≤5

‖yi − x‖)λ(dy1) · · ·λ(dy5)

≤ Ct5(1+α/d)

∫

X5

∏

1≤i≤5

‖yi − x‖α exp(−cλκt max
1≤i≤5

‖yi − x‖d)λ(dy1) · · ·λ(dy5)

≤ Cb5λt
5(1+α/d)

∫

Rd×5

∏

1≤i≤5

‖yi − x‖α exp(−cλκt max
1≤i≤5

‖yi − x‖d)dy1 · · · dy5

= Cb5λt
5(1+α/d)

∫

Rd×5

∏

1≤i≤5

‖yi‖α exp(−cλκt max
1≤i≤5

‖yi‖d)dy1 · · · dy5

≤ Cb5λt
5(1+α/d)

∫

Rd×5

∏

1≤i≤5

‖yi‖α exp
(
−cλκt

∑

1≤i≤5

‖yi‖d/5
)
dy1 · · · dy5

= C

(
bλt

1+α/d

∫

Rd

‖y‖α exp
(
−cλκt‖y‖d/5

)
dy

)5

= C

(
bλt

1+α/dσd

∫ ∞

0

rα+d−1 exp
(
−cλκtrd/5

)
dr

)5

= C

(
bλσd

∫ ∞

0

rα+d−1 exp(−cλκrd/5)dr
)5

≤ C,

where the final constant C depends uniquely on d, δ,D, cλ and bλ. Letting A = ∅ shows that
(27) is satisfied, and letting A = {y} we see that (28) also holds, as (9) yields

E|D2
x,yFt|5 ≤ 16

(
E|DxFt(ηt ∪ {y})|5 + E|DxFt(ηt)|5

)
.

We now show condition (29) is satisfied. Letting x ∈ X be arbitrary, invoking Assumption
2 and Lemma 7, followed by Proposition 9, we obtain

b−1
λ t

∫

X
P(D2

x,yFt 6= 0)1/20λ(dy) ≤ t

∫

X
P(D2

x,yFt 6= 0)1/20dy ≤ t

∫

X
P(RS(x; ηt) ≥ ‖y−x‖)1/20dy

≤ Ct

∫

X
exp

(
−cλκt‖y − x‖d/20

)
dy = Ct

∫

X−x

exp
(
−cλκt‖y‖d/20

)
dy

≤ Ct

∫

Rd

exp
(
−cλκt‖y‖d/20

)
dy = Ctσd

∫ ∞

0

exp
(
−cλκtrd/20

)
rd−1dr =

20Cσd
dcλκ

.
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Hence, the supremum over x ∈ X and t ≥ 1 in (29) is finite, and the proof of the theorem is
complete.

We shall now use the results of [6] to derive similar bounds in the binomial setting. Here
n ∈ N plays the former role of t and X = (X1, . . . , Xn) is a vector of independent variables

with distribution λ over X, and ηn = {X1, . . . , Xn}. Let X ′, X̃ be independent copies of X .
We write U

a.s.
= V if two variables U and V satisfy P(U = V ) = 1. In the vocabulary of [6], a

random vector Y = (Y1, . . . , Yn) is a recombination of {X,X ′, X̃} if for each 1 6 i 6 n, either

Yi
a.s.
= Xi, Yi

a.s.
= Y ′

i or Yi
a.s.
= X̃i. For a vector x = (x1, . . . , xn), and indexes I = {i1, . . . , iq},

define

xi1,...,iq := (xj , j /∈ {i1, . . . , iq}),
For 1 ≤ i, j ≤ n, and f a real valued function taking in n, n − 1 or n − 2 arguments in Rd,
let

Dif(X) = f(X)− f(X i) and (31)

Di,jf(X) = f(X)− f(X i)− f(Xj) + f(X i,j), noting that Di,jf(X) = Dj,if(X).

For X ′, X̃ independent copies of X let

Bn(f) = sup{γY,Z(f); (Y, Z) recombinations of {X,X ′, X̃}} and

B′
n(f) = sup{γ′Y,Y ′,Z(f); (Y, Y

′, Z) recombinations of {X,X ′, X̃}}, where

γY,Z(f) = E
[
1{D1,2f(Y )6=0}D2f(Z)

4
]

and

γ′Y,Y ′,Z(f) = E
[
1{D1,2f(Y )6=0, D1,3f(Y ′)6=0}D2f(Z)

4
]

Assume Ef(X) = 0 and that σ2 := Var(f(X)) is nonzero and finite. Then Theorem 6.1
of [6], simplified by [6, Remark 5.2] and [6, Proposition 5.3] yields the following Kolmogorov
distance bound for the normal approximation of f(X), properly standardized.

Theorem 12 (Lachièze-Rey and Peccati [6]). Let f be a functional taking in arguments of
n, n− 1, or n− 2 elements of X. Assume furthermore that f is invariant under permutation
of its arguments, and that Ef(X) = 0. Define σ2 = Var(f(X)). Let d(·, ·) denote either the
Kolmogorov or the Wasserstein distance. Then, for some C > 0 not depending on n,

d(σ−1f(X), N) 6 C

[
4
√
2n1/2

σ2

(√
nBn(f) +

√
n2B′

n(f) +
√
ED1f(X)4

)
(32)

+
n

4σ3

√
E|D1f(X)6|+

√
2π

16σ3
nE|D1f(X)3|

]
,

where N is a standard normal random variable.

For L as in (3) with |ψ(x)| ≤ C‖x‖α for some α ≥ 0, C > 0, let Fn = nα/dL(ηn),
and let the functional f , defined on ordered sets of variables, be given by f(x1, . . . , xq) =
Fn({x1, . . . , xq}) for any q > 1 and {x1, . . . , xq} ⊆ Rd. We note that D defined in (31), and
D as in (8), obey the relations

Dif(X) = DXi
Fn(ηn \ {Xi}), and for i 6= j Dijf(X) = DXi,Xj

Fn(ηn \ {Xi, Xj}). (33)

We now show how Theorem 12, along with Proposition 13 and Lemma 14 below, proves
the Kolmogorov and Wasserstein bounds of Theorem 1 for binomial input.
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Proof of Theorem 1 for binomial input. In [6], the authors focus on the Kolmogorov distance,
but the same bound is valid for the Wasserstein, even though it is not stated there formally.
More precisely, we refer the reader to the inequality in Theorem 2.2 of [2], involving Wasser-
stein distance. The first term in this inequality, σ−2

√
Var(E(T |W )), has been shown in [6]

to be bounded by the terms of the first line of the right hand member of (32). The second
term in the inequality of [2] is equal to nσ−3E|D1f(X)|3, also taken care of in (32). The
term n

4σ3

√
E|D1f(X)6| is in fact only necessary for Kolmogorov distance, and can be removed

when treating the Wasserstein distance. Hence it suffices to show the bound (32) holds for
the Kolmogorov distance.

Assumption 3 yields σ2 > Cn for some C > 0. Using (33) and Proposition 13 we obtain,

sup
n

E[D1f(X)6] = sup
n

∫

X
E|DxFn(ηn−1)|6λ(dx) <∞.

Applying Hölder’s inequality, we find that there exists C > 0 such that

4
√
2n1/2

σ2

√
ED1f(X)4 +

n

4σ3

√
E|D1f(X)6|+

√
2π

16σ3
nE|D1f(X)3| 6 Cn−1/2.

Lemma 14 yields C such that

Bn(f) 6
C

n
and B′

n(f) 6
C

n2
. (34)

Substituting these bounds into (32) completes the proof.

We begin by proving the moment bound that was used above.

Proposition 13. For any non-negative integer k,

M := sup
n>1,x∈X,A⊆X finite

E|DxFn(ηn−k ∪ A)|6 <∞.

Proof. We use a computation similar to the Poisson bound, where in place of Mecke’s formula
we interchange an integral and a finite sum. Let [n]6 denote the collection of 6-tuples of
elements of {1, 2, . . . , 6}. Let I = (i1, . . . , i6) ∈ [n]6. Call λI the law of (Xi1 , . . . , Xiq).
Due to possible repetitions in I, it might be that for j 6= k, ij = ik, and Xij = Xik . Let

Ĩ = {i1, . . . , i6}, the set of indexes that appear in I, and for i ∈ Ĩ, let m(i, I) be the
multiplicity of i in I. The law λI could be written as

λI(dx1, . . . , dx6) = λ|Ĩ|(dxi, i ∈ Ĩ)1{xj=xk,ij=ik}.

Further, let c′ > 0 satisfy cλκ(n− 6) ≥ c′n for n ≥ 7.
Arguing as in the proof of Theorem 1 for the Poisson case, starting with the application
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of Lemma 11 for the first inequality, we have

C−6
α E|DxF (ηn ∪ A)|6 6 E

∑

I∈[n]6

∏

1≤k≤6

‖Xik − x‖α1(Xik ∈ A(x; ηn ∪A))

6
∑

I∈[n]6

∫

X6

E
∏

1≤k≤6

‖xk − x‖α1(xk ∈ A(x; ηn−|Ĩ| ∪ {xk, k ∈ Ĩ} ∪ A))λI(dx1, . . . , dx6)

6
∑

I∈[n]6

∫

X|Ĩ|

∏

k∈Ĩ

‖xk − x‖m(k,I)αP(xk ∈ A(x; ηn−|Ĩ| ∪ {xk, k ∈ Ĩ} ∪ A))λ(dxk)

6
∑

I∈[n]6

∫

X|Ĩ|

∏

k∈Ĩ

‖xk − x‖m(k,I)αP(RS(x; ηn−|Ĩ| ∪ {xk, k ∈ Ĩ} ∪ A) > max
k∈Ĩ

‖xk − x‖)λ(dxk)

6
∑

I∈[n]6

∫

X|Ĩ|

∏

k∈Ĩ

‖xk − x‖m(k,I)αP(RS(x; ηn−|Ĩ|) > max
k∈Ĩ

‖xk − x‖)λ(dxk)

6 C
∑

I∈[n]6

∫

X|Ĩ|

∏

k∈Ĩ

‖xk − x‖m(k,I)α exp(−cλκ(n− |Ĩ|)
∑

k∈Ĩ

‖xk − x‖d/6)λ(dxk)

6 C
∑

I∈[n]6

∫

X|Ĩ|

∏

k∈Ĩ

‖xk − x‖m(k,I)α exp(−c′n
∑

k∈Ĩ

‖x− xk‖d/6)λ(dxk)

6 C
∑

I∈[n]6

∏

k∈Ĩ

∫

X
‖y − x‖m(k,I)α exp(−c′n‖y − x‖d/6)λ(dy)

6 C
∑

I∈[n]6

∏

k∈Ĩ

b
|Ĩ|
λ

∫

Rd

‖y − x‖m(k,I)α exp(−c′n‖y − x‖d/6)dy

6 C
∑

I∈[n]6

∏

k∈Ĩ

∫

Rd

‖y‖m(k,I)α exp(−c′n‖y‖d/6)dy

6 C
∑

I∈[n]6

∏

k∈Ĩ

∫

Rd

n−m(k,I)α/d‖y‖m(k,I)α exp(−c′‖y‖d/6)n−1dy

6 C
∑

I∈[n]6

n−6α/d
∏

k∈Ĩ

n−1

∫

Rd

‖y‖m(k,I)α/d exp(−c′‖y‖d/6)λ(dy)

≤ Cn−6α/d
∑

I∈[n]6

n−|Ĩ|

where the final constant only depends on α, d, bλ and the constant of Proposition 9. As there
are O(nm) elements I ∈ [n]6 where |Ĩ| = m for 1 ≤ m ≤ 6, the sum is of order O(n−6α/d).
Now applying the bound to nα/dF (ηn−k ∪ A) gives the claim.

Lemma 14. There exists C such that

Bn(f) 6
C

n
and B′

n(f) 6
C

n2
.

Proof. We begin with the first inequality. Let Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn)

be recombinations of {X,X ′, X̃}. Note that Y1 is independent of {Y2, Z2} because Y1 is

either X1, X
′
1 or X̃1 and these three variables are independent of X2, X

′
2, X̃2. Also, either
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Y2, Z2 both equal the same element of {X2, X
′
2, X̃2} (almost surely), or they are assigned

to different elements of this set. In the first case, Y2
a.s.
= Z2, while in the second case

Y2 and Z2 are independent. Letting λY1,Y2,Z2 denote the law of (Y1, Y2, Z2), therefore we
either have dλY1,Y2,Z2(y1, y2, z2) = 1{y2=z2}dλ(y1)dλ(y2) if Y2

a.s.
= Z2, or dλ

Y1,Y2,Z2(y1, y2, z2) =
dλ(y1)dλ(y2)dλ(z2) if Z2 and Y2 are independent.

Using the conditional Hölder inequality with conjugate exponents 3, 3/2 yields that for
every {y1, y2, z2} ⊆ X, with the following conditionings valid a.s.,

E
[
1{D1,2f(Y )6=0}D2f(Z)

4|Y1 = y1, Y2 = y2, Z2 = z2
]

6 P(D1,2f(Y ) 6= 0|Y1 = y1, Y2 = y2, Z2 = z2)
1/3

× E
[
D2f(Z)

6|Y1 = y1, Y2 = y2, Z2 = z2
]2/3

. (35)

Either Z2
a.s.
= Y2, and when conditioning on Y2 = y2, Z2 = z2 we must take y2 = z2, or Y2 and

Z2 are independent. In both cases, for λY1,Y2,Z2-a.e. (y1, y2, z2), with L(U) denoting the law
of U , and adopting similar notation for the conditional law, by (33) we have

L (D1,2f(Y )|Y1 = y1, Y2 = y2, Z2 = z2) = L(Dy1,y2Fn(ηn−2)).

Similarly, separately studying the cases Y1
a.s.
= Z1 and (Y1, Z1) independent, one has for

λY1,Y2,Z2-a.e.(y1, y2, z2),

L (D2f(Z)|Y1 = y1, Y2 = y2, Z2 = z2) =

{
L(Dz2Fn(ηn−2 ∪ {y1})) if Y1

a.s.
= Z1

L(Dz2Fn(ηn−1)) if Y1, Z1 are independent.

Applying Proposition 13 with x = z2, k = 2 and A = {y1} for the first case above, and
similarly for the second, shows the final factor in (35) is bounded by M . Now integrating
(35) over λY1,Y2,Z2 and applying Lemma 7 and Proposition 9 yields

γY,Z(f) 6M2/3

∫

X2

P(Dy1,y2Fn(ηn−2) 6= 0)1/3dy1dy2

≤M2/3

∫

X2

P(RS(y1; ηn−2) ≥ ‖y2 − y1‖)1/3dy1dy2

6M2/3

∫

X2

C exp(−cλκ(n− 2)‖y1 − y2‖d/3)dy1dy2 6
C

n

for some final constant C > 0, demonstrating the first inequality in (34).
The second inequality in (34) is proved similarly. Let Y, Y ′, Z be recombinations of

{X,X ′, X̃}. Applying the conditional Hölder inequality for a three way product,

γ′Y,Y ′,Z(f) 6

∫

X5

P(D1,2f(Y ) 6= 0|Y1 = y1, Y2 = y2, Y
′
1 = y′1, Y

′
3 = y′3, Z2 = z2)

1/6

P(D1,3f(Y
′) 6= 0|Y1 = y1, Y2 = y2, Y

′
1 = y′1, Y

′
3 = y′3, Z2 = z2)

1/6

E
[
D2f(Z)

6|Y1 = y1, Y2 = y2, Y
′
1 = y′1, Y

′
3 = y′3, Z2 = z2

]2/3

dλY1,Y2,Y ′
1
,Y ′

3
,Z2(y1, y2, y

′
1, y

′
3, z2),
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with the conditionings valid λY1,Y2,Y ′
1 ,Y

′
3 ,Z2-a.e. We have, for some m ∈ {0, 1, 2} and A ⊆ X

with |A| = m, depending on how the recombination Z is composed,

L (D2f(Z)|Y1 = y1, Y2 = y2, Y
′
1 = y′1, Y

′
3 = y′3, Z2 = z2) = L(Dz2Fn(ηn−1−m ∪ A)),

whenever Y2
a.s.
= Z2, necessitating y2 = z2, or Y2, Z2 are independent. Hence, Proposition 13

yields that the last term in the integral is a.e. bounded by M2/3.
The values of Y ′

1 , Z2 are irrelevant to Y once we have conditioned on the values of Y1, Y2.
Therefore we have

P(D1,2f(Y ) 6= 0|Y1 = y1, Y2 = y2, Y
′
1 = y′1, Y

′
3 = y′3, Z2 = z2)

=

{
P(Dy1,y2Fn(ηn−2) 6= 0) if Y3 is independent of Y ′

3

P(Dy1,y2Fn(ηn−3 ∪ {y′3}) 6= 0) if Y3
a.s.
= Y ′

3

6 P(RS(y1, ηn−3) > ‖y1 − y2‖) 6 C exp(−cλκ(n− 3)‖y1 − y2‖d),
where we have used that RS(x;µ) stabilizes, from Lemma 7,

max(RS(y1; ηn−2), RS(y1; ηn−3 ∪ {y′3})) 6 RS(y1; ηn−3),

justifed by the monotonicity property provided by Lemma 5, and Proposition 9. Similarly,
as the value of Y1 is irrelevant to Y ′ once we condition on Y ′

1 , and Y
′
2 will either equal one

of Y2 or Z2 a.s., or be independent of both, for some m ∈ {0, 1} and some set A with m
elements,

P(D1,3f(Y
′) 6= 0|Y1 = y1, Y2 = y2, Y

′
1 = y′1, Y

′
3 = y′3, Z2 = z2)

6 P(RS(y
′
1, ηn−2−m ∪ A) > ‖y′1 − y′3‖)

6 C exp(−cλκ(n− 3)‖y′1 − y′3‖d).
If Y1

a.s.
= Y ′

1 and n ≥ 4 we have

γ′Y,Y ′,Z(f) 6 C

∫

X

[∫

X
exp(−cλκ(n− 3)‖y1 − y2‖d/6)dy2

] [∫

X
exp(−cλκ(n− 3)‖y1 − y′3‖d/6)dy′3

]
dy1

6 C

∫

X

[∫

Rd

exp(−cλκ(n− 3)‖y1 − y2‖d/6)dy2
]2
dy1

6 C

∫

X

[
(n− 3)−1

∫

Rd

exp(−cλκ‖y1 − y2‖d/6)dy2
]2
dy1

6
C

n2
.

If Y1 and Y ′
1 are independent,

γ′Y,Y ′,Z(f)C 6

∫

X2

exp(−cλκ(n− 3)‖y1 − y2‖d/6)dy1dy2
∫

X2

exp(−cλκ(n− 3)‖y′1 − y′3‖d/6)dy′1dy′3

=

[∫

X

[∫

X
exp(−cλκ(n− 3)‖y1 − y2‖d/6)dy1

]
dy2

]2

6 C

[∫

X

[
(n− 3)−1

∫

Rd

exp(−cλκ‖y1 − y2‖d/6)dy1
]
dy2

]2

6
C

n2
.

In both cases, B′
n(f) 6 C/n2, which concludes the proof.
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4 Variance lower bounds

In this section, we prove Theorem 2, providing a lower bound on VarL(ηt) under broad
conditions on the collection of forbidden regions. One key step of the proof, accomplished
in Lemma 27, is to show that if the input process is split into two independent processes
then the first process is likely to contain many influential point pairs. Intuitively, a point
pair (x, y) ∈ Rd × Rd is influential if an additional process point falling in the vicinity of x
produces an effect on L that differs from its effect had the point fallen in the vicinity of y. To
prove Theorem 2, we show that conditional on the first process containing many influential
pairs, the effect of adding the second process contributes at least an amount Ω(t), a quantity
satisfying lim inft→∞Ω(t)/t > 0, to the variance of L(ηt).

Throughout this section we assume that the function ψ used to define L in (3) is given
by ψ(x) = ‖x‖α for some α ≥ 0. In addition, we will be working at a different scale from
the rest of the paper, considering Poisson and binomial processes of constant intensity on a
growing space, rather than of growing intensity on a fixed space. The reason for using this
scaling is that we will need to consider the limiting case of a Poisson process on Rd.

For convenience, take the Lebesgue measure of X to equal one. For any t ≥ 1 let ηt denote
a homogeneous Poisson point process on t1/dX with intensity 1, and let Ut be a binomial
process of ⌈t⌉ points independently and uniformly placed in t1/d ∩X. We couple all ηt, t ≥ 1
by defining ηt = η∞ ∩ t1/dX where η∞ is a homogeneous Poisson point process on Rd of
intensity 1. We assume throughout that 0 ∈ X and X is convex.

For x ∈ Rd and r > 0 let

t0(x, r) = inf{t : B(x, r) ⊆ t1/dX}.

Before stating the following result we recall the definition of E±
x (µ) from (14), and inform

the reader that the constant r0 may take on different values in the statements below.

Proposition 15. Assume that the forbidden regions satisfy the scaled ball condition (As-
sumption 1) for some δ > 0 and all x ∈ Rd and positive t, r when the role of X is played by
t1/dX ∩ B(x, r). Then for any ǫ > 0, there exists r0 such that for all r > r0, all x ∈ Rd and
all t > t0(x, r), allowing t = ∞,

P
(
E±

x (ηt) = E±
x (η∞ ∩B(x, r))

)
≥ 1− ǫ, (36)

and for all t ∈ N satisfying t > t0,

P
(
E±

x (Ut) = E±
x (Ut ∩B(x, r))

)
≥ 1− ǫ. (37)

Before proving Proposition 15, first observe that (36) could be equivalently stated with
ηt appearing instead of η∞, since if B(x, r) ⊆ t1/dX, then ηt ∩B(x, r) = η∞ ∩ B(x, r).

For x ∈ Rd, r > 0 and t > t0(x, r), define the event

Φ(x, r, t, µ) =
{
RS

(
x;µ; t1/dX

)
∩RS

(
x;µ ∩ B(x, r);B(x, r)

)c 6= ∅
}
.

In other words, Φ(x, r, t, µ) is the event that “the region that could be affected when we add
x to µ” grows when we increase the viewing window from B(x, r) to t1/dX. Similarly,

Ψ(x, r, t, µ) =
{
RS

(
x;µ ∩ B(x, r);B(x, r)

)
∩RS

(
x;µ; t1/dX

)c 6= ∅
}
,
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is the event that the potentially affected region shrinks when we increase the viewing window
from B(x, r) to t1/dX. To prove Proposition 15 we require the following result.

Lemma 16. Given any ǫ > 0, there exists r0 such that for all r > r0 and x ∈ Rd

P
(
Φ(x, r, t, ηt)

)
< ǫ/2 and P

(
Ψ(x, r, t, ηt)

)
< ǫ/2 for all t0(x, r) < t ≤ ∞,

and

P
(
Φ(x, r, t,Ut)

)
< ǫ/2 and P

(
Ψ(x, r, t,Ut)

)
< ǫ/2 for all integers t > t0(x, r).

Proof. We use the same argument as in Proposition 9. Suppose that Φ(x, r, t, µ) holds for
µ = ηt or µ = Ut. Then there exists points {w, z} such that

(a) {w, z} ⊆ t1/dX;

(b) S(w, z) ∩ µ = ∅;

(c) x ∈ S(w, z);

(d) S(w, z) 6* RS

(
x;µ ∩ B(x, r);B(x, r)

)
.

If {w, z} ⊆ B(x, r), then (d) is a contradiction. Thus either w or z is outside this ball. We

decompose Φ(x, r, t, µ) into subevents. For u > 0 let Φ̂(u) be the event that there exists
{w, z} such that (a)–(c) hold and

u < max
(
‖w − x‖, ‖z − x‖

)
≤ 2u.

In all, we have shown that

Φ(x, r, t, µ) ⊆
∞⋃

i=0

Φ̂(2ir). (38)

We bound the probability of Φ̂(u) and apply a union bound. If Φ̂(u) holds, then {w, z} ⊆
t1/dX ∩ B(x, 2u), and S(w, z) contains no points of µ and has diameter at least u. By the
scaled ball condition, with the role of X played by t1/dX∩B(x, 2u), the set S(w, z)∩ t1/dX∩
B(x, 2u) contains a ball of radius δu/D. Thus, Φ̂(u) implies the existence of a ball of
radius δu/D within t1/dX ∩ B(x, 2u) containing no points of µ. Every ball of radius δu/D
contains a cell of the lattice (δu/D

√
d)Zd, and by considering the volume of B(x, 2u), the

set t1/dX ∩B(x, 2u) contains at most

πd(2u)
d

(δu/D
√
d)d

=
πd(2D

√
d)d

δd

cells of this lattice. Bounding Φ̂(u) by the event that all of these cells have no points of µ,
in the case µ = ηt, recalling that ηt has intensity 1,

P(Φ̂(u)) ≤ πd(2D
√
d)d

δd
exp

(
−κud

)
,

19



where κ = (δ/D
√
d)d If µ = Ut, a similar statement holds, recalling |X| = 1, as

P(Φ̂(u)) ≤ πd(2D
√
d)d

δd

(
1− κud

t

)t

≤ πd(2D
√
d)d

δd
exp

(
−κud

)
.

Applying the union bound in (38) followed by these two inequalities, and then bounding the
resulting sum by a geometric series as in Proposition 9, shows that in either case we have
P
(
Φ(x, r, t, µ)

)
≤ Ce−crd for constants C and c. Now choose r0 such that this upper bound

is less than ǫ/2 for r > r0.
Bounding Ψ(x, r, t, ηt) and Ψ(x, r, t,Ut) is similar. If Ψ(x, r, t, µ) holds, then there must

exist {w, z} ⊆ B(x, r) with x ∈ S(w, z) such that

S(w, z) ∩ µ ∩ B(x, r) = ∅ but S(w, z) ∩ µ 6= ∅.

These relations imply that S(w, z) extends outside of B(x, r), which means that S(w, z) has
diameter at least r. Hence, by the scaled ball condition, there exists a ball of radius δr/D
containing no points of µ, and one may now argue as for Φ(x, r, t, µ).

Proof of Proposition 15. For ǫ > 0 let r0 be given as in Lemma 16. For µ = ηt or µ = Ut, for
all r ≥ r0, x ∈ Rd, and t > t0(x, r), it holds except on an event of probability at most ǫ that
RS(x;µ; t

1/dX) = RS(x;µ ∩ B(x, r);B(x, r)). By Lemma 6, and referring to defintion (14),
on this event E±(µ) = E±

(
µ ∩B(x, r)

)
. �

Since G(η∞) is an infinite graph, L(η∞) does not exist in general. However, when E±
x (η∞)

is finite we may define DxL(η∞) by the difference

DxL(η∞) =
∑

{x,y}∈E+
x (η∞)

ψ(x− y)−
∑

{w,z}∈E−
x (η∞)

ψ(w − z).

The following corollary implies thatDxL(η∞) is also the limit ofDxL(η∞∩B(x, r)) as r → ∞.

Corollary 17. For all x ∈ Rd the set E±
x (η∞) is finite almost surely, and for any ǫ > 0

there exists r0 such that for all r > r0

P
(
DxL(η∞) = DxL(η∞ ∩B(x, r))

)
≥ 1− ǫ. (39)

Proof. Inequality (36) of Proposition 15 with t = ∞ yields an r0 such that E±
x (η∞) =

E±
x (η∞ ∩B(x, r)) for all x ∈ Rd and r > r0 with probability at least 1− ǫ, proving that (39)

holds. On the event that DxL(η∞) = DxL(η∞ ∩B(x, r)), the quantity E±
x (η∞) is finite, and

since ǫ is arbitrary, E±
x (η∞) is a.s. finite.

We will use the next lemma to replace binomial processes with Poisson processes on large
regions.

Lemma 18. For any bounded set A ⊆ Rd, as t→ ∞

Ut ∩ A→ η∞ ∩ A

in total variation.
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Proof. Let M and N be the number of points of Ut and ηt that fall in A, respectively. Once
t is large enough that A ⊆ t1/dX, the distribution of M is Bin(t, |A|/t), and the distribution
of N is Poi(|A|). It is well known that this binomial distribution converges in total variation
to this Poisson distribution, and so M and N can be coupled so that they are equal with
probability approaching 1 as t → ∞. As Ut ∩ A can be represented as M points uniformly
distributed over A and η∞ ∩ A as N points uniformly distributed over A, the two point
processes can be coupled to be equal with probability tending to 1.

The next piece of the proof is to show thatDxf(η∞) is nondeterministic. For any concrete
collection of forbidden regions, this is typically straightforward, but to show it in more
generality we need to present some technical arguments.

Lemma 19. Suppose E = intE. Then for all x ∈ ∂E, every neighborhood of x intersects
the interiors of E and Ec.

Proof. Let x ∈ ∂E and let U be an open neighborhood of x. By the definition of the
boundary, U intersects E and Ec. Since E is open, E = intE. Thus it just remains to show
that U intersects int(Ec).

Since E
c
is an open set contained in Ec, we have E

c ⊆ int(Ec). Thus int(Ec)c ⊆ E. Now,
suppose that U does not intersect int(Ec). Then U ⊆ int(Ec)c ⊆ E. Since U is open, we
have U ⊆ int(E) = E. Hence x ∈ E. But this contradicts x ∈ ∂E, since E is open and
hence contains none of its boundary.

For a set E ⊆ Rd and a direction u ∈ Sd−1, let Eu = {t ∈ [0,∞) : tu ∈ E}, the set of all
nonnegative t such that the ray of length t in direction u intersects E. Let σ denote uniform
measure on Sd−1.

Lemma 20. Suppose that E ⊆ Rd has Lebesgue measure zero. Then for σ-a.e. u ∈ Sd−1,
the set Eu has one-dimensional Lebesgue measure zero.

Proof. By [5, Theorem 2.49],

0 =

∫

Rd

1{x ∈ E} dx = C

∫

Sd−1

∫ ∞

0

1{r ∈ Eu}rd−1 dr dσ(u),

where C is the volume of Sd−1. This shows that the inner integrand is zero for σ-a.e. u. As
the inner integrand is zero if and only if Eu has measure zero, this completes the proof.

Lemma 21. Suppose that the forbidden regions S(x, y) form an (S, u0) regular isotropic
family as defined in Remark 4. Then for any w, y ∈ Rd with w 6= y, the set {x ∈ Rd : w ∈
∂S(y, x)} has Lebesgue measure zero.

Proof. First, we note that by translation invariance of the forbidden regions,

{x ∈ Rd : w ∈ ∂S(y, x)} = {x ∈ Rd : w − y ∈ ∂S(0, x− y)}
= {x ∈ Rd : w − y ∈ ∂S(0, x)}+ y.

Hence it suffices to prove that {x ∈ Rd : w ∈ ∂S(0, x)} has measure zero for all w ∈ Rd \ {0}.
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The rest of the argument is easier to follow in R2, and we present it there first. Let
us identify R2 with C for convenience. Observe that our isotropic assumption implies that
S(0, reiθ) = reiθS(0, 1). Thus, with T = S(0, 1), for any w ∈ C \ {0},

∫

R2

1{w ∈ ∂S(0, x)} dx =

∫ 2π

0

∫ ∞

0

1{r−1e−iθ ∈ w−1∂T )} r dr dθ

=

∫ 2π

0

∫ ∞

0

1{te−iθ ∈ w−1∂T )} t−3 dt dθ,

making the substitution t = r−1. For a given θ, the inner integrand is zero for t off of the ray
(w−1∂T )e−iθ , in the notation of Lemma 20. As w−1∂T has measure zero, the inner integral
is then zero for a.e. θ by Lemma 20, making the entire integral equal to zero.

In higher dimensions, the proof is more complicated because rotation is more complicated,
but the idea is the same. First, we record some facts about rotations of Rd around the origin,
which can be represented as elements of SO(d), the special orthogonal group of order d. The
group SO(d) is isomorphic to Sd−1 × SO(d − 1). The decomposition works by specifying a
vector u ∈ Sd−1 that a chosen vector u0 is mapped to (note that we take this chosen vector
to be the same as the axis of symmetry for the isotropic family), and then specifying how
the orthogonal complement of the span of u is rotated. As a corollary to this decomposition,
if u is chosen uniformly over Sd−1, and the rotation of the orthogonal complement of u is
chosen from Haar measure on SO(d− 1), then the result is distributed as Haar measure on
SO(d). We let ρu ∈ SO(d) denote the rotation of Rd around the origin taking u0 to u by
rotating the plane containing u0 and u and fixing its orthogonal complement (if u = u0, take
ρu to be the identity). We use the notation SO(u⊥) to denote the subgroup of SO(d) fixing
u, which as discussed above is isomorphic to SO(d− 1).

Let x ∈ Sd−1 denote x/‖x‖ for x 6= 0. Let T = S + u0/2 = S(0, u0). It follows from our
isotropic assumption that

∂S(0, x) = ‖x‖ρx(∂T ).
Thus, the measure of {x ∈ Rd : w ∈ ∂S(0, x)} can be expressed as

∫

Rd

1{w ∈ ‖x‖ρx(∂T )} dx = C

∫ ∞

0

∫

Sd

1{w ∈ rρu(∂T )}rd−1 dσ(u) dr

with the (irrelevant) constant determined by the volume of Sd−1. By the definition of
isotropic family, for any τ ∈ SO(u⊥), we have τρu(T ) = ρu(T ). Letting µu denote Haar
measure on SO(u⊥) normalized to have measure one, we can rewrite the integral as

C

∫ ∞

0

∫

Sd−1

∫

SO(µ⊥)

1{w ∈ rτρu(∂T )}rd−1 dµu(τ) dσ(u) dr

= C

∫ ∞

0

∫

Sd−1

∫

SO(u⊥)

1{r−1(τρu)
−1(w) ∈ ∂T}rd−1 dµu(τ) dσ(u) dr.

As we mentioned before, τρu with τ distributed as µu and u distributed as σ is Haar-
distributed over SO(d). By the invariance of Haar measure under multiplication, the dis-
tribution of (τρu)

−1(w) under this measure is uniform over ‖w‖Sd−1. Hence we can rewrite
the integral as

C

∫ ∞

0

∫

Sd−1

1{r−1‖w‖u ∈ ∂T}rd−1 dσ(u) dr = C

∫

Sd−1

∫ ∞

0

1{tu ∈ ‖w‖−1∂T}t−(d+1) dt dσ(u),
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substituting t = 1/r. The inner integral is supported on the ray (‖w‖−1∂T )u. Since the set
‖w‖−1∂T has measure zero, the inner integral is thus zero for σ-a.e. u by Lemma 20.

Lemma 22. Assume the forbidden regions S(x, y) are a (S, u0) regular isotropic family
satisfying Assumption 4, and that S(x, y) = intS(x, y) for all {x, y} ⊆ Rd. Let {w, z} ⊆
B(0, 1) be distinct points. Let µ be a homogeneous Poisson process on Rd \B(0, 1+2D), and
let µ′ = {w, z} ∪ µ. Then a.s.-µ, there exist open sets A,A′ ⊆ Rd such that

DxL(µ
′) 6= Dx′L(µ′) (40)

for all x ∈ A, x′ ∈ A′.

Proof. The main idea of the proof is that adding to µ′ any point close to y has the same effect
on G(µ′) except for possibly causing the deletion of the edge wz. Note that wz is always
present in G(µ′), as S(w, z) has at most diameter 2D and hence is contained in B(0, 1+2D),
while µ has no points in B(0, 1 + 2D) besides w and z.

Step 1. A.s.-µ, we have b /∈ ∂S(y, a) for all {a, b} ⊆ µ′ with a 6= b.
By Assumption 4, w /∈ ∂S(y, z) and z /∈ ∂S(y, w). Since ∂S(y, z) and ∂S(y, w) have measure
zero, almost surely no points of µ fall in either of these sets. Now we are left to show that

b /∈ ∂S(y, a), a ∈ µ, b ∈ µ′, a 6= b. (41)

For a point process configuration χ, let

f(χ, a) = #
((

({w, z} ∪ χ) \ {a}
)
∩ ∂S(y, a)

)
.

Our goal is then to show that
∑

a∈µ f(µ, a) = 0 a.s. By Mecke’s formula,

E
∑

a∈µ

f(µ, a) = E
∫

Rd

f(µ ∪ {a}, a) da =
∫

Rd

E
[
#
(
({w, z} ∪ µ) ∩ ∂S(y, a)

)]
da,

with the transposition of the integral and expectation justified by nonnegativity of the inte-
grand. For any a ∈ Rd, the set ∂S(y, a) has measure zero, and hence no points of µ are in
∂S(y, a) a.s. Thus we can simplify the above expression to

E
∑

a∈µ

f(µ, a) =

∫

Rd

#
(
{w, z} ∩ ∂S(y, a)

)
da

=

∫

Rd

(
1{w ∈ ∂S(y, a)}+ 1{z ∈ ∂S(y, a)}

)
da,

with the expectation removed because there is no longer any randomness in the integrand.
Thus it follows from Lemma 21 that the integrand is zero except on a set of measure zero,
proving that E

∑
a∈µ f(µ, a) = 0. This proves (41), completing the proof of this step.

Step 2. A.s.-µ, we have y /∈ ∂S(a, b) for {a, b} ⊂ µ′, {a, b} 6= {w, z}.
This follows by essentially the same proof as in the previous step.

In the next step, we say that E+
x (µ

′) and E+
y (µ

′) are equivalent if the set of edges E+
x (µ

′)
is equal to the set E+

y (µ
′) when all edges of the form {y, a} in the latter are replaced by

{x, a}. Note that we do not need a definition like this for E−
x (µ

′) and E−
y (µ

′), since edges
with vertices x or y do not appear in these collections.

23



Step 3. For some random radius ρ > 0, it holds for all x ∈ B(y, ρ) that E+
x (µ

′) is equivalent
to E+

y (µ
′), and it holds for all x ∈ B(y, ρ) that E−

x (µ
′) is equal to either E−

y (µ
′) or E−

y (µ
′)∪

{{w, z}}.
Let R = RS(B(y, 1);µ′;Rd). The set RS(B(y, 1); η∞;Rd) is bounded a.s.-η∞ by Propo-
sition 9. Since µ is distributed as η∞ conditional on an event of positive probability,
RS(B(y, 1);µ;Rd) is bounded a.s.-µ. As µ ⊆ µ′, Lemma 5 shows that the set R is bounded
a.s.-µ. Recall that the addition of any point x ∈ B(y, 1) changes the graph G(µ′) only by
the addition of edges xa and deletion of edges ab for a, b ∈ R.

Step 1 shows that for each a ∈ µ′ ∩ R, the set ∂S(y, a) does not contain any points of
(µ′ \ {a}) ∩ R. Since (µ′ \ {a}) ∩ R is almost surely finite, the set ∂S(y, a) has positive
distance from (µ′ \ {a}) ∩ R, as both sets are compact. By the Hausdorff continuity of the
map S, there is a positive distance ρ+a such that for all x ∈ B(y, ρ+a ), the set ∂S(x, a) avoids
(µ′\{a})∩R. Set ρ+ to be the minimum of ρ+a over the almost surely finitely many a ∈ µ′∩R.
Then for all x ∈ Bo(y, ρ+), the collections E+

x (µ
′) and E+

y (µ
′) are equivalent.

Step 2 implies that for all {a, b} ⊆ µ′∩R except for {w, z}, the set ∂S(a, b) has a positive
distance ρ−ab from y. Set ρ− as the minimum of ρ−ab over this almost surely finite collection
of {a, b}. Then for x ∈ Bo(y, ρ−), as y ∈ ∂S(w, z), and S(w, z) is open, it holds that E−

x (µ
′)

is equal to either E−
y (µ

′) or E−
y (µ

′) ∪ {{w, z}}. Taking ρ less than ρ+ and ρ− completes the
step.

Step 4. Construction of A,A′ satisfying (40).
Let A = Bo(y, ρ′) ∩ intS(w, z) and A′ = Bo(y, ρ′) ∩ int(S(w, z)c) for ρ′ to be specified later.
Assume for now that ρ′ < ρ. By Lemma 19, both sets A and A′ are nonempty. By the
previous step, E+

x (µ
′) and E+

y (µ
′) are equivalent for x ∈ A ∪ A′. For x′ ∈ A′, we have

E−
x′(µ′) = E−

y (µ
′), and for x ∈ A, we have E−

x (µ
′) = E−

y (µ
′) ∪ {{w, x}}. Thus for x ∈ A and

x′ ∈ A′,

Dx′L(µ′)−DxL(µ
′) = ψ(w, z) +

∑

a : {a,x}∈E+
x (µ′)

(
ψ(a, x′)− ψ(a, x)

)
.

By the continuity of ψ, and that E+
x (µ

′) is finite, the sum can be made arbitrarily small over
all x ∈ A, x′ ∈ A′ by choosing ρ′ small enough. If we choose ρ′ to make the sum smaller
than ψ(w, z), then (40) holds for x ∈ A, x′ ∈ A′.

Theorem 23. Assume that the forbidden regions S(x, y) are a (S, u0) regular isotropic family
satisfying Assumption 4. Then for all x ∈ Rd, the random variable DxL(η∞) is nondeter-
ministic.

Proof. As intS(x, y) ⊆ intS(x, y) ⊆ S(x, y), the sets S(x, y) and intS(x, y) differ only on
∂S(x, y), a set of measure zero. For each {a, b} ⊂ η∞, there are almost surely no points of
η∞ on ∂S(a, b) besides a and b. Thus G(η∞) is almost surely unaffected by replacing each
forbidden region S(x, y) by intS(x, y). If B = intA, then B = intB. Hence we can assume
that S(x, y) = intS(x, y) for all x, y.

Let w and z be chosen uniformly and independently from B(0, 1), and let µ be a homo-
geneous Poisson process with intensity 1 on Rd \B(0, 1+2D). With positive probability, η∞
has exactly two points in B(0, 1 + 2D), both of which are contained in B(0, 1). Conditional
on this event, η∞ is distributed as µ′ := {w, z} ∪ µ. By Lemma 22, a.s.-µ there exist open
sets A,A′ ⊆ Rd such that DxL(µ

′) 6= Dx′L(µ′) for all x ∈ A and x′ ∈ A′. Thus, with positive

24



probability, there exist open sets A,A′ ⊆ Rd such that DxL(η∞) 6= Dx′L(η∞) for all x ∈ A
and x′ ∈ A′.

Suppose that DxL(η∞) = c a.s. for some x ∈ Rd and some constant c. By the translation
invariance of η∞, this holds for all x ∈ Rd. Hence it holds almost surely that DxL(η∞) = c
for all x in a countable dense set of Rd. But this contradicts the conclusion of the previous
paragraph.

We now use Theorem 23 to show that if x and y are far enough apart, then with positive
probability adding x or y to the process produces different effects on L.

Lemma 24. Assume the conditions of Theorem 2. There exist constants a > b, r0 ∈ (0,∞)
and p0 ∈ (0, 1] such that for all r > r0 the following statement holds: for all x, y ∈ Rd, if the
r-balls around x and y are disjoint and t > t1(x, y, r) = max{t0(x, r), t0(y, r), t2(r)} where t2
is a function depending only on r, then

P
(
DxL(µ) > a and DyL(µ) < b

)
≥ p0

for µ = ηt or µ = Ut.

Proof. Let first µ = Ut. By Theorem 23, there exist a > b and p > 0 such that for all z ∈ Rd,

P
(
DzL(η∞) > a

)
≥ p and P

(
DzL(η∞) < b

)
≥ p.

Let p0 = (p − ǫ)2 − 3ǫ, choosing ǫ > 0 small enough that p0 > 0. By Corollary 17, for all
sufficiently large r and for all z ∈ Rd the random variables DzL(η∞) and DzL(η∞ ∩B(z, r))
are within ǫ in total variation distance, and hence

P
(
DzL(η∞ ∩B(z, r)) > a

)
≥ p− ǫ and P

(
DzL(η∞ ∩ B(z, r)) < b

)
≥ p− ǫ. (42)

Next, from the total variation convergence given by invoking Lemma 18 with A = B(x, r)∪
B(y, r), for all r large enough that (42) holds, and t > t2(r) depending on r, for any {x, y} ⊆
Rd satisfying ‖x− y‖ > 2r,

P
(
DxL(Ut ∩B(x, r)) > a and DyL(Ut ∩B(y, r)) < b

)

≥ P
(
DxL(η∞ ∩B(x, r)) > a and DyL(η∞ ∩ B(y, r)) < b

)
− ǫ

≥ (p− ǫ)2 − ǫ, (43)

with the last line following from (42) and the independence of η∞∩B(x, r) and η∞∩B(y, r).
By Proposition 15, for all sufficiently large r and all t > max{t0(x, r), t0(y, r)}, it holds that
P
(
DxL(Ut ∩B(x, r)) = DxL(Ut)

)
≥ 1− ǫ and P

(
DyL(Ut ∩B(y, r)) = DyL(Ut)

)
≥ 1− ǫ.

Hence, by a union bound,

P
(
DxL(Ut ∩ B(x, r)) = DxL(Ut) and DyL(Ut ∩ B(y, r)) = DyL(Ut)

)
≥ 1− 2ǫ. (44)

Now, for all r0 so that (42), (43) and (44) hold for all r > r0 and all t > t1(x, y, r), by (43)
and (44),

P
(
DxL(Ut) > a and DyL(Ut) < b

)
≥ (p− ǫ)2 − ǫ− 2ǫ = p0.

The proof for the Poisson case is the same, except that the step involving Lemma 18 is
unnecessary.
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We will need the following elementary lemma, which is essentially just Markov’s inequality
applied to a bounded random variable.

Lemma 25. Suppose that X is a random variable supported on [0, n], and EX ≥ np. Then

P

(
X >

np

2

)
≥ p

2− p
. (45)

Proof. Let Y = n−X . Then EY ≤ n(1− p), and applying Markov’s inequality to Y yields

P

(
X ≤ np

2

)
= P

(
Y ≥ n

(
1− p

2

))
≤ 1− p

1− p/2
,

yielding (45).

In the remainder of this section let a, b, r0, and p0 be the constants given by Lemma 24.
For some m > 0 and 1 < r < ∞, we say that a pair of points x and y with ‖x− y‖ > 2r is
(m, r)-influential for µ if

Influential1(µ): There exist sets A ⊆ B(x, 1) and B ⊆ B(y, 1) each of Lebesgue
measure m such that DzL(µ) > a for z ∈ A and DzL(µ) < b for z ∈ B, and

Influential2(µ): RS(B(x, 1);µ) ≤ r and RS(B(y, 1);µ) ≤ r.

Note that a pair of influential points for µ are not required to be, and in fact will in general
not be, points of µ. We have made the radii of the balls containing x and y equal to 1 in
these definitions, but the value is unimportant.

Lemma 26. Assume the conditions of Theorem 2. There exist constants m ∈ (0,∞), p ∈
(0, 1] and r ∈ (1,∞) such that if x and y are any two points such that the (r + 1)–balls
centered around each are disjoint, then for all sufficiently large t

P
(
(x, y) is (m, r)-influential for µ

)
≥ p

for µ = ηt and µ = Ut.

Proof. By Proposition 9, for all {x, y} ⊆ Rd and t > max{t0(x, r), t0(y, r)}, as r → ∞
the probability of Influential2(µ) is lower bounded by a quantity tending to one, not
depending on {x, y}. With r0 and p0 the constants given by Lemma 24, let p′0 = p0/(2− p0),
and choose r > r0 large enough that Influential2(µ) holds with probability at least 1−p′0/2.
LetX and Y be independent and distributed uniformly over B(x, 1) and B(y, 1), respectively.
Let

P (µ) := P
(
DXL(µ) > a and DY L(µ) < b | µ

)

= P
(
DXL(µ) > a | µ

)
P
(
DY L(µ) < b | µ

)
. (46)

Note that

P
(
DXL(µ) > a | µ

)
=

|{z ∈ B(x, 1) : DzL(µ) > a}|
|B(x, 1)| ,
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with an analogous statement holding for the second factor in (46). By Lemma 24, using that
the r-balls around points in B(x, 1) and B(y, 1) do not intersect, by averaging X and Y over
their supports we see that for t > supu∈B(x,1),v∈B(y,1) t1(u, v, r) we have EP (µ) ≥ p0. Since
P (µ) is supported on [0, 1], we apply Lemma 25 with n = 1 and p = p0 to conclude that
P(P (µ) > p0/2) ≥ p0/(2 − p0) = p′0. If P (µ) ≥ p0/2, then both factors in (46) are larger
than p0/2. Therefore, with probability at least p′0, the pair (x, y) satisfies Influential1(µ)
with m = p0|B(x, 1)|/2.

Since Influential1(µ) holds with probability at least p′0 and Influential2(µ) holds
with probability at least 1−p′0/2, by a union bound both hold simultaneously with probability
at least p′0/2.

From now on, we take m, r, and p to be constants provided by Lemma 26.

Lemma 27. Assume the conditions of Theorem 2. Let Influential(µ, t, β) be the event
that there are at least βt pairs of (m, r)-influential points for µ, all of whose (r + 1)-
neighborhoods are disjoint and contained in t1/dX. For some β, q > 0 independent of t,
for either µ = ηt or µ = Ut, it holds for all sufficiently large t that

P(Influential(µ, t, β)) ≥ q.

Proof. For some β ′ > 0, for all sufficiently large t one can place at least 2⌈β ′t⌉ points in t1/dX
so that all points have disjoint (r+1)-neighborhoods contained in t1/dX. Let n = ⌈β ′t⌉, and
arbitrarily form these 2n points into n disjoint pairs. For large enough t, by Lemma 26,
each pair has probability at least p of being (m, r)-influential, so the expected number of
such (m, r)-influential pairs is at least np. By Lemma 25, there are at least np/2 pairs with
probability at least p/(2− p). Now we can take q = p/(2− p) and β = pβ ′/3, say.

Proof of Theorem 2. It suffices to show that there exists v such that VarL(µ) ≥ vt where µ
is either Poisson on t1/dX with intensity 1 or binomial with t points. Indeed, as ψ(x) = ‖x‖α,
for any a > 0 we have L(aµ) = aαL(µ), where aµ = {ax, x ∈ µ}. Hence, when VarL(µ) ≥ vt,
scaling a process µ on t1/dX to one on X, we have

Var(L(t−1/dµ)) = Var(t−α/dL(µ)) = t−2α/d Var(L(µ)) ≥ vt1−2α/d.

The argument will go by splitting µ into a sum of independent point processes µ1 and µ2.
Initially, take µ1 to be a deterministic set of points such that Influential(µ1, t, β) holds for
some β > 0, and define µ2 as a point process on t1/dX that is either Poisson with intensity
1/2 or binomial with ⌊t/2⌋ points. We start by arguing that VarL(µ1 ∪ µ2) > Ct for some
C.

Since Influential(µ1, t, β) holds, there exist point pairs (x1, y1), . . . , (xn, yn) with n ≥
βt with sets Ai ⊆ B(xi, 1) and Bi ⊆ B(yi, 1) of measure m such that Influential1(µ1) and
Influential2(µ1) hold for each pair. For some γ > 0 to be specified, consider the event

F =
{∣∣{1 ≤ i ≤ n :

∣∣µ2 ∩ (B(xi, r + 1) ∪ B(yi, r + 1))
∣∣ =

∣∣µ2 ∩ (Ai ∪ Bi)
∣∣ = 1

}∣∣ ≥ γn
}
,
(47)

that is, that for at least γn of the pairs (xi, yi), exactly one point of µ2 lands in the (r + 1)-
neighborhoods of xi and yi, and it lands in either Ai or Bi. We claim that F occurs with
positive probability not depending on t. Indeed, for any fixed i, the process µ2 will satisfy

∣∣µ2 ∩ (B(xi, r + 1) ∪B(yi, r + 1))
∣∣ =

∣∣µ2 ∩ (Ai ∪ Bi)
∣∣ = 1 (48)
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with at least with some fixed, positive probability for large enough t. Choosing γ small
enough, the event F then holds with some positive probability independent of t by Lemma 25.

Partition µ2 into {X1, . . . , Xl} and {Y1, . . . , Yl′}, where the first set consists of the points
of µ2 that are contained in Ai ∪ Bi for some i satisfying (48). Thus l ≥ γn when F holds.
Now, let µ̃ = µ1 ∪ {Y1, . . . , Yl′}, and express L(µ1 ∪ µ2) as the telescoping sum

L(µ1 ∪ µ2) = L(µ̃) +DX1
L(µ̃) +DX2

L(µ̃ ∪ {X1}) + · · ·+DXl
L(µ̃ ∪ {X1, . . . , Xl−1}).

By Influential2(µ1), RS(Xi;µ1) ≤ r. All points of µ2 except for Xi lie outside of B(Xi, r).
By (16) of Lemma 7,

DXi
L(µ̃ ∪ {X1, . . . , Xi−1}) = DXi

L(µ1).

Thus we can rewrite L(µ1 ∪ µ2) as

L(µ1 ∪ µ2) = L(µ̃) +DX1
L(µ1) +DX2

L(µ1) + · · ·+DXl
L(µ1). (49)

By construction, Xi falls into exactly one of the sets A1 ∪ B1, . . . , An ∪ Bn; let us say it
falls in Aπ(i) ∪ Bπ(i). Conditional on F , the point Xi is equally likely to be in Aπ(i) or Bπ(i).
Furthermore, which of these it lands in is independent for 1 ≤ i ≤ l conditional on F . If
Xi lands in Aπ(i), then DXi

L(µ1) > a, and if Xi lands in Bπ(i), then DXi
L(µ1) < b, by the

definition of Influential1(µ1). Thus, conditional on F and on µ̃, from the expression of
L(µ1 ∪ µ2) in (49) as a sum of independent terms, the conditional variance of L(µ1 ∪ µ2)
grows at least as a constant times l ≥ γn ≥ γβt. Decomposing the unconditional variance of
L(µ1 ∪ µ2) as a sum of expections of conditional variances, since F occurs with probability
bounded from below, the unconditional variance of L(µ1 ∪ µ2) grows at least as a constant
times t as well.

To complete the proof, we now let µ1 be a point process on t1/dX, independent of µ2, and
either Poisson with intensity 1/2 or binomial with ⌈t/2⌉ points. Thus µ can be expressed
as µ1 ∪ µ2. By Lemma 27, for all t sufficiently large, the event Influential(µ1, t, β) holds
with probability at least q for some β, q > 0 not depending on t. By the previous argument,
the variance of L(µ) conditional on Influential(µ1, t, β) for sufficiently large t is at least
Ct for a constant C > 0 not depending on t, from which the theorem follows.
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