
HAL Id: hal-01223485
https://hal.science/hal-01223485

Submitted on 2 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Approximate Proximity Graph Incremental
Construction for Large Image Collections Indexing

Frédéric Rayar, Sabine Barrat, Fatma Bouali, Venturini Gilles

To cite this version:
Frédéric Rayar, Sabine Barrat, Fatma Bouali, Venturini Gilles. An Approximate Proximity Graph
Incremental Construction for Large Image Collections Indexing. ISMIS 2015, Oct 2015, Lyon, France.
�hal-01223485�

https://hal.science/hal-01223485
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Approximate Proximity Graph Incremental
Construction for Large Image Collections

Indexing

Frédéric Rayar (B)1, Sabine Barrat1, Fatma Bouali2, and Gilles Venturini1
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Abstract. This paper addresses the problem of the incremental con-
struction of an indexing structure, namely a proximity graph, for large
image collections. To this purpose, a local update strategy is examined.
Considering an existing graph G and a new node q, how only a relevant
sub-graph of G can be updated following the insertion of q? For a given
proximity graph, we study the most recent algorithm of the literature and
highlight its limitations. Then, a method that leverages an edge-based
neighbourhood local update strategy to yield an approximate graph is
proposed. Using real-world and synthetic data, the proposed algorithm is
tested to assess the accuracy of the approximate graphs. The scalability
is verified with large image collections, up to one million images.
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1 Introduction

Dealing with large amount of data has become a great challenge. Advances in
technology allow to collect data from almost everywhere, everything and every-
one in a continuous way. This permanent flow of data can be nearly infinite and
occurs in various fields. A perfect illustration of this phenomenon is the expo-
nential growth of images. Thousands of photos are added each minute on online
platforms such as Flickr, Instagram or Facebook.

One challenge, along with the storage of this huge amount of images, is the
exploration of these image collections. In order to extract relevant information
from these images, one needs to have a relevant representation to observe their
global topology and search local information. Proximity graphs [6] have the
property of extracting the structure of the data they represent. Each piece of
data is represented by a vertex, and two vertices are linked by an edge if they
are close enough to be considered as neighbours. Such graphs fit perfectly for
purposes such as clustering and outlier detection, but also for indexing and
retrieval tasks.



Unfortunately, most of these proximity graphs have been studied as static
structures, i.e. one considers the whole studied collection, and builds a proximity
graph for further studies. However, as previously mentioned, as images keep
flooding in a continuous way, it becomes mandatory to handle graph structure
in a dynamic way: images and their links can be either added, removed or edited
if needed. Thus, it becomes essential to have incremental algorithms to build
and update proximity graphs, in order to keep organizing images in a dynamic,
yet consistent way.

Since one goal is to handle large image collections, one must take into account
the following constraints: (i) large matrices, namely the adjacency matrix and
the distance matrix, must not be stored, (ii) parallelism should be leveraged
when feasible and (iii) heuristics should be considered and assessed to cut the
time complexity of the algorithms.

In this paper, we perform a study of the most recent incremental relative
neighbourhood graph (RNG) construction algorithm proposed in the literature,
to the best of our knowledge, and highlight some drawbacks of this method.
Then, an edge-based neighbourhood local update strategy is proposed to incre-
mentally build an approximate RNG. Experiments, on both synthetic and real-
world datasets, are presented to assess the quality of the proposed strategy and
its scalability to handle large image collections.

The rest of the paper is organized as follows: Section 2 introduces the relative
neighbourhood graph. Related works on proximity graphs incremental construc-
tion and their limits are studied. In Section 3, the edge-based neighbourhood
local update strategy is defined and the related insertion algorithm is given. Ex-
periments on several datasets to assess the proposed algorithm are presented in
Section 4. Finally, we conclude the paper in Section 5.

2 Relative Neighbourhood Graph

Proximity graphs [6] are weighted graphs with no loops. They aim at extracting
the structure of a data point set, where each point is represented by a node. They
associate an edge between two points if they are close enough to be considered
as neighbours. The notable proximity graphs include k-nearest neighbour graph,
relative neighbourhood graph, Gabriel graph and Delaunay graph.

In the present paper, we will focus our attention on the RNG. Indeed, it
is the smallest connected proximity graph that embeds local information about
vertices neighbourhood. The connectivity property guarantees that each image
can be reachable during a content-based exploration.

2.1 Definition

The relative neighbourhood graph has been introduced in the work of Toussaint
[5]. The construction of this graph is based on the notion of relatively close



neighbours, that defines two points as relative neighbours if they are at least as
close to each other as they are to any other points. From this definition, we can
define RNG = (V,E) as the graph built from the points of D where distinct
points p and q of D are connected by an edge pq if and only if they are relative
neighbours. Thus,

E(RNG) = {pq | p, q ∈ D, p 6= q, δ(p, q) ≤ max(δ(p, r), δ(q, r)),∀r ∈ D\{p, q}}.

where δ : D × D → R is a distance function. An illustration of the relative
neighbourhood of two point p, q ∈ R2 is given in Figure 1.

p q

r

Fig. 1. Relative neighbourhood (grey area) of two points p, q ∈ R2. If no other point
lays in this neighbourhood, then p and q are relative neighbours.

The main drawback of the RNG is its construction. The classical and brute-
force construction has a complexity of O(n3), where n = |D| is the number of
considered data point. A few works in the literature address this complexity for
2D and 3D points. Their key idea is to build a supergraph of the RNG (e.g.
the Delaunay graph), and adopt a strategy to eliminate some edges to yield the
RNG. Thus, one can find in the literature [2] algorithms for 2D and 3D points,

whose complexity are O(nlog(n)) and O(n
23
12 log(n)), respectively.

2.2 Incremental construction

To the best of our knowledge, only few works have been done in the literature
regarding the incremental construction of the RNG. Scuturici et al. [4] explain
that they insert the new vertex in the existing RNG graph by verifying the
relative neighbourhood criteria specified in Section II. The authors state that
the graph is locally updated, but no details are given. They experimented up to
10,000 images and evaluated their work using classification performance metrics,
namely precision and recall.

In [1], Hacid et al. propose an algorithm to perform local update of a RNG
following the insertion of a new vertex. This algorithm is leveraged to incremen-
tally build the RNG. Given a set of vertices V , the incremental construction of
the RNG proposed by Hacid et al. consists in (i) randomly selecting 2 vertices
of V and creating an edge between them and (ii) iteratively inserting the other
vertices by locally updating the RNG. The insertion algorithm (Algorithm 1) is
detailed below.



Let RNG be the relative neighbourhood graph built from the vertices of V ,
q be a new vertex to be inserted, and ε ∈ R+. First the nearest vertex nn of q is
sought in V (line 1). The farthest relative neighbour fn of nn is retrieved in the
graph RNG (line 2). A hypersphere SR centred around q is then computed as
its neighbourhood. All vertices that lay in that hypersphere are retrieved (lines
6-11). The radius of this hypersphere corresponds to the sum of the distances
between q and nn, and the one between nn and fn. Note that this hypersphere
radius can be magnified thanks to the parameter ε (line 3). The neighbourhood
relationships of the hypersphere SR are updated (line 12) with the classical
brute-force algorithm.

Algorithm 1 Hacid et al.’s insertion algorithm

Input: RNG = (V,E), q, ε
Output: RNG′ = (V ′, E′)
1: nn = nearest vertex(q, V )
2: fn = farthest relative neighbour(nn,RNG)
3: sr = (δ(q, nn) + δ(nn, fn)) ∗ (1 + ε)
4: V ′ = V ∪ {q}
5: E′ = E
6: SR = ∅
7: for each p ∈ V ′ do
8: if δ(p, q) ≤ sr then
9: SR = SR ∪ {p}

10: end if
11: end for
12: E′ = Update(SR)
13: return RNG′ = (V ′, E′)

The complexity of this insertion algorithm is O(2n+n′3), where n = |E| and
n′ = |SR|. The 2n term corresponds to the search of the nearest neighbour and
the search of vertices that lay in the hypersphere. The second term is the time for
updating the neighbourhood relations between the points within the hypersphere
with the classical RNG algorithm. The authors state that the incrementally built
RNG corresponds exactly to the RNG built with a brute-force algorithm, using
a recall measure and graph correspondence.

We have noticed several drawbacks regarding this insertion algorithm. First,
the choice of the parameter ε, used by the authors to expand the neighbourhood
of q. It is empirically set at ε = 0.1 in [1]. However, no proof that relative
neighbours of the newly inserted point must lay in this magnified hypersphere
is given. This could be the cause of losing relative neighbours as illustrated in
Figure 2 (left). Second, due to the spherical definition of the neighbourhood SR,
the update step may create false edges. Indeed, the classical RNG algorithm is
performed only considering the vertices laying in SR. Figure 2 (right) illustrates
such a erroneous edge creation. Thus, the insertion algorithm described above



might not incrementally yield the exact RNG, as stated by the authors, due to
the loss of edges or the inclusion of bad ones. This has been observed and reported
in Section 4. Third, an assumption is done stating that n′ << n, i.e. the number
of vertices in the hypersphere is way less than the number of previously added
points. It may not be the case, for instance, if a set of dense points laying in the
same part of the space is considered. This has been experimentally observed for
a few datasets. Thus the term n′3 in the complexity might be an issue.

In the next section, we define an edge-based neighbourhood and propose a
strategy that leverages it to locally update an RNG, following the insertion of
a new vertex. This strategy is then used to incrementally yield an approximate
RNG. Thus, we aim at reducing the time complexity of the insertion algorithm
while yielding a refined approximation of the exact RNG.

SR

qnn

fn

g

SR

g

Fig. 2. (Left) Vertex g is a relative neighbour of vertex q. Algorithm 1 fails to retrieve
this relationship because g does not lay in the (dashed blue) neighbourhood SR of q,
due to ε value. (Right) False (dotted blue) edges are created. Indeed, as g does not
lay in the (dashed blue) neighbourhood SR, it was not considered during the creation
of the (dotted blue) edges.

3 Edge-based neighbourhood for local update

3.1 Definition

Let us consider a simple weighted graph G = (V,E), and a vertex q ∈ V . We
introduce the notion of neighbourhood order, and recursively define the lth-order
vertex neighbours (Eq. 1) and the lth-order edge neighbours (Eq. 2) of a vertex
q. Such sets are illustrated in Figure 3.{

N1(q) = {p ∈ V | pq ∈ E}
N l(q) = {p ∈ V | pr ∈ E, r ∈ N l−1(q)}, for l > 1

(1){
N1

e (q) = {pq ∈ E | p ∈ N1(q)}
N l

e(q) = {pr ∈ E | p ∈ N l(q) and r ∈ N l−1(q)} (2)
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Fig. 3. First and second order vertex neighbours (in lightgrey and grey respectively)
and edge neighbours (in dotted lightgrey and grey respectively) of the vertex q.

Thus, for a given order L, one can define an edge-based neighbourhood of a
vertex q given by:

NL
e (q) =

L⋃
i=1

N i
e(q)

3.2 Algorithm

We propose an insertion algorithm (Algorithm 2) that relies on our edge-based
neighbourhood NL

e and a local update strategy.

The main steps of Algorithm 2 are as follows. The first steps (lines 1-9) are
the same as in Algorithm 1. As explained in the previous section, the hyper-
sphere SR centred around q and its content are computed. Then, we retrieve
the relative neighbours of q in SR (lines 12-16). For each vertex p in SR, the pair
(p, q) is considered. For each vertex r in SR, we check if r lays in the relative
neighbourhood of the pair (p, q). If no vertices lay in this relative neighbourhood,
then p and q are relative neighbours, and the edge pq is created. This step is car-
ried out in O(n′2), where n′ = |SR|. Step 1 gathers all the edges that belong to
the edge-based neighbourhood NL

e (q) of q, given an order L. This is performed
with a recursive algorithm. First, we initialise an empty set of edges A. For each
relative neighbour q′ of q in RNG, we recursively compute the (L − 1)th-order
edge neighbours of q′ and store them in A. At the end of this step, the set A
contains the list of edges that belong to NL

e (q)\N1
e (q). Finally, the effective up-

date is made in Step 2: for each edge e in A, we check if e has to be removed
due to the apparition of q, i.e., if q lays in the relative neighbourhood of the
two endpoints of the considered edge. The overall complexity of the proposed
insertion algorithm is O(2n+n′2 +degL), where deg is the average degree of the
graph RNG.



Algorithm 2 Edge-based neighbourhood local update strategy

Input: RNG = (V,E), q, ε, L
Output: RNG′ = (V ′, E′)
1: nn = nearest vertex(q, V )
2: fn = farthest relative neighbour(nn,RNG)
3: sr = (δ(q, nn) + δ(nn, fn)) ∗ (1 + ε)
4: SR = ∅
5: for each p ∈ V do
6: if δ(p, q) ≤ sr then
7: SR = SR ∪ {p}
8: end if
9: end for

10: V ′ = V ∪ {q}
11: E′ = E
12: for each p ∈ SR do
13: if are relative neighbours(p, q) then
14: E′ = E′ ∪ pq
15: end if
16: end for
17: Step 1: A = compute edge neighbourhood(q, L,RNG)
18: Step 2: update edges in neighbourhood(q,A,E′)
19: return RNG′ = (V ′, E′)

Thus, we propose here an algorithm that reduces the time complexity of the
local update strategy. Moreover, the edge-based neighbourhood allows to verify
more edges that may be concerned by the apparition of a new vertex. The trade-
off between computation time and accuracy that can be achieved will be studied
in the experiments.

4 Experiments

4.1 Experimental setup

The algorithms 1 and 2 presented in this paper were implemented in C++. The
classical O(n3) RNG algorithm was also implemented for reference, to assess
the graph accuracy. For a fair comparison, the algorithm described by Hacid
et al. was implemented under the same constraints as our algorithm (only the
local update strategy differs). ε value was set to 0.1 as in [1]. In order to speed
up some operations (e.g. the nearest neighbours search), they were parallelised
using OpenMP1. In the present experiments, the whole dataset was loaded in
memory, and then each piece of data was inserted one by one. The graph was
stored as an adjacency list. For runtime experiments, we used an Intel Xeon
CPU W3520 (quadcore) at 2.66Ghz, with 8Go of RAM.

1 http://www.openmp.org/



4.2 Datasets

Five datasets were selected (available on the online UCI machine learning repos-
itory 2). They are either artificial or real world multidimensional datasets. Table
1 summarizes the specifications of the datasets. The three first can be consid-
ered as small datasets, i.e. their distance matrices can be stored in the memory.
They were used mainly to assess the validity of our algorithm and the accuracy
of the resulting graphs. The two last, which are large image collections up to one
million images, were used to verify the scalability of the algorithm. For these
datasets, the exact computation of the RNG is not tractable (n.t.) in reason-
able time with the O(n3) algorithm. Therefore, a CPU/GPU RNG construction
method [3], which can handle up to 300.000 entries, was used to generate the ex-
act graph for the Corel68k dataset. Regarding the MIRFLICKR-1M3 (MF-1M)
image collection, its RNG is not tractable at all, thus the number of edges does
not appear in Table 1.

Table 1. Datasets used for experiments. The number of vertices, their dimension and
the number of edges in the exact RNG are given.

D Type | V | d | E(RNG) |
Iris real world 150 4 195

WDBC real world 569 30 712

Breiman artificial 5000 40 17,837

Corel68k real world 68,040 57 190,410

MF-1M real world 1,000,000 150 n.t.

All the five datasets share one common property: their attributes are nu-
merical, hence the euclidean distance was used for data comparison. Note that
this work can be applied to the data described by categorical features with an
appropriate distance function.

4.3 Accuracy evaluation

First, we evaluate the accuracy of the proposed algorithm and the sensitivity
with regards to the parameter L. The exact RNG was computed for the four
first datasets. The number of edges of these graphs are used as ground truth
and the graph correspondence is computed to evaluate the approximate graphs.
Table 2 gives the number of erroneously added edges and removed edges. Since
exact RNG could not be produced in reasonable time, this experiment is not
reported for the largest dataset, namely MF-1M.

One interesting observation in this experiment is that the main difference
between the graph produced incrementally and the exact graph is often the

2 http://archive.ics.uci.edu/ml
3 http://press.liacs.nl/mirflickr



Table 2. Number of wrongly added edges and removed edges in the RNGs computed
by Algorithms 1 and 2. The symbol == means that the approximate graph corresponds
exactly to the exact graph.

| E(RNG) | Algorithm 1 Algorithm 2
L = 2 L = 3 L = 4

Iris 195 +10/-2 +8/-1 == ==

WDBC 712 +2/-1 +10/-0 +3/-0 ==

Breiman 17837 +0/-0 +1161/-0 +299/-0 +26/-0

Corel68k 190410 +20363/-11 +9089/-356 +2165/-388 +637/-397

addition of wrong edges. Actually, it is not the addition of wrong edges, but
rather the fact that some edges are not invalidated after an insertion due to the
proposed edge-based neighbourhood. Thus, our algorithm leads to create a few
number of false similarities between data, which may not be critical in some
applications (e.g. similar images retrieval or user recommendation systems).

We notice that Hacid et al.’s algorithm does not always incrementally yield
the exact RNG as stated in their paper. Furthermore, our proposed algorithm
performs at least as well as, if not better, than Hacid et al.’s algorithm in terms
of accuracy, considering low edge-based neighbourhood order (L = 4).

As expected, the number of the wrongly added or removed edges in the
approximate graphs decreases as the edge-based neighbourhood order increases.
Indeed, as more edges are checked, less erroneous edges are left, thus improving
the accuracy of the approximate RNG. It is possible to build such a graph with
less than 1% of wrongly added or removed edges considering low order of edge-
based neighbourhood (such as L = 4).

4.4 Computation time evaluation

Table 3 presents the computation time of Algorithms 1 and 2. Algorithm 2 results
are given over the edge-based neighbourhood order L.

We present the computation times for the small Breiman dataset in order
to highlight the fact that the computation is high for Algorithm 1. Indeed, this
dataset illustrates the incremental worst case scenario. Due to the topology of
this peculiar dataset, at almost every iteration, the hypersphere SR contains all
the vertices previously added. Thus, this dataset is a perfect counterexample of
the assumption n′ << n, made by Hacid et al., as mentioned in Section III.

For the Corel68k dataset, the computation time of Algorithm 1 is five days
while our algorithm yields the graph in less than half an hour with L = 4. The
achieved speed-up ratio is slightly less than 273. For the million images collection,
the proposed algorithm succeeds in computing an approximate RNG while Hacid
et al.’s algorithm is not tractable in reasonable time. Algorithm 2 computation
time might seem quite high, yet this time can be reduced by considering an
hybrid approach. First, computing the exact RNG of a subset of images with



Table 3. Comparison of the computation times of Algorithms 1 and 2. Computation
times are given in seconds.

Algorithm 1 Algorithm 2
L = 2 L = 3 L = 4

Breiman 7692 16 25 178

Corel68k 122h 889 1371 1604

MF-1M >> 250h 145h 151h 181h

the embarrassingly parallel O(n3) algorithm. This subset may contain as much
images as possible, provided that the memory can handle its distances matrix.
Second, processing the rest of the images using our incremental approach. Indeed,
experiments have shown that one can expect an average insertion time of less
than 500 ms. This is promising for almost real time updates.

5 Conclusion

In this paper, the problem of the incremental construction of a proximity graph
for large image collection indexing is addressed.

Considering constraints such as memory availability, continuous images in-
coming, and fast computation, we have leveraged a local update strategy to
update only a relevant sub-graph of the existing graph, following the insertion
of a new image. This strategy allows to incrementally yield an approximate RNG.
The proposed algorithm outperforms the existing work in terms of computation
time while yielding a refined approximation. Synthetic datasets have assessed
the performance of the algorithm. Moreover, scalability is tested on real-world
image collections.

Immediate future work will be to implement the hybrid approach in order to
reduce computation time for larger image collections. Then, we plan to leverage
this incremental proximity graph construction for clustering and large image
collection visualisation.
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