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ABSTRACT: Reducing the clearance between blade tips and casing is an important factor in increasing the performance
of turbomachines such as turbofan engines. However, small clearances lead to more chances of rotor-stator contact, which
can cause unstable vibrations. To improve the prediction of such contact-related phenomena, this paper proposes a model
that includes potential contacts between the fan blade tips and their surrounding casing. This phenomenological model
consists of a fully flexible bladed rotor and a flexible casing. The bladed rotor model is built according to the method
developed by Lesaffre [1] and based on the approximations used by Sinha [2]. The casing model is composed of an elastic
ring with isotropic suspension. Two different contact formulations have been developed: a 3D contact detection law,
which incorporates 3D model kinematics along with 3D local geometry of the contact area, is compared to a simpler
formulation. For both formulations, once the clearance has been consumed, contact forces are introduced with normal
contact stiffness, and friction is considered using Coulomb’s Law. In an initial step, linear harmonic results serve to
compare these contact formulations in their ability to detect contact. Next, the stability of balanced static solutions
is studied and transient analyses are carried out to confirm the static results. Study results highlight the influence of
3D kinematics and 3D local geometry on both contact detection and the dynamic stability of the system subjected to
blade-casing contact.

KEY WORDS: rotor dynamics, bladed assembly, nonlinear dynamics, blade-tip/casing contact

introduction

The clearance between rotating and fixed parts is
a governing factor of turbomachine performance. By
reducing the leakage flows, smaller clearances lead
indeed to a more efficient turbomachine. The physical
disadvantage however is an evolution of the blade tip-
casing contacts capable of generating unstable vibrations.
Consequently, in order to reduce clearances, aero-engine
mechanical engineers must properly predict the occurrences
of contact and ensure that the possible contacts do not
trigger damaging phenomena.

Most of the literature reviewed on blade tip-casing
contact is divided into two areas of study [3]: bladed
assembly vibration and rotor dynamics.
- The study of bladed assembly vibration takes into

account the blades and disk flexibility while neglecting
shaft dynamics [4], [5]. As part of this area of study, we
encountered extended finite element models of the bladed
disk and casing [5]. Appropriate contact models were built
to handle the discretization due to meshing [6], [7]. Other
investigations included the mechanical properties of the
abradable coating that covers the inner surface of the casing
[8] or the thermal effects of friction [9].
- The field of rotor dynamics focuses on shaft vibrations

while neglecting both the blades and disk flexibility.
Most numerical investigations were found to use simplified
models, whereby the blade tip-casing contact is introduced

using nonlinear springs. Such models typically consider
contact between two cylindrical surfaces [10–14].

Beside tip clearance, weight is a recurring governing
factor in aircraft engine design. Reducing the mass
generally increases the global flexibility and/or eases the
dynamic couplings between the various components of the
engine. The contact events can thus jointly affect and
be influenced by the global engine dynamics. Hence,
lighter designs bring out the need to extend the dynamic
considered in the prediction model. Moreover, the present
work focuses on the contact that may occur between the fan
blade tips and fan casing of a turbofan engine. This contact
localization underscores the need to consider the fan blades
and fan casing dynamics. Modern turbofan designs present
indeed a high bypass ratio i.e. a wide fan casing and slender
fan blades. These design characteristics imply including
the blades, shaft and casing dynamics into the prediction
model. The model presented in this paper thus merges
both areas of study : bladed assembly vibration and rotor
dynamics. It is based on the bladed-shaft models proposed
by [1, 2, 15].

The phenomenological model proposed introduces these
components while minimizing the number of degrees of
freedom (dofs) considered. The reasonable size of the
model limits the computation time and allows conducting
influence analyses on various parameters. However, a light
model necessitates focusing on a proper approximation of
the dynamics properties while the geometric aspects of the
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Figure 1. Model components

components can be locally altered. Since contact is a local
event that exerts a strong effect on global dynamics, we
propose herein a 3D contact formulation so as to regain
accuracy in contact detection without increasing the model
size.

Once the model assumptions and the contact formula-
tions described, the results provided in this paper will be
exhibited in the final three sections. Linear results will be
presented first so as to draw a comparison of the ability
to detect contact with the developed contact formulations.
Then, stability of the balanced static solutions will be
analyzed, before concluding with transient analyses that
confirm the static results.

1. model description

The model consists of a flexible bladed rotor and
suspended flexible casing. To eliminate time-dependent
terms resulting from the periodicity of the bladed disk, the
entire model has been developed in the rotating frame.

Bladed rotor - The bladed rotor model discussed in the
present paper has been based on the same approximations
as the one described by Sinha [2]; it has been developed
through application of an energy approach by Lesaffre [1]
and Gruin [15]. The shaft is modeled by a Euler-Bernoulli
beam suspended by isotropic viscoelastic bearings. The
shaft beam has a hollow circular cross-section and includes
two displacements defined in the rotating frame: the two
orthogonal translations in the cross-section plane. Rigid
disks connected to the shaft are modeled by a point
mass and rotational inertia. Lastly, a set of ten flexible
blades are clamped to the representative fan disk; they
are all modeled by Euler-Bernoulli beams with a constant
rectangular cross-section and can deflect along their more
flexible direction. The model sketch with some rough
dimensions is drawn in Figure 1.
The shaft and blade deformations are discretized through
use of the appropriate Rayleigh-Ritz functions (the detailed
equations can be found in [1] and [15]). The gyroscopic
effect is taken into account along with the stress stiffening
of the blades. Two degrees of freedom (dof) are assumed to
model the deformation of each blade. The shaft contains

ten dofs: two rigid-body dofs related to the suspensions,
and eight dofs introduced to model its deformation.

Casing - The casing model consists of an elastic
ring with radial and tangential deformations [16], whose
discretization considers the nodal diameter modes of the
axisymmetric structure, as described in [1]. We have chosen
to include the modes with two and three nodal diameters
because for the considered settings, the natural frequencies
of these modes lie within the studied range. In addition
to its four deformation dofs, the casing contains four
rigid-body dofs, contributed by its viscoelastic isotropic
suspension: the two orthogonal translations and rotations
in the cross-section plane of the shaft.

2. contact formulations

This section presents the 2D and 3D contact formulations
developed. They both follow the same sequence of steps:
first, a minimum distance function is developed in order to
evaluate the blade-to-casing distance; afterwards, if contact
is detected, then the opposing contact and friction forces
are applied to the rotating and fixed parts. For both
formulations, the normal contact forces are proportional
to penetration: the radial stiffness kr is introduced.
Tangential friction forces are obtained using Coulomb’s
Law: −sgn(Vrel)μFN where μ is the friction coefficient and
FN the normal contact force. The sign of Vrel, the relative
speed between contact surfaces, is assumed to be constant
and opposite to the sliding speed direction due to shaft
spin. We can thus define a constant tangential stiffness
parameter: kt = −sgn(Vrel)μkr.
The contact formulations developed differ in their

minimum distance function and in the distribution of
contact forces on the blade tip. For the 2D formulation,
the contact reactions are concentrated on a point-like blade
tip, while the 3D formulation allows distributing contact
reactions along the chord.

2D contact formulation - The 2D formulation
considers a point-like blade tip, and its minimum distance
function solely takes into account the disk and casing
translations and the radial deformation of the casing:

g
(2D)

j =g0 + lb + rd + u(αj , t) + (xc(t)− xd(t)) cosαj

+ (yc(t)− yd(t)) cosαj

(1)

where:
• αj : angular position of the jth blade,
• g0: initial tip clearance,
• lb: blade length,
• rd: fan disk radius,
• u(αj , t): radial deformation of the casing,
• xd, yd: disk translations,
• xc, yc: casing translations.

If g(2D)

j < 0, then contact is detected and the normal and
tangential contact reactions are given by:

if g(2D)

j < 0 ⇒

{
F

(2D)

jN = krg
(2D)

j

F
(2D)

jT = ktg
(2D)

j

(2)

2



Figure 2. Contact region geometry

The contact reactions relative to each blade tip j are then
projected onto the general coordinates of the model in order
to include the contact forces in the system of equations.

3D formulation - The 3D minimum distance function
takes into account more model kinematics: in addition
to the disk and casing translations and normal casing
deformation, this function introduces the disk and casing
rotations as well as blade flexure. The 3D contact
formulation also includes the 3D geometry of the contact
region, i.e.: chord length and inclination of the casing inner
surface (see Figure. 2). To simplify the formulation, we
propose the following kinematic assumptions:

• Disk and casing rotations are assumed to be sufficiently
small so as to linearise their trigonometric functions.
• The influence of the casing tangential deformation on

the minimum distance value is neglected.
• The influence of casing thickness on deformations

along the casing inner surface is neglected: the normal
deformation is calculated at the mid-surface.
• The influence of overall blade tip displacement on

the angular position is neglected: the normal casing
deformation input into the minimum distance function is
measured at the initial blade tip point position.

A number of simplifications to the 3D local geometry
have also been considered, namely:

• The minimum distance function along the chord is
obtained by linear interpolation: the gap is only calculated
at the Leading Edge (LE) and Trailing Edge (TE)
points.(see Figure 3).
• The inner surface of the casing is considered to be

perfectly conical.

To obtain the minimum distance function at both the
LE and TE points of the blade tip chord, we begin
by determining these positions in a frame attached to
the casing. The selected points P (LE) and P (TE) are
identified in Figure 2 and 3, with their final position being

Figure 3. 3D view of the clearance values interpolated
along the chord line

given by:

P ′ = Pφxc
Pφyc

⎛
⎝PT

φyd
PT

φxd
PT

αj

⎛
⎝P +PT

β

⎧⎨
⎩
xb(lb, t)

0
0

⎫⎬
⎭
⎞
⎠

+

⎧⎨
⎩
xd(t)− xc(t)
yd(t)− yc(t)

−zc

⎫⎬
⎭
⎞
⎠

(3)

where:
• P : initial coordinates of the selected point (P (LE) or

P (TE)),
• P ′: final coordinates of the selected point,
• zc: the casing center of gravity position along the z axis,
• xd, yd: disk translations,
• xc, yc: rigid-body casing translations,
• xb(lb, t): blade deflection at its tip,
• Pβ and Pαj

: blade positioning matrices,
• Pφxd

and Pφyd
: disk rotation matrices,

• Pφxc
and Pφyc

: rigid-body casing rotation matrices.
Once the P ′(LE) and P ′(TE) values are known, the

minimum distance to the LE and TE points of the blade
tip chord is obtained by using the following expression:

g
(3D)

j =

(
−
Rb

h
P ′

z
+Rb −

√
P ′2
x

+ P ′2
y

+ u(α(P ), t)

)
cos θ

(4)

where:
• Rb, h: the base radius and height of the cone

representing the casing inner surface,
• θ: angular characteristic of the cone aperture (see

Figure 2),

• P ′ =
{
P ′

x
, P ′

y
, P ′

z

}T
: the selected point coordinates

defined by (3),
• α(P ): initial angular position of the selected point,
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• u(α(P ), t): normal deformation of the casing at α(P ).
The contact reactions are then obtained by integrating

the contact pressure distributed along the chord line. If
g

(3D)

j (LE) and/or g(3D)

j (TE) is negative,then contact occurs
and the normal and tangential pressures distributed along
the chord line are given by:

pjN (c) =
kr

lc
(ζc+ η) and pjT (c) =

kt

lc
(ζc+ η)

where ζ =
g

(3D)

j (TE)− g
(3D)

j (LE)

lc

and η =
g

(3D)

j (TE) + g
(3D)

j (LE)

2

(5)

with
• c: position along the chord,
• lc: chord length.

Contact reactions are thus given by:

F
(3D)

jN =

∫ c2

c1

pjN (c)dc and F
(3D)

jT =

∫ c2

c1

pjT (c)dc (6)

Distribution along the chord also creates reaction torques,
given by:

M
(3D)

jN =

∫ c2

c1

c pjN (c)dc and M
(3D)

jT =

∫ c2

c1

c pjN (c)dc

(7)
The limit values for integration (c1 and c2) depend on

the minimum distances results:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g
(3D)

j (TE) ≤ 0 and g
(3D)

j (LE) ≤ 0 ⇒ c1 = −
lc

2
; c2 =

lc

2

g
(3D)

j (TE) ≤ 0 and g
(3D)

j (LE) ≥ 0 ⇒ c1 = −
lc

2
; c2 = −

η

ζ

g
(3D)

j (TE) ≥ 0 and g
(3D)

j (LE) ≤ 0 ⇒ c1 =
η

ζ
; c2 =

lc

2
(8)

As for the 2D formulation, the contact-related reaction
forces and torques are then projected onto the general
coordinates to create the nonlinear force vector included
in the system of equations.

3. resolution methods

This section describe the methods used to obtain the
results presented in this paper. Three different sets
of results will be presented in the following sections:
contact detection, permanent contact stability analyses,
and nonlinear transient analyses.

Contact detection - The contact detection results
are obtained by including the linear imbalance response
into the minimum distance functions defined above. In
the rotating frame, the displacement field of the system
subjected to imbalance is obtained by solving the following
static equation:

K̃(Ω)q = F(Ω2)

K̃ = K+Ks(Ω
2) +N(Ω) +C(Ω)

(9)

where:

• K: elastic stiffness matrix,
• Ks(Ω

2): stress stiffening matrix of the blades,
• N(Ω): spin softening matrix,
• C(Ω): viscous damping circulation matrix,
• q: general coordinates vector,
• F(Ω2): vector of imbalance forces projected onto the

general coordinates.

The spin speed Ω is assumed to be constant at each
considered step. The resulting displacements are then
introduced into the 2D and 3D minimum distance functions
(1) and (4). This method neglects the nonlinear aspect of
the contact: contact detection brings indeed contact forces
affecting the displacement field and in turn, modifying the
contact configuration. The results output must not be used
in a refined analysis of the contact configurations. This
method does however provide a quick way to obtain contact
detection limits: it allows to compare the ability of each
formulation to detect contact and identify the parameters
that influence the contact detection range.

Permanent contact stability analyses - Unlike the
previous method, the permanent contact analyses include
nonlinear contact forces in the static system of equations.
The static solution q0 is found by solving the following
nonlinear system of equations:

K̃(Ω)q0 = Fnl(q0) + F(Ω2) (10)

where:

• M: mass matrix,
• D: viscous damping matrix,
• G(Ω): gyroscopic effects matrix,
• Fnl(q0): nonlinear contact forces vector projected onto

the general coordinates of the system.

In order to study the local stability of the solution q0, we
introduce a time-dependant perturbation q̄(t). Stability
information is obtained by performing an eigen-analysis on
the perturbed system: the static solution q

0
being unstable

if at least one of its eigen-values has a positive real part.
The perturbation is assumed to be sufficiently small to
allow the linearisation of contact forces. The linearised
system of equations of the perturbed system is given by:

M¨̄q(t) + (D+G(Ω)) ˙̄q(t) +
(
K̃(Ω)− JqFnl(q0

)
)
q̄(t) = 0

(11)
where JqFnl(q0) is the Jacobian matrix of the contact force
vector at q

0
.

Non-linear transient analyses - The nonlinear
transient analyses enable including the nonlinear contact
forces in the dynamic system of equations:

Mq̈(t)+ (D+G(Ω)) q̇(t)+ K̃(Ω)q(t) = Fnl(q(t))+F(Ω2)
(12)

The transient results reported herein were obtained by
applying the explicit central differences algorithm, as
presented in [5, 17]. The imbalance considered at the fan
disk location for inducing contact is applied over a 1 sec
ramp.
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Figure 4. Imbalance response at the fan disk

4. contact detection results

A reasonable imbalance is considered at the fan disk
coordinate; the response recorded at the same location is
plotted in Figure 5. The peaks observed in the diagram
indicate the presence of two critical speeds. Imbalance
indeed introduces a harmonic excitation of the same
frequency as the shaft’s rotation. Consequently, when the
rotational frequency equals one of the system’s natural
frequencies, the corresponding mode will resonate and this
spin speed will be referred to as critical speed. The first
peak encountered at the normalized spin speed Ω ≈ 3.5
displays an amplitude more than five times greater than
the peak observed at Ω ≈ 8. This finding means that
the mode excited at Ω ≈ 3.5 contains more deformation
energy in the fan module than the mode whose critical
speed equals Ω ≈ 8. The most critical contact events can
thus be expected near Ω ≈ 3.5.

By introducing the harmonic response into the minimum
distance formulations, we determine whether or not contact
would have occurred at the considered spin speed Ω and for
the chosen initial tip clearance g0 (see Section 3). Then,
by varying these parameters, we map the contact areas:
i.e. the parameter sets (Ω, g0) for which at least one blade
is touching the casing. The maps obtained with the 2D
and 3D formulations are plotted in Figure 6: the darker
area corresponds to 3D contact detection and the clearer
area plotted on top corresponds to 2D contact detection.
For g0 = 0mm, contact occurs for all the considered spin
speeds. Then, as the g0 parameter increases, contact
is detected for less spin speeds. The upper contours of
the maps indicate thus the maximal initial tip clearance
for which contact occurs at a given spin speed, i.e. the
maximum clearance closure due to imbalance. As expected
by the harmonic response at the fan disk, the maximum
clearance closure is reached around Ω ≈ 3.5 for both
formulations. The diagram also shows the efficiency of
the 3D minimum distance function with respect to the 2D
formulation: the area covered by the 3D formulation is
wider, and the difference between clearance values reaches
1.3mm at the first critical speed.

As described in Section 2, the 3D formulation enriches
the minimum distance function on two aspects: the
model kinematics and the local geometry of contact. To
determine which aspect is more relevant, we considered
them individually. Figure 7 presents the difference with

Figure 5. Maps of the contact detected with the 2D and
3D minimum distance function, for various spin speed
and initial tip clearance values

Figure 6. Difference between 2D and 3D clearance
closures for various configurations of the 3D minimum
distance function

the 2D clearance closures for three configurations of 3D
minimum distance functions:

• a full 3D configuration as described in Section 2,
• a configuration that includes 3D kinematics and

neglects chord length and the conical property of the casing
inner surface (θ = 0 ◦ and lc = 1mm),
• a configuration that includes 3D geometry yet neglects

the disk and casing rotations and blade flexure.
The results plotted in figure 7 indicate that for the
considered parameters, both degraded 3D configurations
are of no utility in comparison with the full 3D version.
The clearance difference between 2D and full 3D actually
amounted to 1.3mm, while the difference remained less
than 0.1mm for the other 3D configurations. These
findings highlight the combined effect of 3D geometry and
kinematics: to consider 3D geometry without enriching the
kinematics would be useless and vice versa.

Lastly, the contact detection analyses allow comparing
the influence of geometric parameters on the occurrences
of contact. Figure 8 shows the contact areas according
to θ, the inclination of the casing inner surface, while
figure 9 presents the contact areas obtained for various
chord lengths. When unspecified, the default settings are:
θ = 5 ◦ and lc = 20 cm. Both parameters enlarge the

5



Figure 7. Contact detection maps vs the inclination of the
casing inner surface: from θ = 0 ◦ to 30 ◦

Figure 8. Contact detection maps vs chord length at the
blade tip: from lc = 1 cm to 30 cm

contact detection area. However, for the parameter ranges
considered herein, the conical property of the casing inner
surface seems to exert more influence than the blade length
on the contact detected using the 3D formulation.

5. permanent contact stability analyses

By introducing an asymmetric elastic and inertial
coupling, the rotor-stator contacts can create dynamics
instabilities [18–20]. Stability then depends on the
contact stiffnesses brought to the system vs. its damping
properties. The results presented in this section analyze
the stability of balanced static solutions, as described in
Section 3.
Figure 10 maps the contact configurations resulting from

balanced static solutions calculated with the 2D and 3D
contact formulations. The outer map contours match the
contact areas obtained in the previous section. Within the
contact area, the color scale indicates how many of the
10 blades are touching the casing for each balanced static
solution. Figure 11 provides stability information on the
balanced static solutions. The color scale represents the
sum of all positive real parts of the system eigenvalues at
each balanced solution. Summing the real parts of each
unstable mode offers one way to indicate the degree of
destabilization created by the contacts. A small positive
real part of the eigenvalue indicates that the instability
can be compensated by a reasonable damping supply.

Conversely, various unstable modes with a high real part
suggest a strong contact-related asymmetry.
As could be expected, the stability maps globally

resemble the contact configuration maps: the greater
the number of blades touching the casing, the greater
the number of unstable modes with high positive real
parts. Some differences in appearance are observed
however between the stability results of the two contact
formulations. For the 2D configuration, the unstable
region covers almost the entire contact detection area,
while contact does not necessarily lead to an unstable
solution for the 3D configuration. A strip of stable
contact configuration surrounds the unstable area in the 3D
formulation solutions and another stable strip exists within
the peak of the first critical speed. The 2D formulation
stability map clearly reveals delimited colored patches
whose contours match those of the contact configuration
observed in figure 10.
For the 2D contact formulation, each new touching

blade contributes a new equivalent spring with radial and
tangential stiffness (kr and kt). For the 3D formulation
on the other hand, stability results are smoother due
to the linear distribution of contact pressure along the
chord. Blade involvement is indeed more gradual for the
3D formulation: contact begins at the LE or TE point of
the chord, and the length of chord in contact gradually
increases as does the equivalent stiffness input into the
system.
Since the contacts are more easily detected with the 3D

formulation, the unstable region is, on the whole, wider
with this formulation. The stable strip that appears within
the peak of the first critical speed corresponds however
to an unstable zone in the 2D formulation. This strip
indicates a detected area with three contacts for both
minimum distance functions. Since the 2D formulation will
include three ”full” contacts, the contacts detected by the
3D function do not involve an entire chord length and will
thus introduce the equivalent ”partial” stiffness.

6. nonlinear transient simulations

To confirm the accuracy of permanent contact stability
results, we carried out transient simulations. The analyses
are carried out at Ω = 3.3 and for an initial tip clearance of
0.8mm. This configuration lies within the strip described
in the previous section: the balanced solution is unstable
for the 2D formulation and stable for the 3D one. The
evolution of normal contact forces at the blade tips
(F (2D)

jN and F
(3D)

jN ) is plotted in figure 12. The 2D blade
tip reactions diverge after the full imbalance is applied,
whereas the 3D simulation leads to a stable static solution.
These results confirm those predicted by the stability
analysis on static balanced solutions. For both simulations,
three blades are in contact at 1 sec although for the 3D
formulation, the third blade touches at 88% of its chord
length. This difference is sufficient to maintain stability for
the 3D results while the 2D simulation, which introduces a
stiffness equivalent to all three blades, is unstable. Lastly,
we can remark that at 1 sec, the contact reaction at the
blade tip is greater for the 3D formulation than for the 2D.

6



Figure 9. Contact configurations resulting from the static
nonlinear resolution

Figure 10. Contact detection and stability results

This finding illustrates the fact that dynamic stability is
determined by the asymmetric stiffness link input into the
system and not by the contact force amplitude.

conclusion

A phenomenological model has been developed to
investigate phenomena related to blade-to-casing contacts
in turbofan aircraft engines. The model developed contains
38 dofs and comprises a flexible bladed shaft and a flexible
suspended casing. Two contact formulations have been
tested: the first one includes 3D model kinematics and
local geometry of the contact region while the second one

Figure 11. Contact detection and stability results

is a simpler 2D formulation. Three distinct results were
presented:
• The linear results allow comparing the ability of each

minimum distance function to detect contacts. For the
considered settings, these linear results prove that the
3D minimum distance function is more efficient than
the 2D. Other investigations have indicated that the 3D
function loses its benefit if one of its 3D attributes is
removed, i.e. considering a 3D local geometry without 3D
kinematics would be useless and vice-versa. Moreover,
the analysis of geometric parameter influence indicates
that the inclination of the casing inner surface heavily
influences contact detection while chord length affects
detection results to a lesser extent.
• The stability of a balanced static solution was also

studied and the results obtained with each formulation
compared. Thanks to overall contact detection efficiency,
the range of unstable static solutions is generally broader
with the 3D formulation, yet some configurations are stable
for 3D solutions and unstable with the 2D solutions. The
3D formulation actually distributes contact pressure along
the chord, hence implying a more gradual evolution in the
asymmetric stiffness responsible for system destabilization.
• As a final item, nonlinear transient analyses were

carried out at a spin speed and initial tip clearance value
at which the balanced solution is unstable for the 2D
formulation and stable for the 3D. The results generated
confirm the stability analysis findings on balanced static
solutions.

The 3D contact formulation presented in this paper con-
stitutes an efficient means for improving the predictability
of this phenomenological model. The enriched minimum
distance function has proven to be more efficient at contact
detection and has expanded the parameter set to be
investigated. In addition to geometric contact detection,
the 3D formulation affects stability results. By allowing
the contact to be distributed along the chord, the 3D
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formulation more effectively models the real involvement
of the blade tip in the casing. In closing, the proposed
formulation has the significant advantage of offering these
improvements without increasing the model size.
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