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Abstract

Convex polyhedra are commonly used in the static analysis of programs to represent
over-approximations of sets of reachable states of numerical program variables. When
the analyzed programs contain nonlinear instructions, they do not directly map to
standard polyhedral operations: some kind of linearization is needed. Convex polyhe-
dra are also used in satisfiability modulo theory solvers which combine a propositional
satisfiability solver with a fast emptiness check for polyhedra. Existing decision pro-
cedures become expensive when nonlinear constraints are involved: a fast procedure
to ensure emptiness of systems of nonlinear constraints is needed. We present a new
linearization algorithm based on Handelman’s representation of positive polynomials.
Given a polyhedron and a polynomial (in)equality, we compute a polyhedron enclosing
their intersection as the solution of a parametric linear programming problem. To get
a scalable algorithm, we provide several heuristics that guide the construction of the
Handelman’s representation. To ensure the correctness of our polyhedral approxima-
tion, our ocaml implementation generates certificates verified by a checker certified in
coq.

1 Numerical Static Analysis and Satisfiability Testing
Using Convex Polyhedra

We present a new method for computing polyhedral approximations of polynomial guards,
with applications in both static analysis and satisfiability modulo theory (smt) solving. It is
implemented in the Verimag Verified Polyhedra Library (vpl), a certified library written in
ocaml for computing over convex polyhedra [20]. Its operators generate certificates which
may optionally be checked by a verifier developed and proved correct in coq. The vpl is
used as an abstract domain within a coq-certified static analyzer [26].
∗This work was partially supported by ANR project VERASCO (INS 2011) and the European Research

Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agree-
ment nr. 306595 “STATOR”.

1

http://verasco.imag.fr/
http://erc.europa.eu/
http://erc.europa.eu/
http://stator.imag.fr


Convex polyhedra. A convex polyhedron is defined by a conjunction of affine constraints
of the form a0 +

∑n
i=1 aixi ≥ 0 where the xi’s are variables, the ai’s and a0 are constants

in Q. We subsequently omit convex as we only deal with convex polyhedra. For instance,
the polyhedron P defined by

P , {x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, 5− x− y ≥ 0} (1)

is the set { (x, y) | x ≥ 1 ∧ y ≥ −2 ∧ x ≥ y ∧ x + y ≤ 5} represented in Fig. 1. A bounded
polyhedron is called a polytope.

Polyhedral static analysis. Static analyzers are verification tools that aim at proving
properties true for all possible executions of a program; desirable properties include for
instance the absence of arithmetic overflow. In the abstract interpretation framework, the
analyzer attaches to each control point an invariant chosen within a given class, called
abstract domain [11]. Here, we focus on the abstract domain of polyhedra which captures
affine relations among program variables [22]. A static analyzer using polyhedra cannot
directly infer any information on a variable z assigned with a non-linear expression e.g.
z := x∗y. A very rough abstraction is to consider that z is assigned any value in (−∞,+∞);
the consequence is a dramatic loss of precision which propagates along the analysis, possibly
failing to prove a property.

Satisfiability modulo theory. The satisfiability of a quantifier-free formula of first-order
linear arithmetic over the reals is usually decided by a “dpll(t)” [21] combination of a
propositional solver and a decision procedure for conjunctions of linear inequalities based
on the simplex algorithm [18, 17]. Nonlinear formulas are more challenging; some solvers
implement a variant of cylindrical algebraic decomposition, a very complex and costly ap-
proach [27]; some replace the propositional abstraction of dpll(t) by a direct search for a
model [14].

Linearization techniques. Nonlinear relations between variables, such as x2 + y2 ≤ 1,
occur for instance in address computations over matrices, computational geometry, auto-
matic control and in programs that approximate transcendental functions (sin, cos, log. . . )
by polynomials [7, 6]. Therefore, linearization techniques were developed to preserve pre-
cision in the presence of polynomials; they provide an over-approximation of a polynomial
on an input polyhedron. Miné proposed two linearization techniques based on variable “in-
tervalization” [34], where some variables of the polynomial are replaced by their interval of
variation:

(1) Switching to the abstract domain of polyhedra with interval coefficients [5] to maintain
precision, albeit at high algorithmic cost.

(2) Obtaining an affine expression with intervals as coefficients, which is then converted
into a polyhedron. This solution was implemented in the apron polyhedra library [24,
34]: intervals are replaced with their center value and the right-hand side constant of
the equality is enlarged accordingly. We developed an improved and certified version
of this algorithm in the vpl [4]. This linearization technique is efficient but not very
precise.
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Another well known linearization method consists in representing polynomials in the
Bernstein basis. Bernstein coefficients give a bounding polyhedron, made as precise as
needed by increasing the degree of the basis [35]. Bernstein’s linearization works on systems
of generators, either to get the range of each variable, or to refer to variables as barycentric
coordinates of the vertices [9]. It would be well-suited for most libraries (apron [24],
ppl [1], polylib [31]), as they maintain a double representation of polyhedra: as systems of
constraints, and as systems of generators (in the case of polytopes, the generators are the
vertices). In contrast, our work aims at adding a precise linearization to the vpl. In order
to make certification more convenient, the vpl uses only the constraint representation of
polyhedra. Therefore, using Bernstein’s method would be hardly appropriate as it would
require expensive conversions between representations [32].

Contributions. We present a new algorithm to linearize polynomial guards which only
needs constraint representation of polyhedra. Section 2 shows how any other polynomial
statement reduces to guards. As explained in Section 3, our approach is based on Handel-
man’s theorem [23], which states that a polynomial that is positive on a polytope can always
be expressed as a nonnegative linear combination of products of constraints of the polytope.
The algorithm consists in computing linear relaxations as solutions of a Parametric Linear
Programming Problem (plop). Section 4 sketches the principle of plop solvers and focuses
on an improvement we made to reduce exploration of branches that would yield redundant
constraints. The method presented in this paper requires only the constraint representa-
tion of the polyhedron, as provided by the vpl or by a dpll(t) smt-solver, and returns
a polyhedron directly as constraints as well as an emptiness flag. It soundly approximates
polynomial operations over convex polyhedra and generates certificates that are checked by
a verifier developed and proved in coq. The precision of the approximation is arbitrary
depending on the degree and the number of Handelman products in use; the selection of
which is delegated to the heuristics presented in Section 5. Precision and efficiency of our
algorithm are shown through a comparison with smt-solvers on Quantifier-Free Nonlinear
Real Arithmetic benchmarks in Section 6.

This paper elaborates on a preliminary work by the authors [33], which presented the
encoding of the linear relaxation problem as a plop, focusing on the certification in coq
of the resulting approximation. We reuse the encoding of [33] and we extend the previous
work with heuristics, an experimental evaluation and a new application.

2 Focusing on Approximation of Polynomial Guards
The goal of linearization is to approximate nonlinear relations with linear ones. The approx-
imation is sound if it contains the original nonlinear set. In other words, linearization must
produce an over-approximation of the nonlinear set. In this work, we consider polynomial
expressions formed of (+, −, ×), such as 4− x× x− y × y. More general algebraic expres-
sions, including divisions and root operators, may be reduced to that format; for instance
y =

√
x2 + 1 is equivalent to y2 = x2 + 1 ∧ y ≥ 0 [36]. The symbol g shall represent a

polynomial expression on the variables x1, .., xn of a program. We only consider constraints
in a positive form g ≥ 0 or g > 0: any other form (including equalities and negation) can be
changed into a disjunction of conjunctions of positive constraints, for example ¬(g1 = g2)
≡ (g1 < g2 ∨ g1 > g2) ≡ (g2 − g1 > 0 ∨ g1 − g2 > 0).

We will use the program of Fig. 1 as a running example: our goal is to compute a
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1. int x, y, z ;

2. if
(
x ≥ 1 && y ≥ −2 &&

x ≥ y && x ≤ 5− y

)
3. { if

(
x ∗ x+ y ∗ y ≤ 4

)
4. {z = y ∗ x ; }
5. else
6. {z = 0 ; }
7. }

Figure 1: A C program fragment with non-linear expressions x ∗ x+ y ∗ y ≤ 4 and y ∗ x. The first
guard defines the polyhedron P , {x ≥ 1, y ≥ −2, x − y ≥ 0, x + y ≤ 5}; the disc G , { (x, y) |
x2 + y2 ≤ 4} corresponds to the second guard; the octagon G is a polyhedral approximation of G ;
the hashed region is the set P ∩G ; the desired approximation of P ∩G is the polyhedron P ′ , P ∧G,
drawn with dotted lines.

polyhedral over-approximation of the polynomial guard x2 + y2 ≤ 4 on line 3, which is
equivalent to g ≥ 0 with g(x, y) , 4− x2 − y2, in the context of the polytope P , {x− 1 ≥
0, y + 2 ≥ 0, x− y ≥ 0, 5− x− y ≥ 0} that corresponds to the condition on line 2.

Note that assignments x := e reduce to guards. Let x̃ denote the value of variable x
after the assignment, while x denotes its value before the assignment. Then, the effect of
the assignment on a polyhedron P is

(
(P ∧ x̃ ≤ e ∧ x̃ ≥ e)/x

)
[x̃/x], where ·/x denotes the

elimination of x using projection and [x̃/x] is the renaming of x̃ as x. This works when e
is affine. When it is nonlinear, x̃ is approximated by linearizing guards x′ ≤ e and x′ ≥ e.
Therefore, we will exclusively focus on the linearization of polynomial guards.

The effect of a guard g ≥ 0 on a polyhedron P consists in the intersection of the set of
points of P with G , { (x1, . . . , xn) | g(x1, . . . , xn) ≥ 0}. When the guard is linear, say
x−2y ≥ 0, P ∩G is simply the conjunction of P and the constraint x−2y ≥ 0 ; it is already
a polyhedron. When the guard is not linear, we approximate P ∩G by a polyhedron P ′ such
that P ∩ G ⊆ P ′. Computing, instead, a polyhedral enclosure G of the set G would not be
a practical solution. Indeed, it can be very imprecise: if G = {(x, y) | y ≤ x2}, then G = Q2.
Moreover, it is superfluous work: only three of the eight constraints of polyhedron G on
Fig. 1 are actually useful for the intersection.

3 Linearizing Using Handelman’s Representation
Consider an input polyhedron P , {C1 ≥ 0, . . . , Cp ≥ 0} defined on variables (x1, . . . , xn)
and a polynomial guard g ≥ 0. Our goal is to find an affine term α0 +

∑n
i=1 αixi denoted

by aff such that P ⇒ aff > g, meaning that aff bounds g on P . By transitivity, we will
conclude that P ∧ g ≥ 0 ⇒ P ∧ aff > 0, which can be expressed in terms of sets1 as
(P ∩ g ≥ 0) ⊆ (P u aff > 0). Our linearization based on Handelman’s theorem provides
several affine constraints aff1, . . . , affk whose conjunction with P forms the approximation of
P ∩ g ≥ 0. In static analysis, where P describes the possible values of the program variables
(x1, . . . , xn) before a polynomial guard g ≥ 0, the result P ui=ki=1 affi > 0 will be a polyhedral
approximation of the program state after the guard. When this polyhedron is empty, it
means that the original guard P ∧ g ≥ 0 is unsatisfiable.

1∩ denotes the usual intersection of sets; u is reserved for the intersection of polyhedra.
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3.1 Representation of Positive Polynomials on a Polytope
Notations. Tuples x = (x1, . . . , xn) and multi-indices I = (i1, ..., in) ∈ Nn are set in
boldface. The set of Handelman products associated to a polyhedron P , {C1 ≥ 0, . . . , Cp ≥
0} is the set HP of all products of constraints Ci of P :

HP = {Ci11 × · · · × Cipp | (i1, . . . , ip) ∈ Np } (2)

Given a multi-index I = (i1, . . . , ip), HI , Ci11 × . . . × C
ip
p denotes an element of HP .

In our running example, H(0,2,0,0) = (y + 2)2, H(1,0,1,0) = (x − 1)(x − y) and H(1,0,0,3) =
(x−1)(−x−y+5)3 all belong to HP . TheHI ’s are nonnegative polynomials on P as products
of nonnegative constraints of P . Handelman’s representation of a positive polynomial g(x)
on P is

g(x) =
∑
I∈Np

λI︸︷︷︸
≥0

HI︸︷︷︸
≥0

with λI ∈ R+ (3)

The λI ’s form a certificate that g(x) is nonnegative on P . Handelman’s theorem states
the non-trivial opposite implication: any positive polynomial on P can be expressed in
that form [23][38, Th. 5.5][37, Th. 5.4.6][30, Th. 2.24]; a similar result already appeared in
Krivine’s work on decompositions of positive polynomials on semialgebraic sets [29].

Theorem 1 (Handelman, 1988) Let P = {C1 ≥ 0, . . . , Cp ≥ 0} be a polytope where
each Ci is an affine form over x = (x1, . . . , xn). Let g(x) be a positive polynomial on P ,
i.e. g(x) > 0 for all x ∈ P . Then there exists a finite subset I of Np and λI ∈ R+ for all
I ∈ I, such that g(x) =

∑
I∈I

λIH
I .

Remark 1 This does not necessarily hold if g(x) is only assumed to be nonnegative. Con-
sider the inequalities x+ 1 ≥ 0 and 1− x ≥ 0 and the nonnegative polynomial x2. Assume
the existence of a decomposition and apply (3) at x = 0: HI(0) > 0 for any I, it follows
that λI = 0. This null decomposition is absurd.

Remark 2 One can look for a Handelman representation of a polynomial even on un-
bounded polyhedra: its positivity will then be ensured. The existence of such representation
is not guaranteed though.

The common use of Handelman’s representation of a polynomial g(x)−∆ is to determine
a lower bound ∆ of g(x) on P . For instance, Boland et al. use it to compute an upper
bound of the polynomial, in x and the error ε, which defines the cascading round-off effects
of floating-point calculation [3]. Schweighofer’s algorithm [38] can iteratively improve such
a bound by increasing the degree of the HI ’s. We present here another use of Handelman’s
theorem: we are not interested in just one bound but in a whole set of affine constraints
dominating the polynomial g(x) on P .

3.2 Linearization as a Parametric Linear Optimization Problem
Recall that we are looking for an affine constraint aff , α0 +

∑n
i=1 αixi that approximates a

non-linear guard g, meaning aff > g on P . According to Theorem 1, if P is bounded, aff− g
which is positive on the polytope P has a Handelman representation as a nonnegative linear
combination of products of the constraints of P , i.e.

∃I ⊂ Np, aff− g =
∑
I∈I

λIH
I , λI ∈ R+, HI ∈HP (4)
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Relation (4) ensures that there exists some positive combinations of g and some HI ∈ HP

that remove the monomials of degree >1 and lead to affine forms:

α0 + α1x1 + . . .+ αnxn = aff = 1 · g +
∑
I∈Np

λIH
I

Remark 3 This decomposition is not unique in general. Consider P = {x ≥ 0, y ≥
0, x−y ≥ 0, x+y ≥ 0}. The polynomial x2 +2xy+y2 is equal to both H(0,0,0,2) = (x+y)2

and H(2,0,0,0) + 2H(1,1,0,0) +H(0,2,0,0) = (x2) + 2(xy) + (y2).

Design of our linearization method. The principle of our algorithm is to take advan-
tage of the non-uniqueness of representation to get a precise approximation of the guard:
we suppose that a set I = {I1, . . . , Iq } of indices is given and we show how to obtain
every possible affine form affi that can be expressed as g +

∑`=q
`=1 λ`H

I` . Each of these affi
bounds g on P and their conjunction forms a polyhedron that over-approximates the set
P ∩ (g ≥ 0). A major difference between our work and previous work by Schweighofer [38]
and Boland [3] is that we are not interested in a constant bound α0 but an affine bound
α0 + α1x1 + . . . + αnxn which still depends on parameters x1, . . . , xn. We now show that
our problem belongs to the class of parametric linear problems ; Section 5 then describes
the heuristics used to determine I.

Example 1 For g = 4− x2 − y2, we choose I that gives these 15 products:

HI1 = H(0,0,0,0) = 1 HI2 = H(1,0,0,0) = x− 1

HI3 = H(0,1,0,0) = y + 2 HI4 = H(0,0,1,0) = x− y
HI5 = H(0,0,0,1) = −x− y + 5 HI6 = H(2,0,0,0) = (x− 1)2

HI7 = H(0,2,0,0) = (y + 2)2 HI8 = H(0,0,2,0) = (x− y)2
HI9 = H(0,0,0,2) = (−x− y + 5)2 HI10 = H(1,1,0,0) = (x− 1)(y + 2)

HI11 = H(1,0,1,0) = (x− 1)(x− y) HI12 = H(1,0,0,1) = (x− 1)(−x− y + 5)

HI13 = H(0,1,1,0) = (y + 2)(x− y) HI14 = H(0,1,0,1) = (y + 2)(−x− y + 5)

HI15 = H(0,0,1,1) = (x− y)(−x− y + 5)

Considering the products {HI1 , . . . ,HIq }, finding the Handelman representation of aff−
g can be expressed as a linear problem. Relation (4) amounts to finding λ1, . . . , λq ≥ 0 such
that

aff

=

= 1 · g +
∑`=q

`=1 λ`H
I`

=

= (λg, λ1, . . . , λq)︸ ︷︷ ︸
λᵀ

· (g,HI1 , . . . , HIq )︸ ︷︷ ︸
Hg

ᵀ·M

ᵀ

α0 + α1x1 + . . .+ αnxn

=

λᵀ · Hg
ᵀ ·M

=

Mᵀ · (α0, . . . , αn, 0, . . . , 0) = Mᵀ · Hg · λ

where:

(1) Hg is the matrix of the coefficients of g and the HI` organized with respect to M, the
sorted list of monomials that appear in the Handelman products generated by I.

(2) the column vector λ = (λg, λ1, . . . , λq)
ᵀ = (1, λ1, . . . , λq)

ᵀ characterizes the combina-
tion of g and the HI` . We added a constant coefficient λg = 1 for convenience of
notations.
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(a) (b)

Figure 2: (b) is the cut at z = 0 of (a) in which we added the polyhedron P , {x− 1 ≥ 0, y + 2 ≥
0, x− y ≥ 0, −x− y+ 5 ≥ 0}: the circle G of (b) appears in (a) as the intersection of the surface
z = g(x, y) , 4 − x2 − y2 with the plane z = 0. The polyhedral approximation of g is the inclined
plane z = aff(x, y) , −2x+4y+9 that dominates g. It cuts the plane z = 0 along the line L1 in (a)
which is reported in (b). The line L1 is the frontier of the affine constraint −2x+ 4y + 9 ≥ 0. The
filled area is the polyhedron P ∧−2x+4y+9 ≥ 0 that over-approximates P ∩{ (x, y) | g(x, y) ≥ 0}.

The product Hg · λ is a vector α , (α0, . . . , α|M|−1)
ᵀ representing the constraint α0 +

α1x1+ . . .+αnxn+
∑i=|M|−1
i=n+1 αi ·(M)i where (M)i denotes the ith monomial of M. Since

we seek an affine constraint aff we are finally interested in finding λ ∈ {1} × (R+)
q such

that Hg · λ = (α0, . . . , αn, 0, . . . , 0)
ᵀ. By construction, each λ gives an affine constraint aff

that bounds g on P .

Example 2 Here is the matrix Hg associated to g , 4−x2−y2 and the Handelman products
from Example 1 with respect to M = [1, x, y, xy, x2, y2].

g HI1 HI2 HI3 HI4 HI5 HI6 HI7 HI8 HI9 HI10HI11HI12HI13HI14HI15

1
x
y
xy
x2

y2


4 1 -1 2 0 5 1 4 0 25 -2 0 -5 0 10 0
0 0 1 0 1 -1 -2 0 0 -10 2 -1 6 2 -2 5
0 0 0 1 -1 -1 0 4 0 -10 -1 1 1 -2 3 -5
0 0 0 0 0 0 0 0 -2 2 1 -1 -1 1 -1 0
-1 0 0 0 0 0 1 0 1 1 0 1 -1 0 0 -1
-1 0 0 0 0 0 0 1 1 1 0 0 0 -1 -1 1


The choices λg = λ6 = λ7 = 1 and every other λ` = 0 are a solution to the problem

Hg · λ = (α0, α1, α2, 0, 0, 0)
ᵀ. We obtain Hg · λ = (9,−2, 4, 0, 0, 0)

ᵀ that corresponds to
9− 2x+ 4y + 0× xy + 0× x2 + 0× y2. Thus, aff = 9− 2x+ 4y is a constraint that bounds
g on P , as shown on Fig. 2.

By construction, any solution λ of the problem Hg · λ = (α0, . . . , αn, 0, . . . , 0)
ᵀ is a

polyhedral constraint aff that bounds g on P . Among all these solutions we are only
interested in the best approximations. One constraint aff > g is better than another aff ′ > g
at point (x1, . . . , xn) if aff(x1, . . . , xn) < aff ′(x1, . . . , xn). It then appears that for a given
point (x1, . . . , xn) we are looking for the polyhedral constraint aff > g that minimizes its
value on that point. Therefore, we define a linear minimization problem that depends on
some parameters: the point (x1, . . . , xn) of evaluation.

Finally, finding the tightest affine forms affi that bound g on P with respect to a given
set of indices I can be expressed as the Parametric Linear Optimization Problem (plop)
shown on Figure 3. Such optimization problems can be solved using the parametric simplex
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Given a set of indices I , {I1, . . . , Iq},
minimize aff ,i.e., α0 +α1x1 + . . .+αnxn, also equal to g+

∑`=q
`=1 λ`H

I`

under the constraints{
Hg · (λg, λ1, . . . , λq)ᵀ = (α0, . . . , αn, 0, . . . , 0)

ᵀ

λg = 1, λ` ≥ 0, ` = 1..q
(H-plop)

where λ1, . . . , λq are the decision variables of the plop; x1, . . . , xn are
the parameters ; and α0, . . . , αn are kept for the sake of presentation ; in
practice they are substituted by their expression issued from Hg · λ.

Figure 3: Linearization as a Parametric Linear Optimization Problem

algorithm, which is outlined in Section 4. As we shall detail later, the solution of H-
plop is a function associating an affine form affi to the region of the parameter space
where affi is optimal. The over-approximation of P ∩ (g ≥ 0) that we return is thend
i{x ∈ Qn | affi(x) ≥ 0}.

Example 3 In our running example, the objective aff, i.e., g +
∑`=15
`=1 λ`H

I` , is

4 + λ1 + λ2(x− 1) + λ3(2 + y) + λ4(x− y) + λ5(5− x− y) + λ6(1− 2x) + λ7(4 + 4y)
+λ9(25− 10x− 10y) + λ10(2x− y − 2) + λ11(y − x) + λ12(6x+ y − 5) + λ13(2x− 2y)
+λ14(10− 2x+ 3y) + λ15(5x− 5y).

In practice we use this presentation (without α) which exhibits the parametric coefficients
in x, y of each variable λ. Nonlinear monomials do not appear since the problem imposes
cancelling the non-linear part of g +

∑`=15
`=1 λ`H

I` , i.e. xy(−2λ8+2λ9+λ10−λ11−λ12+λ13−λ14)

+x2(−1+λ6+λ8+λ9+λ11−λ12−λ15)+y
2
(−1+λ7+λ8+λ9−λ13−λ14+λ15). The solutions of the problem

are the vectors λ that minimize the objective and cancel the coefficients of xy, x2 and y2.

4 The Parametric Simplex Algorithm
We use the simplex algorithm for parametric objective functions to find the solutions of the
previous H-plop problem. This section explains how we obtain the output polyhedron over-
approximating P ∩ g ≥ 0 from the solutions of H-plop. We assume the reader is familiar
with the simplex algorithm (see [8] for an introduction) and we sketch the broad outlines of
the parametric simplex algorithm (see [12, 33] for more details).

Principle of the Algorithm. The standard simplex algorithm is used to find the optimal
value of an affine function – called the objective – on a space delimited by affine constraints,
which is thus a polyhedron. More precisely, it solves linear problems of the form

minimize the objective
i=q∑
i=1

λi · ci s.t. A · ~λ = ~0, λ ≥ 0

where A ∈ Mp,q(Q) is a matrix and the constants ci ∈ Q define the costs associated to
each decision variable (λ1, . . . , λq) = λ. To decrease the objective value, recalling that each
variable λi is nonnegative, a step in the standard simplex algorithm, called a pivot, consists
in finding a negative coefficient ci in the objective function and in decreasing the value of
the associated variable λi as much as the constraints remain satisfied. The pivot operation
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modifies both the costs of the objective function and the constraints. The optimal value is
reached when every ci is nonnegative, meaning that the objective value cannot be decreased
anymore.

The parametric simplex algorithm solves linear problems of the form

minimize the objective
i=q∑
i=1

λi · ci(x1, . . . , xn) s.t. A · ~λ = ~0, λ ≥ 0

where ci are now affine functions from parameters (x1, . . . , xn) to Q. As in the standard
simplex we seek for a pivot to decrease the objective value, i.e. a negative coefficient in the
objective function. In general the sign of a parametric coefficient, say ci, is unknown. The
algorithm then explores two branches: one in which ci is considered as nonnegative and we
move to the next coefficient ci+1 ; and another branch in which ci is assumed to be negative
and we perform a pivot on the associated variable λi exactly as in the standard version. The
exploration of a branch stops when the conjunction of the assumptions is unsatisfiable (the
branch is then discarded); or when it implies that all the updated parametric coefficients
are nonnegative, meaning that an optimum is reached. Both tests of unsatisfiability and
implication are polyhedral operations performed by the vpl.

The result of the solver is a decision tree: the values of the decision variables λ at
leaves give optima of the parametric objective ; the conjunction of the assumptions along a
branch defines its region of relevance, it is a polyhedron in the parameter space. Our solver
implements this algorithm in ocaml and works with rationals instead of floating points. It
borrows a few optimizations from the pip algorithm [19] which was developed for the dual
case where parameters are in the right-hand side of the constraints, i.e. A·λ = b(x1, . . . , xn).

Application to Handelman’s Linearization. Back to our running example, we obtain
the best polyhedral approximations of g by running our parametric simplex on H-plop
where (λ`)`=1..q are decision variables, HI`(x1, . . . , xn) are parametric coefficients, xi are
parameters and the matrix A is made of the rows of Hg corresponding to monomials of
degree > 1 (the last three rows of Hg in Example 2). We obtain a decision tree with 5
optimal solutions λ at leaves. Each of them is interpreted as constraint aff(x1, . . . , xn) ≥ 0

where aff(x) = g(x) +
∑`=q
`=1 λ`H

I`(x). These 5 constraints appear on Fig. 4(a) as the lines
L1 to L5. Their conjunction with P forms the polyhedron P ′ which over-approximates
P ∩ (g ≥ 0).

Useless constraint detection. Fig. 4(a) reveals that L3 and L4 are useless since they do
not intersect P ′. This is not due to the parametric simplex: it happens when a constraint
affj does not cross the plane z = 0 on its region of relevance Rj . Fig. 4(b) shows the
region of relevance of each constraint. This remark leads us to a criterion to detect useless
affi during exploration. It requires some explanations. Note that the output polyhedron
P ′ , P u (

dj=k
j=1 affj ≥ 0) is equal to the set

⋃j=k
j=1

(
Rj u affj ≥ 0

)
. That can be proved by

reasoning on sets, using (1) distributivity and (2) simplification, exploiting two consequences
of the parametric simplex: (1) by construction of the exploration tree, the regions (Ri)

i=k
i=1

form a partition of P ; (2) if i 6= j, Ri u (affi ≥ 0) u (affj ≥ 0) = Ri u (affi ≥ 0) since
affj ≥ affi on Ri. Indeed, we asked the parametric simplex to seek for minimal affine forms.

Now, let us study the equality P ′ =
⋃j=k
j=1

(
Rj u affj ≥ 0

)
: when the sign of affi is

negative on its region of relevance Ri, then (Ri u affi ≥ 0) = ∅ and this term vanishes
from the union. Therefore, such an affi has no impact on P ′. We draw upon this remark
to design an algorithm that early detects useless exploration. The exploration of a new
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(a) (b)

Figure 4: (a) The polyhedron P ′ = Pu{L1 ≥ 0, . . . , L5 ≥ 0} is the over-approximation of P∩(g ≥ 0)
computed by our linearization without detection of useless constraints. P ′ is delimited by P and the
constraints L1, L2, L5 returned by the parametric simplex; L3 and L4 are useless: L3 is detected by
our criterion. The redundancy of L4 cannot be detected before the intersection with P . (b) Each
constraint Li is the optimum associated to a region Ri of P . Our criterion eliminates L3 since it
is negative on R3.

branch starts with the examination of the possible pivots. For minimization problems, the
pivoting operation lowers the objective and the new region is a subpart of the previous
one. Therefore, if all pivots give an objective that is negative on the current region, every
optimum aff generated through this branch will be negative, thus useless; we simply cut this
branch. Our experiments are conducted with the parametric simplex algorithm of Section 4
improved with this elimination criterion.

5 Heuristics and Certificates
We previously assumed a given set of Handelman products to be considered in H-plop; our
implementation actually uses Schweighofer products (SI), which generalize Handelman’s
ones as shown by Theorem 2 below. We shall now describe the oracle that generates them
together with a certificate of nonnegativity, then the heuristics it uses.

Theorem 2 (Schweighofer, 2001) Let P = {C1 ≥ 0, . . . , Cp ≥ 0} be a polytope where
each Ci is an affine polynomial over x = (x1, . . . , xn). Let gp+1, . . . , gq be polynomials.
Then g(x) > 0 on P ∩ {gp+1 ≥ 0, . . . , gq ≥ 0} if and only if

g = λ0 +
∑

I∈Nq

λI · SI , λ0 ∈ R∗+, λI ∈ R+

where S(i1,...,iq) = Ci11 · · ·C
ip
p · gip+1

p+1 · · · g
iq
q .

Schweighofer products are products of polyhedral constraints of P and polynomials
(gi)

i=q
i=p+1. They are obviously nonnegative on the set P ∩ {gp+1 ≥ 0, . . . , gq ≥ 0}. From a

certification viewpoint, the key property of the polynomials resulting from Handelman or
Schweighofer products is their nonnegativity on the input polyhedron. Therefore, heuris-
tics must attach to each product a nonnegativity certificate as its representation in the
ocaml/coq type nonNegCert given below. The coq checker contains the proof that this
type only yields nonnegative polynomials by construction.
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type nonNegCert = C of N with [[C(i)]] = Ci ≥ 0 of P
| Square of polynomial [[Square (p)]] = p2 ≥ 0 ∀p ∈ Q[~x]
| Power of N * nonNegCert [[Power (n, S)]] = Sn with S ≥ 0
| Product of nonNegCert list [[Product (L)]] = ΠS∈L S ≥ 0

Design of the oracle. The oracle treats the input polynomial g as the set M of its
monomials and maintains a set MC of already-canceled monomials. Each heuristic looks
for a monomial m in M it can apply to, checks that it doesn’t belong to MC and generates
a product S or H for it. Monomial m is then added to MC and the monomials of S that
are different from m are added to M . The oracle finally returns a list of couples formed of a
product H or S and its certificate of nonnegativity. The heuristics are applied according to
their priority. The most basic of them consists in taking every Handelman product whose
degree is smaller than or equal to that of g. If solving H-plop fails with these products,
we increase the maximum degree up to which all the products are considered. Theorem 1
ensures eventual success. However, the number of products quickly becomes so large that
this heuristic is used as a last resort.

Targeted heuristics. The following heuristics aim at finding either Handelman products
HI or Schweighofer products SI which cancel a given nonlinear monomial m. Besides
a monomial canceling m, a product may contain nonlinear monomials which need to be
eliminated. The heuristics guarantee that these monomials are of smaller degree than m
when the polyhedron is bounded, thereby ensuring termination. Otherwise, they try to
limit the degree of these additional monomials as much as possible, so as to make them
easier to cancel. As before, we consider an input polyhedron {C1 ≥ 0, . . . , Cp ≥ 0} with
Ci =

∑n
j=1 aijxj + ai0, where the xj ’s are program variables and the aij ’s are constants

in Q. We wish to cancel monomial m , cm × xe11 · · ·xenn , with cm ∈ Q.

Extraction of even powers. This heuristic builds on squares being always nonnegative
to apply Schweighofer’s theorem in an attempt to simplify the problem. The idea is to
rewrite m into m = m′ × (xε11 . . . xεnn )

2 where m′ , cm × xδ11 . . . xδnn , with δj ∈ {0, 1}.
The heuristic recursively calls the oracle in order to find a product S canceling m′. Then,
S× (xε11 . . . xεnn )

2 cancels the monomial m. If WS is the nonnegativity certificate for S, then
Product [WS ; Square (xε11 . . . xεnn )] is that of the product.

Simple products. Consider a monomial m = cm × x1 · · ·xn where cm ∈ Q, as can be
produced by the previous heuristic. We aim at finding a Schweighofer product S that
cancels m, and such that every other monomial of S has a degree smaller than that of m.
We propose an analysis based on intervals, expressing S as a product of variable bounds,
i.e. xj ∈ [lj , uj ] where lj , uj ∈ Q. For each variable xj , we may choose either constraint
xj + lj ≥ 0 or −xj +uj ≥ 0, so that the product of the chosen constraints contains x1 · · ·xn
with the appropriate sign. Moreover, other monomials of this product are ensured to have
a degree smaller than that of m. The construction of a product of bounds is guided by the
following concerns.

• The sign of the canceling monomial is to be opposite to that of m.

• The bounds that are available in the input constraints are used in priority. It is
possible to call the vpl to deduce additional bounds on any variable from the input
constraints. However, finding a new bound requires solving a linear problem.
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• The selected bounds should exist, which is not necessarily the case if the input poly-
hedron is not a polytope. If too many bounds don’t exist, the heuristic fails.

Thanks to Farkas’ lemma [12, Th. 2.14], each implied bound on a variable (xj + lj or
−xj + uj) can be expressed as a nonnegative linear combination of the input constraints,
i.e.

∑p
i=1 βijCi for some βij ≥ 0 solutions of a linear problem. The combination reduces to

Ci if Ci is already a constraint of the input polyhedron P . The resulting product of bounds
can then be expressed as follows.∏

j∈L
(xj + lj)×

∏
j∈U

(−xj + uj) =
∏

j∈L∪U={1,...,n}

( p∑
i=1

βij · Ci)
)
, βij ≥ 0

The right-hand side expression is then refactorised with the Ci’s kept symbolic, so that the
Handelman products appear. This case is illustrated in Example 4.

Example 4 We illustrate the behavior of the oracle and the satisfiability test on the polyno-
mial g = y2−x2y+xy−85 and still the same polytope P = { (C1) x−1 ≥ 0, (C2) y+2 ≥ 0,
(C3) x − y ≥ 0, (C4) 5 − x − y ≥ 0} . The oracle starts with M = {xy,−x2y, y2 } and
processes the monomials in order.

(xy) For eliminating xy, the simple product heuristic uses constraint (C1)x − 1 ≥ 0 and
the combination (C1) + (C4) = (x − 1) + (−x − y + 5) which entails −y + 4 ≥ 0.
Their product (x − 1)(−y + 4) = −xy + 4x + y − 4 cancels xy and the development
C1 · (C1 + C4) = C2

1 + C1C4 reveals the useful Handelman products: H1 , C2
1 =

x2 − 2x + 1 and H2 , C1C4 = −x2 − xy + 6x + y − 5. They are returned with their
certificates of nonnegativity: Power (2, C1) and Product [C1;C4]. Then, xy is added
to MC as well as the new monomials x2 and −x2: They are not placed in M since
opposite monomials cancel each other.

(−x2y) The heuristic for squares splits the term −x2y into m′× x2 and lets the oracle deal
with m′ , −y. The simple product heuristic reacts by looking for a constraint with the
term +y and as few variables as possible: (C2) y + 2 ≥ 0 fulfills these criteria. The
calling heuristic builds the Schweighofer product S3 , x2 · C2 = x2y + 2x2 that can-
cels −x2y, and returns S3 with its certificate of nonnegativity Product [Square (x);C2].
Then, the oracle removes x2y from the working set and places it into the set of cancelled
monomials.

(y2) The heuristic on squares cannot produce y2 × (−1) with a certificate of nonnegativity
for −1. The last heuristic is then triggered and finds two Handelman’s products that
generate (−y2): H4 , C2C3 = (y + 2)(x− y) = xy − y2 + 2x− 2y and H5 , C2C4 =
(y + 2)(5 − x − y) = 5y − xy − y2 + 10 − 2x − 2y. H4 is prefered since it does not
introduce a new monomial – indeed xy ∈ MC – whereas H5 would add −y2 to the
working set M .

Finally the oracle returns the four polynomials with their certificates. The expanded
forms of H1, H2, S3, H4 are installed in the matrix Hg and are each associated with a deci-
sion variable λ1, . . . , λ4. The parametric simplex computes all the positive, minimal, affine
constraints aff of the form 1 · g+λ1 ·H1 +λ2 ·H2 +λ3 ·S3 +λ4 ·H4. With such few products,
it returns only one affine constraint aff = g + 2H2 + H3 + H4 = 13x + y − 95 from which
we build a polyhedral over-approximation of the set P ∩ (g ≥ 0) as P u aff ≥ 0. The vpl
reveals that this polyhedron is empty, meaning that P ∧ (g ≥ 0) is unsatisfiable.
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Figure 5: The polytopes resulting of 3 iterations of Handelman’s linearization: P0 = P, Pi =
HL (Pi−1, 4− x2 − y2 ≥ 0). P1, P2 and P3 are respectively composed of 5, 9 and 36 constraints.

6 Implementation and Experiments
We implemented our linearization as part of the vpl. The linearization process has two
parts: an ocaml oracle, defined in Section 5, uses heuristics to select the most promising
Handelman-Schweighofer products S1, . . . , Sq, then it runs the parametric simplex to find
coefficients λ1, . . . , λq such that g +

∑
λiSi is affine. The result is fed into a checker imple-

mented and proved correct in coq. It guarantees in three steps that aff is an affine form and
dominates g on P : (1) it verifies that aff is affine; (2) the proof of

∑
λiSi ≥ 0 boils down

to “sums and products of nonnegative reals are nonnegative” using the nonnegativity certifi-
cates Wi provided by the oracle; (3) it checks that the two polynomials aff and g +

∑
λiSi

are equal in expanded form using the internals of the ring tactic. We pay some care to
efficiency by caching translations of polynomials from certificates to the expanded form to
reduce the overhead of certificate checking. The architecture of the checker is detailed in a
previous work [33].

Increasing precision. We show on Fig. 5 the results of Handelman’s linearization on the
running example. We chose the subset {HI1 , . . . ,HI15 } from Example 1, meaning that
we are faced with a 15-variable linear problem. Precision can be increased without degree
elevation by iterating Handelman’s linearization (HL ): P0 = P, Pi+1 = HL (Pi, g ≥ 0).
The linearization operator of the vpl computes this sequence until reaching a fixpoint, i.e.
Pk+1 = Pk, or a time limit. The sequence is decreasing with respect to inclusion since
HL (Pi, g ≥ 0) = Pi u

∧
i affi ≥ 0 is by construction included in Pi.

Showing emptiness of nonlinear sets. A smt-solver for nonlinear real arithmetic us-
ing the dpll(t) architecture enumerates conjunctions of nonlinear inequalities, each of
which having to be tested for satisfiability. We show the unfeasibility of the conjunction
of C1 ≥ 0, . . . , Cp ≥ 0 and nonlinear ones g1 ≥ 0, . . . , gq ≥ 0 by computing the sequence
of approximations: P0 = {C1 ≥ 0, . . . , Cq ≥ 0}, Pi+1 = HL (Pi, gi ≥ 0). The polynomials
are added one after the other, meaning that gi+1 is linearized with respect to the previous
polyhedral approximation Pi. If at some point Pk = ∅, it means that the conjunction is
unsatisfiable, as our approximation is sound. Otherwise, as it is not complete, we cannot
conclude. Such a procedure can thus be used to soundly prune branches in dpll(t) search.
Furthermore, the subset of constraints appearing in the products used in the emptiness
proof is unsatisfiable, and thus the negation of its conjunction may be used as a learned
clause.
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Figure 6: Comparison between CVC4+VPL and other smt-solvers on Quantifier-Free Nonlinear
Real Arithmetic benchmarks.

Although our contribution applies to both static analysis and smt solving, we felt that
performing our experimental evaluation with smt-solvers was better suited: the smt com-
munity has a standard set of nonlinear benchmarks from SMT-LIB, which the static analysis
community is missing. Therefore, we experimented with conjunctions arising from deciding
formulas from the Quantifier-Free Nonlinear Real Arithmetic (QF_NRA) benchmark, from
SMT-LIB 2014 [2]. These conjunctions, that we know to be unsatisfiable, are mostly com-
ing from approximations of transcendental functions as polynomial expressions. We added
our linearization algorithm as a theory solver for the smt-solver cvc4 [15]. The calls to
our linearization follow a factorization step, where for instance polynomial guards such as
x2 − y2 ≥ 0 are split into two cases (x + y ≥ 0 ∧ x − y ≥ 0 and x + y ≤ 0 ∧ x − y ≤ 0), in
order to give more constraints to the input polyhedron.

The comparison of our contribution with the state of the art smt-solvers Z3 [13],
Yices2 [16], SMT-RAT [10] and raSat [28] was done on the online infrastructure StarExec [39].
Fig. 6 is a cactus plot showing the number of benchmarks proved unsatisfiable depending
on time. It illustrates that linearization based on Handelman’s representation, implemented
as a non-optimized prototype, gives fast answers and that its results are precise enough in
many cases. Note that our approach also provides an easy-to-verify certificate, as opposed
to the cylindrical algebraic decomposition implemented in Z3 for example. Indeed, if the
answer of the vpl is that the final polyhedral approximation is empty, then the nonzero
coefficients in the solution λ of the parametric problem H-plop give a list of sufficient
Schweighofer products. Together with the nonlinear guards, the conjunction of the original
constraints involved in these products are actually sufficient for emptiness. As mentioned
above, in a smt-solver the negation of this conjunction may be used as a learned theory
lemma. However, due to engineering issues we have not been able to fully integrate this
procedure into cvc4 by sending back minimized learned lemmas. Over a total of 4898
benchmarks, adding our method (represented in the figure as curve cvc4+vpl) allows cvc4
to show the unsatisfiability of 1030 more problems. Failure in showing emptiness may come
from strict constraints since up to now, our solver considers each inequality as nonstrict.
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7 Conclusions and Future Work
We presented a new approach to the linear approximation of multivariate polynomials, based
on Handelman’s and Schweighofer’s theorems, and implemented it in the Verimag Verified
Polyhedra Library (vpl) as an operator of the abstract domain of polyhedra. A verifier
implemented and proved correct in coq can optionally check its results.

The approach is directly usable in static analysis by abstract interpretation: besides
linear expressions, the vpl now accepts polynomials as well. Apart from handmade exam-
ples [33], we actually did not find programs manipulating integers where the linearization
improves the global analysis result: non-linearity is too sparse in such programs. We believe
that it could have an impact on the analysis of floating-point computations where polyno-
mials appear more naturally in programs for approximating transcendental functions and in
the analysis of the round-off errors [3]. Work in that direction is planned for the very near
future but supporting this claim still requires some work on the integration of the vpl into
a mature analyzer for floating-point programs, the treatment of round-off errors and some
certification effort. The vpl can already deal with strict inequalities over the rationals but
the algorithms are not yet certified (the enlargement of any strict inequality < n over the
integers to ≤ n− 1, is not valid for polyhedra over the rational field).

Our approach already proved to be useful in satisfiability modulo theory solving. A
simple coupling of our prototype, implemented in ocaml, with the competitive smt-solver
cvc4 improved notably the performance of that solver on nonlinear arithmetic.

In contrast to cylindrical algebraic decomposition, which is a complete approach, our
method may fail to prove a true property. However, it provides easy-to-check certificates
for its results.

From a polynomial guard g ≥ 0 and an input polyhedron P , our algorithm operates in
two phases. The first selects products of constraints of P which are likely to cancel nonlinear
monomials from g. The second phase uses parametric programming to explore the linear
combinations of these products yielding an affine form which bounds g. Both phases offer
room for improvement.

(1) Blindly including all products of degree n is exponential in n and many of them may
be useless. This is why we developed an oracle procedure using selection heuristics
to obtain good precision at reasonable cost. In a future refinement of this work, an
incremental approach could grow the set of products, using feedback from the solver
about missing monomials in cancellations.

(2) Our parametric linear solver currently relies on the parametric variant of the simplex
algorithm. The latter subdivides regions of relevance, leading to multiple copies of
each solution, which makes the exploration more expensive than it should be. We
are now working on more efficient exploration algorithms, following previous work by
Jones et al. [25].
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