Polyhedral Approximation of Multivariate Polynomials using Handelman's Theorem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Polyhedral Approximation of Multivariate Polynomials using Handelman's Theorem

Alexandre Maréchal
  • Fonction : Auteur
  • PersonId : 962757
Alexis Fouilhé
  • Fonction : Auteur
  • PersonId : 938718
Tim King
  • Fonction : Auteur
  • PersonId : 972494
Michaël Périn
  • Fonction : Auteur

Résumé

Convex polyhedra are commonly used in the static analysis of programs to represent over-approximations of sets of reachable states of numerical program variables. When the analyzed programs contain nonlinear instructions, they do not directly map to standard polyhedral operations: some kind of linearization is needed. Convex polyhe-dra are also used in satisfiability modulo theory solvers which combine a propositional satisfiability solver with a fast emptiness check for polyhedra. Existing decision procedures become expensive when nonlinear constraints are involved: a fast procedure to ensure emptiness of systems of nonlinear constraints is needed. We present a new linearization algorithm based on Handelman's representation of positive polynomials. Given a polyhedron and a polynomial (in)equality, we compute a polyhedron enclosing their intersection as the solution of a parametric linear programming problem. To get a scalable algorithm, we provide several heuristics that guide the construction of the Handelman's representation. To ensure the correctness of our polyhedral approximation , our Ocaml implementation generates certificates verified by a checker certified in Coq.
Fichier principal
Vignette du fichier
linearization_2016.pdf (964.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01223362 , version 1 (02-11-2015)

Identifiants

Citer

Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, Michaël Périn. Polyhedral Approximation of Multivariate Polynomials using Handelman's Theorem. International Conference on Verification, Model Checking, and Abstract Interpretation 2016, Barbara Jobstmann; Rustan Leino, Jan 2016, St. Petersburg, United States. ⟨10.1007/978-3-662-49122-5_8⟩. ⟨hal-01223362⟩
402 Consultations
567 Téléchargements

Altmetric

Partager

More