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Abstract – Cognition is formed from networks between functionally specific but distributed brain regions. A very challenging issue in 

cognition is how to precisely track brain networks at very short temporal scales (often very short <1s). So far, very few studies have 

addressed this problem as it requires high temporal and spatial resolution simultaneously. Due to its excellent temporal resolution, 

Electroencephalography (EEG) is a key neuroimaging technique to access real-time information flow among large scale neuronal 

networks. 

Here, we propose a new method based on EEG source connectivity to map large-scale networks at high temporal (in the order of ms) 

and spatial (~1000 regions of interest) resolution. We show clear evidence of the ability of EEG source connectivity to track brain 

networks with high time/space resolutions during picture naming task. Our results reveal that the cognitive process can be 

decomposed into a sequence of transiently-stable and partially-overlapping networks. Our qualitative and quantitative observations 

show that the identified brain networks are in accordance with results reported in the literature regarding involved brain areas during 

the analyzed task. 

I. INTRODUCTION 

 

Human cognition is a network phenomenon, requiring interactions of distributed neuronal clusters forming large-scale 

cognitive networks [1, 2]. These networks have to rapidly and dynamically self-organize and coordinate to allow the 

execution of mental processes. Accurate timing is then fundamental for the analysis of the information processing in the 

brain. However, much less is known about the dynamics of brain networks at hundreds of milliseconds temporal scales.  

A significant challenge in today’s cognitive neuroscience is the mapping of brain networks over very short duration  [3], 

typically <1s for a picture naming task, for instance. It needs mainly the use of techniques with very high temporal 

resolution (on the order of ms) which is the case of the magneto/electro encephalography (M/EEG).  

Many studies showed that the synchronization between the gamma oscillations (>30Hz) plays a crucial role in the cognitive 

tasks such as attention, perception and working memory. Yet, the interpretation of connectivity measures from sensor level 



recordings is not straightforward, as these recordings suffer from a low spatial resolution and are severely corrupted by 

effects of field spread [4].  

The past years have witnessed a noticeable increase of interest for M/EEG to analyze functional connectivity at the level of 

brain sources reconstructed from scalp signals. The advantage is to provide an excellent temporal and very good spatial 

resolution [5-7]. 

The method involves two main steps: i) solving the M/EEG inverse problem to estimate the cortical sources and reconstruct 

their temporal dynamics (see [8] for review about inverse solution) and ii) measuring the functional connectivity to assess 

statistically significant functional relationships among the temporal dynamics of sources (see [9] for review about 

functional connectivity measures). 

A critical step when realizing EEG source connectivity analysis is the method used to solve the inverse problem, the 

method used to compute the functional connectivity among the time series of the reconstructed sources and the number of 

electrodes used on the scalp. Very recently, we have described a comparative study of these factors and we showed that a 

combination of the weighted Minimum Norm Estimate (wMNE) with the Phase Locking Value (PLV) using high 

resolution EEG is the best combination among the tested combinations.  

In this paper, we use this combination and apply it in a picture naming task. We show evidence about the proposed new 

method based on EEG source connectivity to identify brain networks involved in the information processing during the 

picture naming task. 

 

II. MATERIALS AND METHODS 

II.1. Data 

Twenty one right-handed healthy volunteers (11 women and 10 men), with no neurological disease, were involved in this 

study. Participants were asked to name at a normal speed 148 displayed pictures on a screen using E-Prime 2.0 software 

(Psychology Software Tools, Pittsburgh, PA) [10]. The images were selected from a database of 400 pictures standardized 

for French [11] and were used during session about eight minute. This study was approved by the National Ethics 

Committee for the Protection of Persons (CPP), conneXion study, agreement number (2012-A01227-36), promoter: Rennes 

University Hospital).  The brain activity was recorded using hr-EEG system (EGI, Electrical Geodesic Inc.).The main 

feature of this system is the large coverage of the subject’s head by surface electrodes allowing for the improved analysis of 

brain activity from non-invasive scalp measurements, as compared with 32 -to 128- electrodes standard systems. EEG 

signals were collected with a 1 kHz sampling frequency and band-pass filtered between 3 and 45Hz. Each trial was visually 



inspected, and epochs contaminated by eye blinking, movements or any other noise source were rejected and excluded 

from the analysis performed using the EEGLAB open source toolbox [12]. 

II.2. EEG source connectivity 

The whole process is described in figure 1. A crucial step when realizing EEG source connectivity analysis is the choice of 

three factors: the method used to solve the inverse problem, the method used to compute the functional connectivity among 

the time series of the reconstructed sources and the number of electrodes used on the scalp. Here, we use the weighted 

Minimum Norm Estimate (wMNE) combined with the Phase Locking Value (PLV) using dense EEG at it was shown to be 

the best combination among all the tested combinations [5, 6].  

Technically, in the source model, we assumed that EEG signals are generated by macro-columns of pyramidal cells lying in 

the cortical mantle and aligned orthogonally with respect to its surface [13]. Thus, the electrical contribution of each macro-

column to scalp electrodes can be represented by a current dipole located at the center of gravity of each triangle of the 3D 

mesh and oriented normally to the triangle surface. Using this source space, the weighted Minimum Norm Estimate 

(wMNE) method only estimates the moment of dipole sources.  

The wMNE compensates for the tendency of classical MNE to favor weak and surface sources. This is done by introducing 

a weighting matrix
S
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where matrix WS  adjusts the properties of the solution by reducing the bias inherent to MNE solutions. Classically, 
S

W  is 

a diagonal matrix built from matrix G with non-zero terms inversely proportional to the norm of the lead field vectors. The 

value of   is computed relatively to the signal to noise ratio for each signal computed as the ratio between the post-

stimuli period to the pre-stimulus (200 ms).  

The sources were reconstructed for each trial and the functional connectivity was then computed between the reconstructed 

sources using phase synchronization approach. The first step for estimating is to extract the instantaneous phase of each 

signal. We are using the method based on Hilbert transform in our study. The second step is the definition of an appropriate 

index to measure the degree of synchronization between estimated instantaneous phases. Here, we used the phase locking 

value (PLV) method as described in [14]. For each sources pair, x and y, at time t, and for all the trials (n=1… N), PLV is 

defined as: 
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 To compute synchronization values comparable between near and distant sources pairs, we applied a normalization 

procedure so that the PLV
x y

 values were compared with the 200ms baseline preceding the presentation of the image. Let 

xy
  and xy

  be the mean and standard deviation computed from a 200ms pre-stimulus baseline. The normalized PLV is 

then computed as PLV PLV
xy xy xy xy

  ( ) / . The functional connectivity was computed in the low gamma band (30-

45Hz). This frequency band is highly relevant in the context of the considered cognitive task, as reported in [14-16]. 

II.3. Regions of interest and network measure 

The functional networks presented here are the averaged networks over all participants. We used Freesurfer [17] to register 

a labeled mesh from an average brain, where each label corresponds to one of 148 anatomical cortical regions [18]. This 

output provides a standardized partition of the cortex into 148 regional areas. Each of these areas was then subdivided into 

a set of small sub-regions using Brainstorm [19], resulting in 1000 ROIs covering the whole cortex. This segmentation 

provided us with high resolution connection matrices (see figure 1). These ROIs were then considered as the nodes of our 

networks. 

To characterize the networks, we computed the strength measure which is defined as the sum of all edge weights for each 

node. We used MATLAB ® (2007a, MathWorks Inc) in the entire process: from EEG preprocessing, source 

reconstruction, functional connectivity analysis, computation of the graph parameters and visualization of the brain 

networks. 

III. RESULTS 

In figure 2A, we show networks of a segment taken from 150-190 ms which typically corresponds to the period after the 

visual recognition of the stimuli and the access to the memory. This was achieved by using an algorithm developed recently 

in our team to segment such task into functional connectivity ‘states’ [20, 21]. In figure 2B, a typical example of the event 

Related Potentials (ERP) signal recorded during the task from the onset (presentation of the visual stimuli) to the motor 

response (beginning of the articulation) is shown. The whole process takes about 600 ms as illustrated in figure 2B.  

In figure 3A, we quantify the networks by computing the strength of each node and order them in increasing way (from 

bottom to up). The results show the implication of different brain regions. Following [22], the horizontal red-colored bars 

denote the significant regions corresponding to the nodes with a strength value higher than mean+SD. We retain the 

bilateral inferior occipital gyrus and sulcus, the left occipital pole, the left temporal sulcus and the right anterior occipital. 



In figure 3B, we show the significant regions identified in figure 3A. This representation was based on Destrieux Atlas [18] 

using Brainstorm Tool [19].

IV. DISCUSSION – CONCLUSION 

 

The algorithm used here to track functional brain dynamics was originally applied to scalp EEG networks [20]. The results 

showed a ‘global’ information flow from occipital to temporal then frontal zones. However, due to the ‘volume conduction’ 

effects, the interpretation of the spatiality of such networks was very difficult and inaccurate, where the main contribution 

of the proposed method in this paper [20, 23].  

In this paper, we showed the high capacity of the EEG source connectivity analysis to reveal brain networks involved in the 

visual processing and memory access during picture naming task. To our knowledge, this is the first study showing brain 

networks with such temporal and spatial precision. 

Our findings corroborate already-reported results regarding the brain regions supposed to be involved in the considered 

cognitive task, but using other modalities, mainly fMRI and PET [24]. At the period (150: 190 ms), results also indicate a 

mainly occipital network but with an implication of the bilateral inferior temporal sulcus. This system is known to be 

related to lexical retrieval, lemma retrieval and lemma selection [25]. It is also involved in semantic working memory 

system when someone tries to remind the name of the objects [26].  

In this paper, we focused on one time window related to the visual processing (120-150 ms). A natural perspective is the 

tracking of the brain dynamics from the presentation of the stimulus to motor response. We recently developed an 

algorithm to segment such very short cognitive task into different ‘functional connectivity states’ [20]. This will provide, to 

our knowledge, a unique methodological framework to track brain networks over very short time duration (hundreds of 

milliseconds).  

We chose to keep only regions with strength values higher than mean+SD regardless the normality of the distribution, as 

reported in [22]. This choice does not affect the main conclusion of this part of the study. Nevertheless, we believe that this 

empirical choice can be improved to more advanced and accurate thresholding process. 

To sum up, we have presented a complete novel framework based on dense EEG recordings to reveal brain networks 

involved in a cognitive task. The main originality of this work is the high temporal (ms scale, as brought by the EEG 

technique) and spatial (~cm² scale, as provided by the solution of the inverse problem) resolution of the identified 

networks. To our knowledge, this is the unique method that can track the spatiotemporal dynamics of functional brain 

networks at short duration cognitive task.  
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Figure1: Structure of the investigation. Dense EEGs were recorded during the picture naming 

task. The inverse problem was then solved by 3D head model using the weighted Minimum 

Norm Estimate method. The time series of the reconstructed sources were obtained. The 

functional connectivity between the reconstructed sources was computed using the Phase 

Locking Value method. A high resolution functional connectivity matrix was obtained and the 

corresponding functional brain network was visualized. Network measures were then extracted 

from the network using graph theory based analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig.2. Identified brain networks. A) Different views of the brain network iden-tified at 120–

150ms. Node size represents the strength. B) ERP signal obtained during the task. Dashed 

rectangle represents the period between 120ms and 150ms corresponding to the visual 

perception. 

 

 

 

 

 

 

 

 

 

 



 

 
Fig.3. Network measures. A) The values of the average strength for each node in left and right 

hemispheres. Red bars indicate values greater than the mean+SD considered as significant ones. 

B) Visualization of the significant regions. Regions were color coded based on the anatomical 

parcellation of Destrieux Atlas using Brainstorm Tool. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)  


