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An integrated method for the transient solution of reduced order

models of geometrically nonlinear structures

Fritz Adrian Lülf, Duc-Minh Tran,

Hermann G. Matthies, Roger Ohayon

Abstract For repeated transient solutions of geometri-

cally nonlinear structures, the numerical effort often poses

a major obstacle. Thus it may become necessary to intro-

duce a reduced order model which accelerates the calcula-

tions considerably while taking into account the nonlinear

effects of the full order model in order to maintain accu-

racy. This work yields an integrated method that allows for

rapid, accurate and parameterisable transient solutions. It is

applicable if the structure is discretised in time and in space

and its dynamic equilibrium described by a matrix equation.

The projection on a reduced basis is introduced to obtain

the reduced order model. Three approaches, each respond-

ing to one of the requirements of rapidity, accuracy and para-

meterisation, are united to form the integrated method. The

polynomial formulation of the nonlinear terms renders the

solution of the reduced order model autonomous from the

finite element formulation and ensures a rapid solution. The

update and augmentation of the reduced basis ensures the

accuracy, because the simple introduction of a constant basis

seems to be insufficient to account for the nonlinear behav-

F. A. Lülf (B) · D.-M. Tran

ONERA, The French Aerospace Lab, 92322 Châtillon, France

Present Address:

F. A. Lülf

Institute of Continuum Mechanics, Leibniz Universität Hannover,

Appelstr. 11, 30167 Hannover, Germany

e-mail: luelf@ikm.uni-hannover.de

H. G. Matthies · R. Ohayon

Institut für Wissenschaftliches Rechnen, Technische Universität

Braunschweig, 38092 Braunschweig, Germany

R. Ohayon

Structural Mechanics and Coupled Systems Laboratory,

Conservatoire National des Arts et Métiers, 2 rue Conté,

75003 Paris, France

iour. The interpolation of the reduced basis allows adapting

the reduced order model to different external parameters. A

Newmark-type algorithm provides the backbone of the inte-

grated method. The application of the integrated method on

test-cases with geometrically nonlinear finite elements con-

firms that this method enables a rapid, accurate and parame-

terisable transient solution.

Keywords Structural dynamics · Geometric nonlineari-

ties · Model reduction · Reduced bases · Normal modes ·

Tangent modes · Basis update · Parameters

1 Introduction

In the domain of structural dynamics reduced order mod-

els (ROM) can be desirable for various reasons. They can,

for example, be used to reduce the computational burden

in a design process, they can be designed as fast executing

replacements of the full order model (FOM) in embedded

control applications, or they can be used to extract pertinent

information which is hidden in the FOM. Irrespective of the

aim pursued with it, the ROM is never an end in itself. In the

context of this work development is geared towards gaining

computational speed.

There are at least two different approaches to model reduc-

tion. One is the so-called goal-oriented reduction approach.

It is applied by e.g. [7]. In their work, the entire FOM is

directly reduced to the cost-function that is required for an

optimisation. This cost-function does not contain any infor-

mation about the physical properties of the FOM. This is

opposite to the physical reduction approach, which is applied

in this work. Here, the central property of a ROM is the fact

that the ROM does not change the physics of the underlying

problem.
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and obtain the tensors by integration. The drawback of direct

approaches is that they require access to the formulation of

the finite elements. Indirect approaches identify the tensors

by means of combining different static evaluations of non-

linear forces vector with imposed displacements for moment

matching. One approach is proposed by [28]. It can be used

with any, even a proprietary, finite element code. However,

it requires a considerable number of static evaluations of the

finite element formulation of the nonlinear internal forces.

Should full order tensors be identified, they can be reduced

with an approach from [32]. Preceding works with the appli-

cation of the polynomial formulation include the application

of the method by [20] to clamped beams and by [35] for the

prediction of sonic fatigue responses.

The update and augmentation of the reduced basis is a

procedure which makes the reduced basis follow the non-

linear evolution of the transient solution. The update of the

reduced basis is not to be confused with the update of the

entire model, which is a common, problematic challenge in

the domain of the resolution of inverse problems (e.g. [18]

and [11]). The numerical results obtained by [24] strongly

suggest that the simple introduction of a constant reduced

basis is not sufficient and that an evolution of the reduced

basis during the transient solution is necessary. The augmen-

tation of the updated basis with the jumps in the physical

quantities is a novel aspect of the common sense approach

of updating the reduced basis and an original contribution of

this work.

ROM are prone to produce rapidly deteriorating results, if

they are applied to operating points that have external para-

meters further away from the initial parameterisation. This is

confirmed by several studies, e.g. [16,17], and by the results

of study of the robustness in [24]. As a remedy [2,3] propose

an approach for the interpolation of reduced bases, which

relies on an interpolation in a tangent space. It allows over-

coming the deteriorating results and makes the ROM para-

meterisable.

There are many more highly specific approaches for each

one of the three aspects of a rapid, accurate and parame-

terisable transient solution. The multitude of methods that

have been and are developed around the reduction by projec-

tion on a reduced basis offers all elements that are required

to respond to the three aims with a dedicated method. Also

available are a multitude of different common methods for

creating reduced bases and solution algorithms, which take

the nonlinear behaviour of the system into account.

However, there seems to be no integrated method that

combines such approaches in order to achieve all three

aspects at once. In fact, the domain of structural dynamics is

lacking a single integrated method that merges approaches

for all three aims and provides a consistent framework for

combining these approaches [26]. This lack seems to persist

already for a certain time [31]. Also, there is no framework

In this work, the ROM is to be used for establishing

the transient response of a geometrically nonlinear, non-

conservative structure to an external excitation evolving in
time. Against the given requirements and with a strong

emphasis on the anticipated needs for adapting the most

modular reduction approach, the approach of the projection

on a reduced basis is chosen. A flat subspace is defined,

represented by the reduced basis �, which is used as a

basis onto which the discrete equation, describing the nonlin-

ear dynamic system, is projected. Besselink et al. [6] point

out that the reduction by projection approach is by far the

approach requiring the most intervention, knowledge and

experience from its user. This fact is exploited to integrate

the selected methods seamlessly, while retaining the charac-

ter of the integrated method, as it presented here, as just one

realisation of a more general framework.

The system is discretised in time and in space. The time-

marching solution algorithm, required for establishing the

transient solution, is the backbone of integrated method. Dif-

ferent members of the family of linear multi-step methods,

e.g. Newmark-type time-marching algorithms [29], can be

used. Because of the fact that the FOM and the ROM have

the exact same structure both descriptions of the system’s

dynamics can be solved by the same algorithm.

The trade-off between gain in computational effort and

error committed defines the success of the application of the

ROM. Both criteria are explored further over the course of

this work. The order r of the ROM defines its size and has

to be aptly chosen so that the ROM can retain the crucial

properties of the FOM. At the same time, however, the com-

putational cost of the necessary transformations between the

ROM and the FOM, deflations and inflations, must not exceed

the gains through the accelerated solution of the ROM.

The aim of this work is to obtain a rapid, accurate and

parameterisable transient solution of a geometrically nonlin-

ear, non-conservative structure. Each of these three aspects

is addressed with a specific method. These methods form the

elements that constitute the integrated method. The rapid exe-

cution of the solution is enabled by ensuring the autonomy

of the ROM. The accuracy of the reduced solution is assured

with the update and augmentation of the reduced basis. The

aspect of the adaptation of the ROM to external parameters is
provided with the interpolation of the reduced basis. These

three elements are detailed independently from each other

in Sect. 3 in order to prepare the creation of the integrated

method in Sect. 4. A first, brief presentation is given now.

The autonomous formulation of the nonlinear terms

replaces the finite element expressions, which are required

during the solution with a sum of tensor-vector-products. A
point of central importance of this approach is the iden-

tification of the tensors. Mignolet and Soize [27] distin-

guish between direct and indirect identification approaches.

Direct approaches draw on the finite element formulations
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available that allows combining different approaches, each

one achieving one aspect, in an interchangeable manner in

order to construct an integrated method for a given prob-

lem. The primary motivation of this work is providing such

a framework and describing an integrated method.

A first tentative approach at combining different meth-

ods is made by [12]. They use the harmonic balance method

in conjunction with the proper generalised decomposition

in order to obtain reduced periodic solutions of geometri-

cally nonlinear structures. Their strive for steady state peri-

odic solution distinguishes their approach from the presented

work. Compared to already published works, the originality

of the present study resides in the fact that it investigates and

names the elements that are necessary to obtain the transient

solution of the ROM of a geometrically nonlinear system

with an integrated method.

One method that can possibly combine the three aspects

is the proper generalised decomposition (PGD). While the

approach with reduced bases is a projection of the equation

of the dynamic equilibrium of the structure on a flat manifold,

the PGD approach is a projection on a curved manifold. This

method treats the dimensions of the problem independently

from each other in a low-rank tensor approximation and can

hence be seen as a separation of variables [13], similar to

a dimension reduction of shells and plates [1]. Introducing

additional dimensions allows even to treat effects like e.g.

uncertainties [14] or the inclusion of parameters. As a rather

recent method it lacks the popularity and pervasiveness, as

it is the case for the reduction by projection on a reduced

basis. Furthermore, the Proper Generalised Decomposition

is a monolithic approach and does not allow assembling dif-

ferent methods that respond to the different requirements in a

single integrated method depending on the problem at hand.

In the following the nonlinear system and its reduction

by projection on a reduced basis is presented in Sect. 2.

The Sect. 3 covers the three elements that are to form the

integrated method and whose necessity is derived from the

inspections of the previous equations and from numerical

results. The integrated method is created in Sect. 4. It is

assembled from the elements from the previous section and

presented in one full cycle. Its application to a finite element

test-case and the results are given in Sect. 5. The conclusion

is given in Sect. 6.

2 Approaching a reduced order model

The jump-off point for the integrated method is the dynamic

equilibrium of a full order, nonlinear, non-conservative,

dynamic system which is completely discretised in space

[5]. It can be written as

Mü + Cu̇ + g (u) = fE (t) , (1)

if a Galilean reference frame can be assumed. This assump-

tion allows concentrating on the nonlinear behaviour of the

structure without being hampered by the particularities of a

revolving structure.

Overdots represent derivations of the displacements u with

respect to time. The n × n matrices M and C represent

the mass and the damping terms, respectively. The damping

matrix C adds an artificial Rayleigh damping on numerical

level to the otherwise non-dissipative material. The n×1 vec-

tor fE describes the external forces, which are exclusively a

function of the time t . Later on, in Sect. 3.3, Eq. (1) will

also be made dependent from parameters µ. For now, this

dependency is dropped for readability.

All nonlinearities are regrouped in the n × 1 vector g (u),

which is an exclusive function of the displacements u. In

addition to the exclusive dependency on the displacements,

the nonlinear forces are required to be smooth. This excludes

e.g. nonlinearities due to contacts. Beyond the assumption of

finite displacements no other nonlinearities are considered.

For this case it is assumed that the vector g represents the

Kirchhoff-St. Venant approach to the description of finite

deformations. It includes the Green–Lagrange strain and

the second Piola–Kirchhoff stress formulations and a hyper-

elastic material law ([39] and [5]). In this setting, the non-

linearities become cubic, distributed over the entire structure

and moderate. The choice of a linear material law is driven by

the requirement for a purely geometrically nonlinear system

that is to serve as a test-case.

2.1 Reduction by projection on a reduced basis

The projection on a reduced basis is one of the widely used

approaches for reduction in the context structural dynam-

ics. This is understandable, as some reduced bases do have

a physical meaning and contribute thus not only to the solu-

tion itself, but also to the interpretation of the problem. It is

a modular approach with a clear separation of the reduction

and the solution of the reduced system. This implies that a

suitable integration scheme can probably be found for any

given problem and, if formulated correctly, this integration

scheme does not distinguish between the ROM and the FOM.

A reduced basis can be chosen which provides an optimal

performance for the problem at hand and which can be read-

ily adapted in size. The modular character of the reduction

by projection approach also allows focusing the necessary

adaptations either on the reduced basis or on the algorithm

for obtaining the transient solution.

For the reduction, the flat space, onto which Eq. (1) is

projected is represented with the reduced basis as the n × r

matrix �. The r ≪ n is the order of the ROM. The physical

displacements u are expressed in the reduced basis � with

u = �q, (2)
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where the r ×1 vector q contains the generalised coordinates.

Equation (1) can be written in its reduced form

M̃q̈ + C̃q̇ + g̃ (q) = f̃E (t) . (3)

The r × r matrices M̃ = �TM� and C̃ = �TC� and

the r × 1 vector f̃E (t) = �TfE (t) are the direct reduced

equivalents of the respective full order terms.

The r × 1 vector of the generalised nonlinear internal

forces is g̃ (q). Unfortunately, such a reduction is not eas-

ily feasible. The finite element formulation of g (u) proves

in general to be far too complicated for a direct reduction.

The inflation formulation g̃ (q) = �Tg (�q) is another for-

mulation to be avoided. While it will be used in a bench-

mark function later on during this study, it actually only adds

the computational cost of repeated vector multiplications to

the finite element formulation. The vector g̃ (q) is a concep-

tual placeholder for a reduced formulation of the nonlinear

internal forces. Such a formulation is of central importance

for the transient solution of the ROM with a time-marching

algorithm. With such an expression for g̃ (q), the structures

of Eqs. (1) and (3) become identical and the same solution

techniques can be used for a FOM as well as for a completely

reduced system. The physics of the ROM is identical to the

one of the FOM.

2.2 Creating the reduced basis

For the creation of the basis �, there is a variety of methods

available. Some common approaches are reviewed by [24].

The method that will be used during this work are normal

modes at a given displacement. They work well with the

weak and well-behaving geometric nonlinearities and they

allow following the deformation of the structure.

Originally, the modal decomposition technique is a method

for decoupling coupled linear differential equations ([5]). If

only a limited number of these eigenvectors are used for a

projection, this method allows for a very efficient reduction

(this approach is introduced as Linear Normal Modes (LNM)

in [24], based on e.g. [10]). The first application of normal

modes to non-linear systems is most probably from [30]. If

the modes are constantly or periodically updated during the

solution and the reduced basis evolves with the solution, the

normal modes are denominated tangent modes in literature

(e.g. [22]). In this case the given displacement is chosen to be

the current displacement of the solution u(t). Normal modes

at a given displacement use the tangent stiffness matrix

K = K
(

u(t)
)

=
∂g (u)

∂u

∣

∣

∣

∣

u(t)

(4)

(5)

The projection basis � is defined as the first r eigenvectors

of the of Eq. 5, which are regrouped in a matrix

� =
[

φ1, . . . ,φr

]

, (6)

if the corresponding frequencies ωi are sorted in increasing

order 0 < ω1 ≤ · · · ≤ ωr ≤ · · · ≤ ωn .

3 Elements of the integrated method

The three aspects of the rapid, accurate and parameteris-

able transient solution are assured with the three elements of

the integrated method. The elements are presented indepen-

dently from each other in the following. First the autonomy

that ensures the rapidity of the reduced solution is presented,

then the update and augmentation that ensures the accuracy.

Finally, the interpolation, that allows a parameterisation, is

introduced.

3.1 Autonomy for rapidity

For the polynomial formulation of the nonlinear forces the

conceptual placeholder g̃ (q) in Eq. (3) is supposed to be a

polynomial of degree 3 in terms of the generalised coordi-

nates q. The polynomial formulation reads

g̃p (q) =

3
∑

h=1

Ã
(h)q⊗h . (7)

The Ã(h) are tensors in R
r×rh

. From now on reduced non-

linear terms with the index p are used for polynomial formu-

lations.

The degree of this polynomial reflects the fact that the

nonlinearities in the nonlinear internal forces g (u) in Eq. (1)

are cubic. Therefore, it seems to be commonly accepted that

a degree of three of the polynomial is sufficient for geomet-

rically nonlinear structures [12,27,28]. Especially [27] state

that the internal forces of “an arbitrary linearly elastic [...]

structure undergoing large deformations”, can be expressed

analytically as a polynomial of third order in the derivations

of the basic functions with respect to the spatial coordinates.

This applies without restrictions to the finite elements used

in the context of this work, where development hinges on a

general Total Lagrangian formulation of the problem.

Because of the fact that the nonlinear internal forces g (u)

in Eq. (1) are cubic a polynomial of third order could actu-

ally be an exact representation of the nonlinear internal forces

for the full order, finite element system. However, by being

applied to the reduced order system, this polynomial becomes

an approximation. This status as an approximation would

basically allow treating any kind of nonlinearity and so the

polynomial approximation is not limited to a specific type

of nonlinear finite element. However, from the experience of

for the eigenproblem

Kφi = ωi
2Mφi .
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the authors, a sensible application of the polynomial approx-

imation would be restricted to smooth and moderate nonlin-

earities.

3.1.1 Expressing the nonlinear terms

For expressing the kth component in the r ×1 column vector

of the reduced nonlinear forces g̃ (q) [28] propose a polyno-

mial expression. The components of g̃p (q) are given as

g̃k (q) =

r
∑

i=1

Ã
(1)
ki qi +

r
∑

i=1

r
∑

j=i

Ã
(2)
ki j qi q j

+

r
∑

i=1

r
∑

j=i

r
∑

m= j

Ã
(3)
ki jmqi q j qm, (8)

as the polynomial formulation. It is important to note the

ranges of the indices which can be exploited to reduce com-

putational and storage requirements.

The Eq. (8) constitutes a formulation in the displacements

as a sum of monomials. Reichel [33] show that a mono-

mial formulation tends to be ill-conditioned, especially if it

is reduced with a projection, and other higher order polyno-

mials are to be preferred. However, this would only be the

case if the tensors are identified at full order and then reduced

with an approach as proposed by e.g. [32]. Here, the tensors

are identified directly in their reduced form and a monomial

formulation appears to be an applicable and proven approach

(e.g. [28]).

The components of the tangent stiffness matrix are defined

as the derivation of the kth component of the vector of non-

linear forces gp (q) with respect to the hth generalised coor-

dinate

K̃kh =
∂gk

∂qh

. (9)

Its components are obtained by applying the definition in

Eq. (9) to Eq. (8). This yields

K̃kh = Ã
(1)
kh +

r
∑

i=1

r
∑

j=i

Ã
(2)
ki j

(

δihq j + δ jhqi

)

+

r
∑

i=1

r
∑

j=i

r
∑

m= j

Ã
(3)
ki jm

(

δihq j qm +δ jhqi qm +δmhqi q j

)

.

(10)

The Kronecker symbols δih , δ jh and δmh account for the

derivations of quadratic and cubic terms with equal indices

with respect to a single generalised coordinate. The notation

of the tangent stiffness matrix in the setting of the polynomial

formulation reads K̃p.

3.1.2 Identifying the tensor elements

The tensors A
(h) for Eqs. (8) and (10) are identified with a

moment matching approach by combining different full order

static solutions. The following indirect approach is adapted

from [28] and requires 1
6

(

r3 + 6r2 + 5r
)

evaluations of the

full order nonlinear forces g (u).

The tensor Ã(1) is the reduced tangent stiffness matrix

K =
∂g(u)
∂u

. The tangent stiffness matrix can be obtained at

different displacements which would form the hinging point

for the following moment matching. Following the original

approach the hinging point is set to u0 = 0. The tensor Ã(1)

becomes the reduced tangent stiffness matrix of the system

linearised at the equilibrium. This is exploited by setting

Ã
(1) = �T ∂g (u)

∂u

∣

∣

∣

∣

u=0

� = �TK (u0)�. (11)

The components of Ã(2) and Ã(3) can be identified one

vector at the time. The vectors of the reduced basis are varied

and used as displacements for the evaluation of the full order

nonlinear forces g (u). For the components
[

Ã
(2)
i i

]

and
[

Ã
(3)
i i i

]

with equal indices the variation �qi is added and subtracted

from the i th generalised coordinate. This allows obtaining

the two equations

[

Ã
(2)
i i

]

=
1

2 (�qi�qi )

(

�Tg
(

φi�qi

)

+ �Tg
(

−φi�qi

)

)

,

(12)

and

[

Ã
(3)
i i i

]

=
1

�qi�qi�qi

(

�Tg
(

φi�qi

)

−�TKφi�qi −
[

Ã
(2)
i i

]

�qi�qi

)

, (13)

for each i ∈ {1, . . . , r}. The terms with �TKφi�qi cancel

each other out because they are linear operations.

For the identification of the components
[

Ã
(2)
i j

]

,
[

Ã
(3)
i i j

]

and
[

Ã
(3)
i j j

]

with two different indices, a total of three equa-

tions is necessary. For each pair j > i with i ∈ {1, . . . , r − 1}

and j ∈ {i + 1, . . . , r} these equations are defined by com-

bining the variations �qi and �q j to obtain

[

Ã
(2)
i j

]

=
1

2
(

�qi�q j

)

(

�Tg
(

φi�qi + φ j�q j

)

+ �Tg
(

−φi�qi − φ j�q j

)

− 2
[

Ã
(2)
i i

]

�qi�qi − 2
[

Ã
(2)
j j

]

∆q j�q j

)

. (14)
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The coefficients
[

Ã
(3)
i i j

]

are obtained as

[

Ã
(3)
i i j

]

=
1

2
(

�qi�qi�q j

)

((

�Tg
(

φi�qi

+ φ p�q j

)

− �TK
(

φi�qi + φ j�q j

)

)

−
(

�Tg
(

φi�qi − φ j�q j

)

−�TK
(

φi�qi − φ j�q j

)

)

− 2
[

Ã
(3)
j j j

]

�q j�q j�q j − 2
[

Ã
(2)
i j

]

�qi�q j

)

.

(15)

The coefficients
[

Ã
(3)
i j j

]

are eventually obtained by

[

Ã
(3)
i j j

]

=
1

�qi�q j�q j

(

�Tg
(

φi�qi

+φ j�q j

)

− �TK
(

+φi�qi + φ j�q j

)

−
[

Ã
(2)
i i

]

�qi�qi −
[

Ã
(2)
j j

]

�q j�q j

−
[

Ã
(2)
i j

]

�qi�q j −
[

Ã
(3)
i i i

]

�qi�qi�qi

−
[

Ã
(3)
j j j

]

�q j�q j�q j −
[

Ã
(3)
i i j

]

�qi�qi�q j

)

.

(16)

The coefficients
[

A
(3)
i jm

]

, with all different indices, are

obtained from a single equation, formulated with the three

variations �qi , �q j and �qm . For each tripple m < j < i ,

with i ∈ {1, . . . , r − 2}, j ∈ {i + 1, . . . , r − 1}, and m ∈

{ j + 1, . . . , r}, this gives

[

Ã
(3)
i jm

]

=
1

�qi�q j�qm

(

�Tg
(

φi�qi +φ j�q j +φm�qm

)

− �TK
(

φi�qi + φ j�q j + φm�qm

)

−
[

Ã
(2)
i i

]

�qi�qi −
[

Ã
(2)
j j

]

�q j�q j

−
[

Ã(2)
mm

]

�qm�qm −
[

Ã
(2)
i j

]

�qi�q j

−
[

Ã
(2)
im

]

�qi�qm −
[

Ã
(2)
jm

]

�q j�qm

−
[

Ã
(3)
i i i

]

�qi�qi�qi −
[

Ã
(3)
j j j

]

�q j�q j�q j

−
[

Ã(3)
mmm

]

�qm�qm�qm −
[

Ã
(3)
i i j

]

�qi�qi�q j

−
[

Ã
(3)
i j j

]

�qi�q j�q j −
[

Ã
(3)
i im

]

�qi�qi�qm

−
[

Ã
(3)
imm

]

�qi�qm�qm −
[

Ã
(3)
j jm

]

�q j�q j�qm

−
[

Ã
(3)
jmm

]

�q j�qm�qm

)

. (17)

vector. To ensure a successful identification of the tensors

two parameters need to be specified. The variations �q have

to correspond to the expected order of magnitude of the gen-

eralised coordinates. The reference deformations q̂, that pro-

vide the hinging point for the procedure, are set to zero. This

is done in preparation for the prestressing in Sect. 3.3, which

requires a common reference deformation for the expression

of the nonlinear forces. Should this not be required the q̂ can

be chosen freely. [8] give instructions for its introduction and

selection and report considerable improvements.

3.2 Update and augmentation for accuracy

The update of the reduced basis forms a self-contained block

that can be inserted in the solution procedure. After the update

of the reduced basis the solution procedures continues with-

out becoming aware of the update and augmentation. An

original feature of the proposed update method is the aug-

mentation of the updated basis with physical quantities to

smoothen appearing jumps in the displacements, velocities

and accelerations. A novel criterion is proposed that triggers

the update with a variable frequency. The trigger of choice

is the rate of change of the norm of the initial generalised

residual. Whenever | d||r̃||
dt

|> ǫr an update can be initiated.

The frequency of the update and augmentation is traced

with a counter value m. This counter m is set to zero at

every update and augmentation and it is increased for every

time-step. So, at every instant, the last update and augmenta-

tion took place m time-steps ago. A non-constant m, which

implies an update and augmentation at a flexible frequency,

is desirable. Because every update and augmentation goes

with an anewed identification of the reduced tensors it is also

desirable to have a counter value of m ≫ 1 before initiating

the following update and augmentation. So the update and

augmentation should not be triggered too often during the

solution.

The update and augmentation of the reduced basis is per-

formed at the beginning of an instant t . This lets all operations

of the solution algorithm, from the predictions, over the iter-

ations to the updates, take place in this new reduced basis.

To begin the update and augmentation at the instant t

the current full order deformation is provided by u(t) =

�(t−m�t)q
(t)
before with the current reduced basis that was estab-

lished at t −m�t . The preliminary updated basis �̂
(t)

is cre-

ated with the current displacements u(t) and Eqs. (4) to (6).

The preliminary updated basis is of order r , irrespective of

the order of the preceding reduced basis �(t−m�t).

The preliminary generalised coordinates are established

as

q
(t)
after =

(

(

�̂
(t)

)T

�̂
(t)

)−1 (

�̂
(t)

)T

u(t). (18)
This concludes the identification of all tensor elements

which are necessary to describe the reduced nonlinear forces
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The preliminary generalised velocities q̇
(t)
after and acceler-

ations q̈
(t)
after are obtained in an analogous manner. The least-

squares sense is used for the preliminary generalised coor-

dinates out of convenience, even though an energy criterion

might work better at this stage.

At this point the two sets of generalised coordinates

q
(t)
before, before the update, and qafter, after the update, coex-

ist at the same instant t . They describe and approximate

the unique physical displacements u(t) with two different

bases. Thus, the Eq. (18) results in u(t) = �(t−m�t)q
(t)
before �=

�̂q̂after, which constitutes a jump in the displacements. These

jumps only appear at update frequencies with m > 1. The

jumps can be extracted. For the displacements they are deter-

mined as

△ u(t) = �(t−m�t)q
(t)
before − �̂

(t)
q

(t)
after. (19)

The same operation is performed for the velocities and

accelerations too. In order to smooth the solution, the pre-

liminary reduced basis augmented with the jumps. This leads

to the n × (r + 3) matrix

�(t) =
[

�̂
(t)

, △ u, △ u̇, △ ü
]

. (20)

The generalised coordinates are augmented accordingly.

This augmentation ensures the continuity of physical dis-

placements with

q(t) =

⎡

⎢

⎢

⎢

⎢

⎣

q
(t)
after

1

0

0

⎤

⎥

⎥

⎥

⎥

⎦

, (21)

of the physical velocities with

q̇(t) =

⎡

⎢

⎢

⎢

⎢

⎣

q̇
(t)
after

0

1

0

⎤

⎥

⎥

⎥

⎥

⎦

, (22)

and of the accelerations with

q̈(t) =

⎡

⎢

⎢

⎢

⎢

⎣

q̈
(t)
after

0

0

1

⎤

⎥

⎥

⎥

⎥

⎦

, (23)

This links these generalised quantities with the jumps of

the augmented reduced basis from Eq. (20). These aug-

mented generalised quantities serve as the initial conditions

for the iterations towards the next instant t + �t .

The two static matrices M and C are reduced with the

updated and augmented reduced basis �(t) in order to corre-

spond to the new generalised coordinates.

The ROM now operates on order r +3. Here it is important

to note that the order of the ROM is set to r at t0, the beginning

of the transient solution. It increases to r + 3 during the first

update due to the augmentation of the reduced basis. After the

first update and augmentation, the order of the ROM remains

at r + 3 for all consecutive updates and augmentations.

The new, augmented generalised state, defined in Eqs. (21)

and (22), does not necessarily fulfil the dynamic equilibrium.

This condition has no direct influence on the physical solu-

tion, because the physical displacements at the instant t are

obtained with the generalised coordinates prior to the update

in the basis, where convergence is achieved. Furthermore, the

new, augmented reduced state serves only as basis points for

the predictive values in the solution scheme for the next inner

iterations of the solution algorithm towards the instant t+�t .

However, the condition of disequilibrium might impede the

ability of the inner convergence loop of the solution algorithm

to converge. Major convergence problems may arise in the

case when these values for the reduced quantities are used as

basis for the predictive values. Should this become the case, it

might be advisable to accept jumps in the accelerations while

allowing for the dynamic equilibrium at the instant after the

update by adapting the updated and augmented generalised

coordinates accordingly.

A major component for stabilising the solution with the

updated reduced basis is the retainer. The retainer mecha-

nism limits the frequency of the update of the reduced basis.

Directly after the update and augmentation, the value of

| d||r̃||
dt

| would be well beyond the threshold ǫr because

the residuals r̃(t), before the update, and r̃(t+�t), after the

update, are defined in different reduced bases. This would

immediately trigger another update, which is not desirable.

The retainer prohibits an anewed update for a given time.

This can be expressed by adding the condition m ≥ mr to

the threshold condition of the time derivate of the residual

| d||r̃||
dt

|> ǫr . Both conditions have to be met for the next

update to be triggered.

3.3 Interpolation for parameterisation

The necessity to solve a ROM at different operating points

arises e.g. when systems are studied that have a wide range

of operating points as an intrinsic property, like e.g. tur-

bomachines or whole planes. The external parameters are

supposed to be regrouped in the vector µ which completely

describes the operating point of the structure. This operating

point might influence all terms of Eq. (1) and also its ini-

tial conditions. Several reduced bases � j are established at

different, known operating points µ j . The number of these

known operating points is supposed to be sufficient. An inter-
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polation between these reduced bases is used to obtain the

reduced basis �0 at the actual operating point µ0.

The following approach is taken from [2,3]. They pro-

pose a specific interpolation approach. Such a specific inter-

polation approach is necessary, because the different reduced

bases cannot be interpolated directly. The reduced bases are

interpolated one column vector at a time in a tangent space.

Let
{

φ j

}

be a number of available, precomputed column vec-

tors of the reduced bases corresponding to the known working

points
{

µ j

}

. The vectors are corresponding to each other, e.g.

through having the same place in the order of normal modes

under the assumption of equal shapes. If system has to be

reduced at a new operating point µ0, with µ0 /∈
{

µ j

}

the

associated basis vector φ0 can be found by the following

four-step algorithm.

Among the precomputed bases’ vectors one φk is chosen

as the origin of the transformation. In the vicinity of the

selected origin φk a number of vectors φi is selected φi ∈
{

φ j

}

with i �= k, which are designated to partake in the

following interpolation.

The transformation into the tangent space is prepared by

a singular value decomposition (SVD) of

(

I − φkφ
T
k

)

φi

(

φT
k φi

)−1
→ Ui�i V

T
i ∀i, (24)

with I as the n × n identity matrix. Due to the algorithm,

which prescribes to treat one column of the reduced bases at

a time, the �i and �0 are actually scalar values. The SVD

is performed nonetheless, in order to comply with the repre-

sentation of the original method.

The transformation of the vector φi into the tangent space

is then given as

φ̂i = Ui arctan (�i ) VT
i ∀i. (25)

The interpolation proper is now performed with the trans-

formed column vectors φ̂i . As each of them is associated to an

operating point µi appropriate interpolation procedures can

be applied to reach µ0. A possible procedure is a multivari-

ate interpolation with radial basis functions as it is available

from e.g. [34]. It yields the interpolated column vector φ̂0 in

the tangent space.

The reverse transformation begins with a SVD of the inter-

polated vector

φ̂0 → U0�0VT
0 . (26)

Here the same remark with respect to the SVD applies that

was already made for Eq. (24).

The interpolated vector φ0 is obtained with the retransfor-

mation

φ0 = φkV0 cos (�0) + U0 sin (�0) . (27)

The vector φ0 can be inserted as the appropriate column

vector in the reduced basis �0 associated with the operating

point µ0.

These four steps are repeated for all r column vectors

and the final interpolated reduced basis �0 is obtained by

assembling all r interpolated column vectors φ0. The result-

ing matrix �0 is subjected to a Gram-Schmidt procedure (e.g.

[36]) to ensure its orthogonality.

A similar procedure is available for interpolating the sym-

metric, positive definite matrices M and C as a function of

external parameters. Based on the same principle of interpo-

lation in a tangent space the transformation (Eqs. (24) and

(25)) and the retransformation (Eqs. (26) and (27)) are dif-

ferent for these symmetric, positive definite matrices. More

detail is given in e.g. [2].

4 The integrated method

The integrated method combines the three elements from

Sect. 3 on the common backbone of a time-marching solution

algorithm. One complete time-step cycle is described in the

following.

The initial generalised coordinates q(0), the initial gener-

alised velocities q̇(0) and the actual operating point µ0 are

supposed to be known. This allows to treat the transient solu-

tion of Eq. (3), which is discretised in time, as an initial value

problem.

In the following the HHT-α-method from [19] is devel-

oped as the backbone of the integrated method. The HHT-

α-method is chosen over the classic Newmark method

because it offers an improved numerical damping in the high-

frequency range, which is beneficial for the used finite ele-

ment test-case. The HHT-α-method contains the classic New-

mark method as a special case.

Tests have been conducted with the “nonlinear Newmark

algorithm”, as proposed by [23], as the backbone of the inte-

grated method. This successful application demonstrates that

the integrated method can be established with different mem-

bers of the Newmark family of solution algorithms as its

backbone. A recent survey of solution algorithms is given

by [15].

The necessary adaptation of the HHT-α-method includes

the introduction of the polynomial formulation via g̃p (q)

and K̃p (q) to ensure the autonomy of the reduced nonlinear

terms and the introduction of the two metrics m and | d||r̃||
dt

|,

which govern the update process.

4.1 Providing the initial reduced basis

The initial reduced basis � at t = t0 is a n×r matrix. It is pro-

vided at the actual operating point µ0 with the interpolation

from Sect. 3.3.
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4.2 Identifying the initial tensors for the polynomial

formulation

The initial tensors for the polynomial formulation are

obtained with the initial reduced basis �. The process is

described in detail in Sect. 3.1.2.

4.3 Executing the solution

At t0 the discrete state of the system is completed by obtaining

the generalised accelerations

q̈(0) = M̃−1
(

f̃E (t0) − C̃q̇(0) − g̃p

(

q(0)
))

, (28)

with the initial conditions q(0) and q̇(0). The following course

of action is valid for advancing from any completely defined

state at any t to the next instant t + �t .

Prior to continuing the solution, the need for an update of

the reduced basis is determined. The update and augmenta-

tion of the reduced basis is triggered with the derivation of

the residual with respect to time. This requires the current

reduced residual

r̃(t) = f̃E (t) − M̃q̈(t) − C̃q̇(t) − g̃p

(

q(t)
)

. (29)

This residual is used to approximate the derivation of the

initial residual as backward finite difference

|
d || r̃ ||

dt
|≈|

|| r̃(t) || − || r̃(t−�t) ||

�t
| . (30)

Actually, this residual in Eq. (29) is carried over from the

converged inner iterations of the preceding time-step. If the

current instant is t0 the || r̃(t0−�t) || is set to 0.

For a theoretically perfect convergence of the algorithm

for each time step this residual is expected to be zero and

the difference || r̃(t) || − || r̃(t−�t) || should disappear.

This is not the case for a real, numerical setting. Hence, this

approach is meaningful. It is also valid to use to reduced

residual because the norm of the residual in Eq. (29) is a

fraction of the initial residual at the beginning of the itera-

tions. This is achieved by testing the convergence relative to

the initial residual (refer to Eq. (35) and the discussion of

the convergence).

Alongside, the counter for the retainer is increased with

m → m + 1. (31)

If the two conditions |
d||r̃(i=1)||

dt
|≥ ǫr and m ≥ mr are met

the transient solution is paused at this point and a new basis

is introduced. This is described in the Sect. 4.3.1, directly

below. If no update and augmentation is required, the solution

continues directly with its iterative loop in Sect. 4.3.2.

4.3.1 Updating and augmenting the basis

The two metrics |
d||r̃(i=1)||

dt
| and m that govern the update

and augmentation of the reduced basis, are integrated into

the HHT-α-method, which operates on the reduced model

with autonomous expressions for the nonlinear forces and the

tangent stiffness matrix. They trigger and retain the update

and augmentation. If an update and augmentation is triggered

the process is executed as it is described in Sect. 3.2. This

leads to an updated and augmented reduced basis in a n ×

(r + 3) matrix.

The new tensors Ã(1), Ã(2) and Ã(3) are identified with the

updated and augmented basis of order r+3. The identification

is described in detail in Sect. 4.2.

It is of utmost importance to understand that with this for-

mulation of the integrated method the anewed identification

of the tensors is an online computation, which represents the

major part of the numerical effort for updating and augment-

ing the reduced basis. This is discussed further in Sect. 5.3.

After the update and augmentation the counter for the

retainer is reset to m = 0. This blocks the update for the

following mr time-steps. Once the update and augmentation

has been performed, the HHT-α-method continues without

becoming aware of the updated and augmented basis.

4.3.2 Continuing the solution

Regardless of whether an update took place or not, the tran-

sient solution is continued with establishing the dynamic

equilibrium at the next instant t + �t . The HHT-α-method

achieves this with an intermediate step at t + α�t . An inner

loop over the index (i) with Newton–Raphson iterations is

initialised with the predictive values

q̈
(t+�t)
(i=1)

= q̈(t) (32)

q̇
(t+�t)
(i=1)

= q̇(t) + �t q̈(t) (33)

q
(t+�t)
(i=1)

= q(t) + �t q̇(t) +
1

2
�t2 q̈(t). (34)

While the index i is still in its first loop, the initial gener-

alised residual is extracted

r̃
(t+�t)
(i=1)

= f̃E (t + �t) − M̃q̈
(t+�t)
(i=1)

− C̃q̇
(t+�t)
(i=1)

− g̃p

(

q
(t+�t)
(i=1)

)

. (35)

It serves to determine the threshold of convergence. The

threshold of convergence is determined with ǫ || r̃
(t+�t)
(i=1)

||,

where ǫ ≪ 1. The iterations are repeated until the current

residual drops below the threshold of convergence for an

i > 1. If the convergence criterion is not met, the iteration

index is augmented.
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This definition of the threshold of convergence justifies

why the criterion for initiating the update and augmentation

in Eq. (30) can be formulated with the converged residual.

In the worst case the norm of the converged residual is equal

to the norm of the initial residual multiplied by ǫ.

The weighted values at t + α�t for the generalised dis-

placements and the generalised velocities are established as

q
(t+α�t)
(i) = (1 − α) q(t) + αq

(t+�t)
(i−1)

, (36)

and

q̇
(t+α�t)
(i) = (1 − α) q̇(t) + αq̇

(t+�t)
(i−1)

. (37)

The current residual is calculated as

r̃(i) = f̃E (t + �t) − M̃q̈
(t+�t)
(i) − C̃q̇

(t+α�t)
(i)

− g̃p

(

q
(t+α�t)
(i)

)

. (38)

The current tangent stiffness matrix K̃
(i)
p is calculated by

applying Eq. (10). It is then introduced into the Jacobian of

the ROM

S̃(i) = K̃(i)
p +

γ

β �t
C̃ +

1

β �t2
M̃. (39)

The terms γ and β are parameters in the Newmark method

that allow for different integration schemes.

The increment of the generalised coordinates �q is cal-

culated with the Jacobian and the residual from Eq. (38)

�q
(t+�t)
(i) = S̃−1

(i) r̃(i). (40)

The Newton–Raphson iterations, as they are formulated

above, require a full factorisation of the tangent stiffness

matrix. As the focus in this work is set on the integration

of the polynomial formulation of the nonlinear terms and

update and augmentation of the reduced bases this factorisa-

tion is accepted. This is particularly the case because the

ROM are rather small. Switching to e.g. a quasi-Newton

method for numerical performance at this point should be a

subtle numerical refinement of the integrated method. Hints

for such quasi-Newton methods are given by [25].

With this increment available, the next values for the gen-

eralised displacements, velocities and accelerations can be

obtained as

q
(t+�t)
(i+1)

= q
(t+�t)
(i) + �q

(t+�t)
(i) (41)

q̇
(t+�t)
(i+1)

= q̇
(t+�t)
(i) +

γ

β �t
�q

(t+�t)
(i) (42)

and

q̈
(t+�t)
(i+1)

= q̈
(t+�t)
(i) +

1

β �t2
�q

(t+�t)
(i) . (43)

They are used to calculate the residual r̃
(t+�t)
(i+1)

and to check

the convergence condition

|| r̃
(t+�t)
(i+1)

|| ≤ ǫ || r̃
(t+�t)
(i=1)

|| . (44)

If the convergence condition is not met the index is aug-

mented i → i + 1 and the next iteration is launched by

returning to Eq. (36).

If, on the other hand, the convergence is given and Eq. (44)

fulfilled, the time is increased

t → t + �t. (45)

and the HHT-α-method returns to Eq. (32) to launch the next

time step towards the next instant in time. This is repeated

until the end te of the simulated time period is reached.

The counter m for blocking the update and augmentation

is already set in Eq. (31).

5 Application of the integrated method

The application of the integrated method takes place on a

three-dimensional test-case with finite elements that are geo-

metrically nonlinear. The elements of the integrated method,

as they are presented in Sect. 3, are at first tested indepen-

dently from each other. While the polynomial formulation

of the nonlinear terms enables a rapid solution, the update

and augmentation of the reduced basis ensures its accuracy.

Treating both elements one at a time allows making a well

informed trade-off between rapidity and accuracy in the inte-

grated method, where both elements work in conjunction.

5.1 Describing the test-case

The aim of the introduction of the finite element test-case,

is to prove the application of the integrated method to a

complex test-case which includes geometrically nonlinear

volume elements [21,38]. The turbine blade, which serves

as test-case, as it is shown in Fig. 1. It is modelled after a

two-dimensional turbine blade used by [37]. Its dynamics

can be described entirely with Eq. (1). The blade’s geometry

describes a twisted cuboid, with neither taper nor curvature.

The twist is 36◦ in positive direction and linearly distributed

in radial direction with an untwisted root. Its dimensions with

respect to a global axis of rotation are

– L z = 4 for the length of the blade in radial direction,

– Lx = 2 for the width of the blade in axial direction,

– L y = 1 for the thickness of the blade in the perpendicular

radial direction.

The blade is modelled with 2, 1 and 4 hexahedron elements

in x , y and z direction, respectively. Fully clamped at the

root this leads to 24 free nodes with 3 translational degrees
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Fig. 1 The geometry of the finite element test-case

of freedom each and to n = 72 degrees of freedom for the

entire system.

The blade is subjected to a harmonic combined traction

and flexion excitation along the [x,−y, z] diagonal of three-

dimensional space. The solution takes place between t0 = 0

and te = 5.

The properties of the blade’s material are constant during

the solution. Their values are

– E = 7 109 for its Young’s modulus,

– ν = 0.3 for the Poisson’s ratio, and,

– ρ = 70 for the density.

The damping matrix C in Eq. (1) is obtained by multiply-

ing the tangent stiffness matrix in the equilibrium configura-

tion K (u0) with a factor of ǫ = 0.04. This practice is chosen

to avoid a dedicated study of the complex topic of damping

without a loss of generality of the integrated method, while,

at the same time, stabilising the numerical solution.

The test-case is programmed in MatLab. This allows

access down to the level of the numerical integration of

individual finite elements. The interpreted programming lan-

guage is not strictly geared for computational performance

and prescribes a limited set of 72 translational degrees of

freedom. While this number of degrees of freedom seems

limited, it has to be taken into account that a full order refer-

ence, finite element solution requires roughly 57 h of com-

putational time. Therefore a reduction is of interest. Further-

more, all performance comparisons take only place within

the developed numerical framework. This allows to equate

operation counts with computational time and to use only the

latter for convenience and accessibility.

Great care has been invested in order to determine the envi-

ronment for the safe application of the integrated method. For

this, the test-case is studied and characterised exhaustively.

A convergence study proves that the 72 degrees of freedom

are ample for a good trade-off between accuracy and per-

formance. A comparison with the commercial finite element

solver NASTRAN is performed and proves the correctness

of the developed finite element test-case.

5.2 Performing the interpolation of the reduced basis

The interpolation of the reduced bases, that is developed in

Sect. 3.3, is applied to the finite element test-case with non-

linear volume elements. The interpolation serves only to pro-

vide the initial reduced basis at the beginning of the transient

solution.

In order to impose external parameters, the blade is sup-

posed to be subjected to a prestressing due to a rotation. The

rotation is accounted for only in the right-hand side of Eq. (1)

by imposing a static prestressing load in the simulation. The

prestressing also influences through the elastic nonlinearity

and load level the tangent stiffness matrix and hence also the

modes. This additional external force depends on the para-

meters of the rotation speed Ωa and of the distance to the

rotation axis ra .

The rotation is not taken into account in the left-hand side

such as the centrifugal softening or the gyroscopic matrix

[4]. This is consistent with the assumption of a Galilean ref-

erence frame in Eq. (1), because the gyroscopic coupling and

the centrifugal accelerations can be neglected for a constant

rotational frequency Ωa and negligible Coriolis forces. The

corresponding skew-symmetric terms do not appear.

The rotation of the blade is supposed to occur around an

axis that is parallel to the blade’s y axis. The parameters

µ are the prestress radius ra , the distance of the rotation’s

axis below the blade’s centre of mass, and the rotational

frequency Ωa .

The reduced bases that are used for the interpolation are

established with the normal modes at the static displacements

ua that result from the prestressing at the given operating

point µi = [Ωi , ri ]. The values of µ0 at the actual operat-

ing point to be interpolated are Ωa,0 = 1
300

per time unit

and ra,0 = 5. The interpolation takes place between precal-

culated bases. These precalculated bases are obtained with

values for the parameters in a rectangular grid with ra ∈

{2.0, 3.6, 5.2, 6.8, 8.4} and Ωa ∈
{

1
120

, 1
216

, 1
312

, 1
408

, 1
504

}

.

The Fig. 2 shows the first normal modes at µ0. Its instances

are the interpolated mode φ0 and the reference modes φ0,ref.

The two instances are visually indistinguishable. Together

with the numerical results from Table 1 this demonstrates

the exceptional quality of the interpolated reduced basis.
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Fig. 2 The interpolation of the first mode of the finite element test-case

with volume elements

Table 1 The comparison of the

interpolated modes with the ref-

erence modes for the finite ele-

ment test-case with volume ele-

ments by means of the MAC

Mode ea

1 0.9998

2 0.9999

3 0.9990

4 0.9996

5 0.9999

6 0.9997

7 0.9993

8 0.9995

9 0.9994

10 0.9994

11 0.9994

12 0.9977

Table 1 contains the error metrics of the modal assurance

criterion (MAC) ea =
|(φ0,ref)

T
φ0|

2

|(φ0,ref)
T
φ0,ref||(φ0)

T
φ0|

between the

considered as being initialised with an interpolated reduced

basis, without specifically mentioning it.

5.3 Applying the integrated method

With the initialisation of the initial reduced basis settled, the

integrated method is applied one remaining element at the

time. This allows observing the impact of the introduction

of the update and augmentation and of the polynomial for-

mulation separately. Also their possible interactions can be

observed.

The different solution schemes are defined with respect

to their nonlinear terms - which are either inflated g̃ (q) =

�Tg (�q) or polynomial g̃ (q) = g̃p (q), as defined in

Sect. 3—and with respect to the reduced basis—which is

either constant or updated and augmented as described in

Sect. 3.2. From these combinations four different solution

procedures become possible. The reduced transient solutions

are obtained with

– an inflation formulation of the nonlinear terms and a con-

stant reduced basis,

– a polynomial expression of the nonlinear terms and a con-

stant reduced basis,

– an inflation formulation of the nonlinear terms and an

updated and augmented reduced basis, and

– a polynomial expression of the nonlinear terms and an

updated and augmented reduced basis.

The integrated method is applied as it is presented in

Sect. 4. It is built with the polynomial expression of the non-

linear terms and the update and augmentation of the reduced

basis. It is the last element in the listing above.

For all four solution schemes, the tensors for the reduced

polynomial expression are obtained with the indirect reduced

order identification as presented in Sect. 3.1. The reduced

basis is constructed from the normal modes with the eigen-

problem in Eq. (5).

In the following, the accuracy of the four solutions is

treated first. Then the gains in performance are listed. These

two properties of the solutions are treated independently in

order to allow for well-informed trade-offs between them.

5.3.1 Accuracy

The results for the accuracy of the integrated method are

shown exemplarily with r = 8 as the order of the ROM.

The selected error metric for gauging the accuracy of

the reduced solutions is the relative root mean square error

(R2MSE). For a given instant t j the R2MSE is defined as

reference modes φ0,ref and the modes φ0 that are obtained 
with the interpolation. The MAC compares the shapes of the 
modes.

These results show that the interpolation approach is 
applicable for the test-case. This is a result that had been 
expected, because the prestressing has only a moderate 
impact on the shape of the modes of the smooth nonlinear-

ities of the test-case. The interpolation can be used on the 
present test-case without restriction for preparing and ini-

tialising the transient solution. Once the transient solution is 
underway, the parameterisation of the test case is taken into 
account by the update of the reduced basis. For simplification 
the reduced transient solutions in the following section are

12



er

(

t j

)

=

√

∑n
i=1

(

ui,ROM − ui,FOM

)2

√

∑n
i=1

(

ui,FOM

)2
(46)

where the ui,ROM are physical degrees of freedom at the

instant t j that are reconstructed from the reduced solution

with Eq. (2) and the ui,FOM are the degrees of freedom of

the full order reference solution at the same instant t j . The

R2MSE is used to judge the difference between the reduced

solution and the full order solution at every time step and in

an integral sense as the mean over the entire simulated time.

In order to be applicable without restriction, it has to be

considered that the metric er is only defined in a setting of

Euclidian geometry. Translational and rotational degrees of

freedom cannot be mixed and the units in which the displace-

ments are measured may influence the norm. The current

test-case does not contain any rotational degrees of freedom

and the error metrics are applied in order to create a con-

sistency with the practices in the modal community e.g. [9].

Furthermore, the R2MSE offers the advantage of compar-

ing the actual displacements of the reduced and the refer-

ence solution. This is an important property, because e.g. the

clearance between the tip of the blade and the casing, which

is a distance, has to be reproduced correctly by the ROM.

An error metric that is valid with fewer restrictions would

e.g. be the relative energy E
(

t j

)

. It is defined as the total

energy of a reduced solution E
(RO M)
t = uTKu + u̇TMu̇ at

every instant t j normalised with the peak total energy of the

full order reference solution

E
(

t j

)

=
E

(RO M)
t

(

t j

)

max
(

E
(F O M)
t

) . (47)

The minor restriction applied only for the evaluation of E

during postprocessing of the transient solutions, again for

convenience, is the assumption that the stiffness matrix K,

which is used for the potential energy of the system, is con-

stant. This assumption can reasonably be made for the cur-

rent test-case. The relative energy E is introduced in order

to judge the amount of damping that is cut off by the intro-

duction of the reduction. If there is more energy in the ROM

than there is in the FOM this might destabilise the solution.

Before descending into the abstraction of the error met-

rics it is highly worthwhile to inspect the actual physical

displacements visually. The physical displacements of the

four solutions are shown in Fig. 3 at t = 1.5. This instant

is chosen as being representative with large amplitude of

the deformation, highlighting the differences between the

solutions. This figure highlights especially that the solutions

come in two groups: solutions with a constant reduced basis

and solutions with an update and augmented reduced basis.

The integrated method belongs to the second type of solu-
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undeformed
ref. solution
inflation const.
poly const.
inflation updt.
integrated method

Fig. 3 The physical displacements at t = 1.5 of the finite element

test-case with volume elements at r = 8

Fig. 4 The R2MSE as a function of the combinations of formulations

of the reduced nonlinear forces vector and the reduced basis at r = 8

tion. The groups of solutions are clearly distinguishable. At

the tip of the blade these difference become most obvious.

The two solutions that are obtained with a constant reduced

basis display a larger deformation than the two solutions that

are obtained with an updated and augmented reduced basis.

The solutions with an updated and augmented reduced basis

are nearly indistinguishable from the reference solution.

The impression of two groups is confirmed by the inspec-

tion of the R2MSE. The Fig. 4 contains the means of the

R2MSE for the four solutions. The axes of the horizon-

tal plane of the figure are provided by the combinations

of formulations of the reduced nonlinear terms—inflation

or polynomial—and the handling of the reduced basis—

constant or updated and augmented—, with which the four

13
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Fig. 6 The evolution of the relative energy for different solutions of

the finite element test-case with volume elements at r = 8

shows that the update and augmentation introduces an arti-

ficial damping that counterbalances the removal of damping

due to the cutting off of modes, albeit with a slight overreac-

tion. Looking back at the R2MSE in Fig. 5 proves that this

artificial damping does not come at the expense of wrong

amplitudes.

The inspection of the physical displacements, the R2MSE

and the relative energy shows the considerable improvement

that is possible by updating and augmenting the reduced

basis. It also shows that for this case this improvement is

independent from the formulation of the reduced nonlinear

terms. The solution with the inflation formulation and the

solution with the polynomial formulation are visually indis-

tinguishable. At the chosen instant in Fig. 3 two update and

augmentation cycles took already place. Against the overall

simulated period, the positive effect of the update and aug-

mentation is visible from the first update on.

The next step is to focus on the computational perfor-

mance of the different solutions so that an informed trade-off

between speed and accuracy can be made.

5.3.2 Rapidity

The rapidity of the different solutions is measured with the

overall solution time. This is possible because all solutions

are implemented in the same way and calculated on the same

workstation. The considerable uncertainties attached to the

measurements of time due to network exchanges and parallel

processes on the shared workstations is countered by the strict

measurement of CPU time.

The reference solution for measuring the rapidity is the

full-order finite element solution. It requires 205430 s of CPU

time and provides the touchstone for the reduced solutions.

The overall solution times of the solutions whose accuracy is

examined in the previous paragraph are shown in the Fig. 7.

It uses the same layout as the Fig. 4.

Fig. 5 The evolution of the R2MSE for four solutions of the finite

element test-case with volume elements at r = 8

solutions are obtained. The study of this figure reveals that

the update and augmentation of the reduced basis has a sig-

nificant influence on the quality of the solution, while the

influence of the introduction of the polynomial formulation

is negligible.

The Fig. 5 traces the evolutions of the R2MSE er for

the four solutions. The evolutions is generally smooth and

follows the amplitude of the displacements of the solution.

However, they display prominent spikes when then reference

quantity of the reference solution crosses zero. These spikes

are purely numerical artefacts and due to the fact that the

error metrics are relative ones.

It is remarkable how the R2MSE of the solution obtained

with the integrated method evolves. At first it rises with the

other R2MSE as the simulation is started. But after the first

update and augmentation at t ≈ 0.75 it drops sharply and

is nearly eliminated shortly afterwards. Then, it continues

to evolve with a maximum R2MSE of about one fourth of

the maximum value of the R2MSE of the solutions with a
constant reduced basis. Every new update and augmentation

cycle becomes visible as a sharp bend, which realigns the

R2MSE with the abscissa, effectively reducing the error and

ensuring the result’s accuracy. The same behaviour is also

displayed by the R2MSE of the solution obtained with the

update and augmentation of the reduced basis and the infla-

tion formulation of the nonlinear terms. This indicates that

the update and augmentation of the reduced basis is the major

reason for an increase of the accuracy for the reduced solu-

tion.

The study of the relative energy in Fig. 6 confirms the

beneficial influence of the update and augmentation of the

reduced basis in the integrated method. For the integrated

method the oscillation of the relative energy is much lower

than for the solutions with a constant reduced basis. Also,

after the first update and augmentation cycle, the total energy

in the reconstructed solution of the integrated method is lower

than the energy in the full order reference solution. This
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Fig. 7 The relative solution time as a function of the combinations of

formulations of the reduced nonlinear forces vector and the reduced

basis at r = 8

The values in Fig. 7 show very clearly the cost associ-

ated with the identification of the polynomial approximation

of the nonlinear terms. For the autonomous solution with a

constant reduced basis at r = 8. The identification of the

tensors takes almost one tenth of the time of the full order

solution, while the actual solution time becomes negligible.

The 0.5 % are distributed as 0.49 % for the identification

and 0.01 % for the actual solution among the stages of an

autonomous solution with a constant basis. However, when

several identifications are required during the updates and

augmentations of the integrated method, the times required

for each of these identifications in Sect. 4.3.1 is comparable

and they add up. The integrated solution requires six identifi-

cations, including the initial identification prior to the actual

solution. Together, these identifications make the integrated

solution take more than 3 % the time of the full order solution.

5.3.3 Trade-off between accuracy and rapidity

In the two preceding sections it is established that the rapid-

ity of the reduced solution depends on the autonomy of the

ROM, ensured with the polynomial formulation of the non-

linear terms. The accuracy of the reduced solution is ensured

with the update and augmentation of the reduced basis. This

update and augmentation entails an anewed identification of

the tensors. A process that takes place online and which is

rather costly.

The metric of choice for this subject is the number of eval-

uations of the full order vector g (u). This vector describes

the nonlinear internal forces of the structure for the full order

model as a function of the physical displacements. It is pro-

vided by the evaluation of the finite element formulation of

the full order model.

For the use of the integrated method from Sect. 4, the full

order vector of the nonlinear internal forces g (u) is required

by the identification of the reduced tensors Ã(h). For the initial

identification 1
6

(

r3+6r2+5r
)

evaluations are required. This

number increases to 1
6

(

(r + 3)3 + 6(r + 3)2 + 5(r + 3)
)

for each update and augmentation of the reduced basis. The

maximum possible number of updates is determined as the

maximum number of updates and augmentations during a

transient solution te−t0
mr �t

, with mr being the lower threshold

of the retainer. This gives the number of required evaluations

of the full order nonlinear forces vector g (u) for the reduced

solution as

n
(ROM)
evaluations of g(u)

≤
1

6

(

r3 + 6r2 + 5r
)

+
te − t0

mr�t

1

6

(

(r + 3)3 + 6(r + 3)2 + 5(r + 3)

)

. (48)

This is a maximum value because not all updates that are

possible during the simulated period (t0, te] are required to

take place. It has to be compared to the number of evaluations

n
(FOM)
evaluations of g(u)

in the full order solution.

The number of evaluations of the nonlinear forces vector

n
(FOM)
evaluations of g(u)

of the full order solution is given by

n
(FOM)
evaluations of g(u)

≥ 2
te − t0

�t
, (49)

This value for n
(FOM)
evaluations of g(u)

is a lower bound because

there can be several iterations per time-step. To comprehend

the full numerical effort of the full order solution it has to be

understood that it requires additionally an equivalent number

of evaluations and factorisations of the full order stiffness

matrix. This has to be understood against the background

that most of the development of numerical solution schemes

is driven by the strive to avoid the creation and inversion of

such a stiffness matrix.

The requirements of a trade-off between a rapid and

an accurate reduced solution, obtained with the integrated

method, is investigated in Fig. 8. In this the figure the solu-

tion times from Fig. 7 are plotted against the R2MSE from

Fig. 4 for the four different solutions. The solution times are

given as percentages of the time required for the full order,

reference solution obtained with finite elements. The R2MSE

is obtained against the time history result of this reference

solution. The solutions included are a solution obtained with

a constant reduced basis and the inflation of the nonlinear

terms, with a constant reduced basis and the polynomial for-

mulation of the nonlinear terms, with an updated reduced

basis and the inflation of the nonlinear terms and a solution

obtained with the integrated method. The simulations are

performed for orders of the reduced order model of r = 4,

r = 8, r = 12 and r = 16. The order r of the ROM is

colour-coded.
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might even approach the time required for the full order solu-

tion for r > 16. This highlights the computational costs of

the identification of the reduced tensors, that are put forward

in Fig. 7, and shows how important and difficult it is to make

a trade-off between a rapid and an accurate reduced solu-

tion. To facilitate this trade-off some rough estimates for the

required computational time are given in the Eqs. (48) and

(49) above.

Other factors, which are much more difficult to gauge and

that depend heavily on the actual implementation of the prob-

lem, include the evaluation of the tensor evaluations for the

generalised nonlinear forces vector g̃p (q) in Eq. (8) and for

the generalised tangent stiffness matrix K̃p (q) in Eq. (10).

These evaluations tend to be numerically cheap. They have to

be performed the same number of times than the evaluations

of the full order terms during the full order solution.

Yet another factor that is difficult to gauge, but bene-

ficial for the ROM, is the requirement to inverse r × r

or (r + 3) × (r + 3) matrices instead of n × n matrices.

For this standard problem of linear algebra, many solution

approaches exist (see e.g. [36]) and have been implemented

with high performance packages in codes as e.g. MatLab or

NASTRAN. It has to be determined on a case-by-case basis

to which extent the inversion of the smaller matrices unfolds

its beneficial effect.

Ultimately it remains out of reach for this study to give an

answer that is always valid to the questions for the numerical

performance of the integrated method.

6 Conclusion

The central aim of this work is to provide a rapid, accurate and

parameterisable transient solution of a geometrically nonlin-

ear structure. This aim is achieved with the creation of the

integrated method.

The integrated method is the unification of three differ-

ent methods on the common backbone of a Newmark-type

solution algorithm. Each of the three methods addresses a

specific requirement that has been identified and that is com-

manded by the overall aim of a rapid, accurate and para-

meterisable transient solution of a geometrically nonlinear

structure. Each of the three methods is an example of differ-

ent common methods that also address the same identified

requirement. The method that is actually present in the inte-

grated method is chosen based solely on numerical results.

However, any other method that addresses the same identi-

fied requirement can replace it in the integrated method. The

update and augmentation of the reduced basis is chosen to

adapt the solution algorithm in order to make the reduced

basis follow the nonlinear evolution of the solution. The

polynomial formulation is chosen to form the autonomous

expression that replaces the reduced nonlinear terms. The

Fig. 8 The R2MSE and solution times of the combinations of formu-

lations of the reduced nonlinear forces vector and the reduced basis

The solutions with a constant reduced basis and the infla-

tion of the nonlinear terms only gain in rapidity from the

treatment of the smaller matrices. Because most of the time

is spent on the evaluation of the nonlinear terms these solu-

tions take constantly about 100 % of the reference solution’s

time for all orders r . The same constancy can be observed

for the solutions with an updated and augmented reduced

basis and the inflation of the nonlinear terms. However, due

to the additional effort of the update and augmentation cycle,

these solutions require around 140 % of the reference solu-

tion’s time. Their error level is slightly lower than for the

solutions with the constant reduced basis. The solutions with

a constant reduced basis and the polynomial formulation of

the require constantly below 5 % of the reference solution’s

time. However, their errors are comparable with the ones of

the solutions with a constant reduced basis and the inflation

of the nonlinear terms. This confirms that the polynomial for-

mulation does only introduce a small additional error, while

accelerating the solution process tremendously.

The solutions of the integrated method stand out, because

they display a strong dependency of their solution time on

the order r of the ROM. This dependency starts well below

5 % at r = 4 and reaches about 20 % at r = 16 exponen-

tially. The errors of the solutions obtained with the integrated

method are consistent with the other solutions obtained with

an updated and augmented reduced basis. At this point it

becomes obvious that for the integrated method a large order

r of the ROM, which is chosen for accuracy, leads to the

imminent danger of negating all possible gains in rapidity,

because the numerical effort for the anewed identifications

of the tensors scales over-proportionally.

The influence of the identifications becomes highly vis-

ible e.g. for r = 16. Here, the five updates and augmen-

tations, that take place during the solution, overwhelm the

gains due to the use of the polynomial formulation and the

time required for the integrated solution raises rapidly and
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interpolation in a tangent space is chosen to adapt the initial

reduced basis to external parameters.

The study of the performance of the different solutions

compares well to the initial assessment of the computational

efforts. The influence of the introduction of the polynomial

formulation is assessed. All results are confirmed here and

especially the potential of the integrated method is again

highlighted. The inspection of the results allows distinguish-

ing the impact of the elements of the integrated method. The

rapidity is assured with the polynomial formulation and the

accuracy with the update and augmentation of the reduced

basis. The coactions of these two elements in the integrated

method requires a careful trade-off between accuracy and

rapidity, because the update and augmentation introduces

considerable numerical effort for the anewed identification

of the tensors.

The integrated method can be seen as one example of

a realisation of an integrated framework. This framework

allows for a rapid, accurate and parameterisable transient

solutions of a geometrically nonlinear structure.
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