
HAL Id: hal-01223182
https://hal.science/hal-01223182

Submitted on 2 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based Specification and Validation of Security
and Dependability Patterns
Brahim Hamid, Christian Percebois

To cite this version:
Brahim Hamid, Christian Percebois. Model-based Specification and Validation of Security and De-
pendability Patterns. 6th International Symposium on Foundations & Practice of Security (FPS
2013), Oct 2013, La Rochelle, France. pp.65-82, �10.1007/978-3-319-05302-8�. �hal-01223182�

https://hal.science/hal-01223182
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12693

Official URL: http://dx.doi.org/10.1007/978-3-319-05302-8_5

To cite this version : Hamid, Brahim and Percebois, Christian Model-based
Specification and Validation of Security and Dependability Patterns. (2013)
In: 6th International Symposium on Foundations & Practice of Security (FPS
2013), 21 October 2013 - 22 October 2013 (La Rochelle, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Model-Based Specification and Validation
of Security and Dependability Patterns

Brahim Hamid(B) and Christian Percebois

IRIT, University of Toulouse, 118 Route de Narbonne,
31062 Toulouse Cedex 9, France

{hamid,percebois}@irit.fr

Abstract. The requirement for higher Security and Dependability
(S&D) of systems is continuously increasing, even in domains tradi-
tionally not deeply involved in such issues. In our work, we propose a
modeling environment for pattern-based secure and dependable embed-
ded system development by design. Here we study a general scheme for
representing security and dependability (S&D) design patterns whose
intention specification can be defined using a set of local properties. We
propose an approach that associates Model Driven Engineering (MDE)
and formal validation to get a common representation to specify pat-
terns for several domains. The contribution of this work is twofold. On
the one hand, we use model-based techniques to capture a set of artifacts
to specify patterns. On the other hand, we introduce a set of artifacts for
the formal validation of these patterns in order to guarantee their cor-
rectness. As an illustration of the approach, we study the authorization
pattern.

Keywords: Pattern · Meta-model · Domain · Formalization · Model
driven engineering · Security and Dependability

1 Introduction

Extra-functional concerns have become a strong requirement on one hand, and
on the other hand more and more difficult to achieve, even in safety critical
systems. They can be found in many application sectors such as automotive,
aerospace and home control. Such systems come with a large number of com-
mon characteristics, including real-time, temperature, computational processing
and power constraints and/or limited energy and common extra-functional char-
acteristics such as dependability and security [1] as well as efficiency.

The integration of such concerns, for instance security, safety and dependabil-
ity, requires the availability of both application development and concerns exper-
tise at the same time. Therefore, the development of such systems involves spe-
cific software building processes. These processes are often error-prone because
not fully automated, even if some level of automatic code generation or even

model driven engineering support is applied. Furthermore, many critical sys-
tems also have assurance requirements, ranging from very strong levels, involving
certification (e.g., DO178 and IEC-61508 for safety relevant embedded systems
development), to lighter levels based on industry practices.

Over the last two decades, the need for a formally defined safety lifecycle
process has emerged. Model-Driven Engineering (MDE) [17] provides a very
useful contribution for the design of these systems, since it bridges the gap
between design issues and implementation concerns. It helps the designer to
specify in a separate way extra-functional requirements at a higher level which
are important to guide the implementation process. Of course, an MDE approach
is not sufficient but offers an ideal development context. Hence capturing and
providing this expertise by the way of specific patterns can enhance safety critical
systems development. While using an MDE framework, it is possible to help
concerns specialists in their task.

In this paper, we investigate the design process of Security and Dependabil-
ity (S&D) patterns. The main goal of this work is to define a modeling and
development framework to support the specifications and the validation of S&D
patterns and to assist the developers of trusted applications for resource con-
strained embedded systems. The solution envisaged here is based on combining
metamodeling techniques and formal methods to represent S&D pattern at two
levels of abstraction fostering reuse during the process of pattern development
and during the process of pattern-based development. The contribution of this
work is twofold: (1) An S&D pattern modeling language to get a common rep-
resentation of S&D patterns for several domains in the context of embedded
systems using model driven software engineering, (2) Formal specification and
validation of a pattern in order to guarantee its correctness during the pattern
integration. Therefore, patterns can be stored in a repository and can be loaded
in function of their desired properties. As a result, patterns will be used as bricks
to build applications through a model driven engineering approach.

The rest of this paper is organized as follows. An overview of the modeling
approach we proposed including a set of definitions is presented in Sect. 2. Then,
Sect. 3 presents in detail the pattern modeling language. Section 4 illustrates the
pattern modeling process in practice. Section 5 presents the validation process
through the example of the authorization pattern. In Sect. 6, we review most
related works addressing pattern specification and validation. Finally, Sect. 7
concludes this paper with a short discussion on future works.

2 Conceptual Framework

We promote the separation of general-purpose parts of the pattern from its
required mechanisms. This is an important issue to understand the use of pat-
terns to embed solutions targeting extra-functional concerns. This section is
dedicated to present the pattern modeling framework. We begin with a set of
definitions and concepts that will prove useful in understanding our approach.

Model-Based Specification and Validation of S&D Patterns 67

2.1 Definitions and Concepts

In [5], a design pattern abstracts the key artifacts of a common design struc-
ture that make it useful for creating a reusable object-oriented design. They
proposed a set of design patterns for several object-oriented design problems.
Several generalizations on this basis to describe software design patterns in gen-
eral are proposed in literature. Adapting the definition of security patterns given
in [18], we propose the following:

Definition 1 (Security and Dependability Pattern). A security and
dependability pattern describes a particular recurring security/and or depend-
ability problem that arises in specific contexts and presents a well-proven generic
scheme for its solution.

Unfortunately, most of S&D patterns are expressed, as informal indications
on how to solve some security problems, using identical template to traditional
patterns. These patterns do not include sufficient semantic descriptions, includ-
ing those of security and dependability concepts, for automated processing within
a tool-supported development and to extend their use. Furthermore, due to man-
ual pattern implementation use, the problem of incorrect implementation (the
most important source of security problems) remains unsolved. For that, model
driven software engineering can provide a solid basis for formulating design pat-
terns that can incorporate security and dependability aspects and offering such
patterns at several layers of abstraction. We will use metamodeling techniques
for representing and reasoning about S&D patterns in model-based development.
Note, however, that our proposition is based on the previous definition and on
the classical GoF [5] specification, and we deeply refined it in order to fit with
the S&D needs.

To foster reuse of patterns in the development of critical systems with S&D
requirements, we are building on a metamodel for representing S&D pattern in
the form of a subsystem providing appropriate interfaces and targeting S&D
properties to enforce the S&D system requirements. Interfaces will be used to
exhibit pattern functionality in order to manage its application. In addition,
interfaces supports interactions with security primitives and protocols, such as
encryption, and specialization for specific underlying software and/or hardware
platforms, mainly during the deployment activity. As we shall see, S&D and
resource models are used as model libraries to define the S&D and resource
properties of the pattern (see part B of Fig. 2).

Security and Dependability patterns are not only defined from a platform
independent viewpoint (i.e. they are independent from the implementation), they
are also expressed in a consistent way with domain specific models. Consequently,
they will be much easier to understand and validate by application designers in a
specific area. To capture this vision, we introduced the concept of domain view.
Particularly an S&D pattern at domain independent level exhibits an abstract
solution without specific knowledge on how the solution is implemented with
regard to the application domain.

Definition 2 (Domain). A domain is a field or a scope of knowledge or activity
that is characterized by the concerns, methods, mechanisms, ... employed in the
development of a system. The actual clustering into domains depends on the
given group/community implementing the target methodology.

In our context, a domain represents all the knowledge including protocols,
processes, methods, techniques, practices, OS, HW systems, measurement and
certification related to the specific domain. With regard to the artifacts used in
the system under development, we will identify the first classes of the domain to
specialize such artifacts. For instance, the specification of a pattern at domain
independent point of view is based on the software design constructs. The spe-
cialization of such a pattern for a domain uses a domain protocol to implement
the pattern solution (see example of authorization pattern given in Sects. 4.1
and 4.2).

The objective is to reuse the domain independent model S&D patterns for
several industrial application domain sectors and also let them be able to cus-
tomize those domain independent patterns with their domain knowledge and/or
requirements to produce their own domain specific artifacts. Thus, the ’how’ to
support these concepts should be captured in the specification languages.

2.2 Motivational Example: Authorization Pattern

As example of a common and widely used pattern, we choose the Authoriza-
tion Pattern [19]. For instance, in a distributed environment in which users
or processes make requests for data or resources, this pattern describes who is
authorized to access specific resources in a system, in an environment in which
we have resources whose access needs to be controlled. As depicted in the left
part of Fig. 1, it indicates how to describe allowable types of accesses (authoriza-
tions) by active computational entities (subjects) to passive resources (protection
objects).

However, these authorization patterns are slightly different with regard to
the application domain. For instance, a system domain has its own mechanisms
and means to serve the implementation of this pattern using a set of protocols
ranging from RBAC (Role Based Access Control), Firewall, ACLs (Access Con-
trol Lists), Capabilities, and so on. For more breadth and depth, the reader is

Fig. 1. Authorization pattern/protecting resources using capabilities

referred to [21]. To summarize, they are similar in their goal, but different in
the implementation issues. The motivation is to handle the modeling of pat-
terns following different abstraction levels. In the followings, we propose to use
Capabilities [21] to specialize the implementation of the authorization pattern.
This solution is already used at hardware and operating system level to control
resources.

More particular, the access rights of subjects with respect to objects are
stored in an access control matrix M . Each subject is represented by a row
and each object is represented by a column. An entry in such a matrix M [s, o]
contains precisely the list of operations subject s is allowed to request on object
o. A more efficient way to store the matrix is to distribute the matrix row-wise
by giving each subject a list of capabilities it has for each object. Without such
a capability for a specific object means that the subject has no access rights for
that object. Then, requests for resources are intercepted and validated with the
information in the capabilities. The interception and the validation are achieved
by a special program usually referred to as reference monitor. For instance,
whenever a subject s requests for the resource r of object o, it sends such a
request passing its capability. The reference monitor will check whether it knows
the subject s and if that subject is allowed to have the requested operation r, as
depicted in the right part of Fig. 1. Otherwise the request fails. It remains the
problem of how to protect a capability against modification by its holder. One
way is to protect such a capability (or a list of them) with a signature handed
out by special certification authorities named attribute certification authorities.

2.3 Pattern DSL Building Process and Artifacts

A Domain Specific Language (DSL) typically defines concepts and rules of the
domain using a metamodel for the abstract syntax, and a (graphical or textual)
concrete syntax that resembles the way the domain tasks usually are depicted.
As we shall see, such a process reuses a lot of practices from Model-Driven
Engineering (MDE), for instance, metamodeling and transformation techniques.
There are several DSML (Domain Specific Modeling Language) environments
available. In our context, we use the Eclipse Modeling Framework (EMF) [20]
open-source platform. Note, however, that our vision is not limited to the EMF
platform.

In Fig. 2, we illustrate the usage of a DSL process based on MDE technology
to define the modeling framework to design a pattern on one hand and the use
of such a framework on the other hand. As shown in part A of Fig. 2, a DSL
process is divided into several kinds of activities: DSL definition, transformation,
coherency and relationships rules, designing with DSLs and qualification. The
first three activities are achieved by the DSL designer and last two are used by
the DSL end-user. In the following we detail the following artifacts and their
related processes:

– Pattern Metamodel: Sect. 3 (see part A of Fig. 2).
– Pattern Modeling. Section 4 (see part A of Fig. 2).
– Pattern Formalization. Section 5 (see part C of Fig. 2).

Fig. 2. Overview of the pattern DSL building process and artifacts

3 Pattern Specification Metamodel (SEPM)

The System and Software Engineering Pattern Metamodel (SEPM), as depicted
in Fig. 3, is a metamodel which defines a new formalism for describing pat-
terns and which constitutes the base of our pattern modeling language. Such
a formalism describes all the concepts (and their relations) required to capture
all the facets of patterns. These patterns are specified by means of a domain-
independent generic representation and a domain-specific representation.

The principal classes of the metamodel are described with Ecore notations
in Fig. 3 and their meanings are more detailed in the following paragraph.

– This block represents a modular part of a system that encapsulates a solution
of a recurrent problem. A DIPattern defines its behavior in terms of pro-
vided and required interfaces. Larger pieces of a system’s functionality may
be assembled by reusing patterns as parts in an encompassing pattern or
assembly of patterns, and wiring together their required and provided inter-
faces. A DIPattern may be manifested by one or more artifacts. This is the
key entry artifact to model patterns at domain independent level (DIPM).

– Interface. A DIPattern interacts with its environment with Interfaces which
are composed of Operations. A DIPattern owns provided and required inter-
faces. A provided interface is implemented by the DIPattern and highlights
the services exposed to the environment. A required interface corresponds

Fig. 3. The SEPM metamodel- overview

to services needed by the pattern to work properly. Finally, we consider two
kinds of interface:

• External interface. Allows implementing interaction with regard to the inte-
gration of a pattern into an application model or to compose patterns.

• Technical interface. Allows implementing interaction with the platform. For
instance, at a low level, it is possible to define links with software or hardware
module for the cryptographic key management. Please note, a DIPattern does
not have TechnicalInterfaces.

– Property. Is a particular characteristic of a pattern related to the concern it
is dealing with and dedicated to capture its intent in a certain way. Each
property of a pattern will be validated at the time of the pattern validating
process and the assumptions used, will be compiled as a set of constraints
which will have to be satisfied by the domain application.

– Constraint. Is a requisite of the pattern. If the constraints are not met, the
pattern will not be able to deliver its properties.

– InternalStructure. Constitutes the implementation of the solution proposed
by the pattern. Thus the InternalStructure can be considered as a white box
which exposes the details of the IPatterns. In order to capture all the key
elements of the solution, the InternalStructure is composed of two kinds of
Structure: static and dynamic. Please, note that the same pattern could have
several possible implementations

– DSPattern. Is a refinement of a DIPattern. It is used to build a pattern at
DSPM. Furthermore a DSPattern has TechnicalInterfaces in order to interact
with the platform. This is the key entry artifact to model pattern at domain
specific level (DSPM).

3.1 Generic Property Modeling Language (GPRM)

The metamodel of property [23] captures the common concepts of the two
main concerns of trusted RCES (Resources-Constrained Embedded Systems)

applications: Security, Dependability and Resource on the one hand and Con-
straints on these properties on the other hand. The libraries of properties and
constraints includes units, types, categories and operators. For example, security
attributes such as authenticity, confidentiality and availability [1] are categories
of S&D properties. The reader is referred to [23] for a full description of the prop-
erties metamodel. These models are used as external model libraries to type the
properties of patterns. Especially during the design and later on for the selection
of the pattern (see next sections), we define the properties and the constraints
using these libraries. Note, however, that modeling languages such as MARTE
(Modeling and Analysis of Real-Time and Embedded systems) [16] may be used
as well for depicting these properties.

4 Pattern Modeling Process

We now present an overview of our pattern modeling process. Along this descrip-
tion, we will give the main keys to understand why our process is based on a
general and a constructive approach. It consists of the following phases: (1)
the specification of the pattern at domain independent level (DIPM), (2) the
refinement of DIPM pattern to specify one of its representations at domain spe-
cific level (DSPM). These two levels of the Authorization pattern presented in
Sect. 2.2 are illustrated. For the sake of simplicity, many functions and artifacts
of this pattern have been omitted. We only detail the properties and interfaces
that we need to describe the validation process. Note that the document repre-
senting the formalization and the proof are detailed in Sect. 5.

4.1 Domain Independent Pattern Model (DIPM)

This level is intended to generically represent patterns independently from the
application domain. This is an instance of the SEPM. As we shall see, we intro-
duce new concepts through instantiation of existing concepts of the SEPM meta-
model in order to cover most existing patterns in safety critical applications. In
our example, the DIPM of the authorization pattern consists of:

– Properties. At this level, we identify one property: confidentiality.
– External Interfaces. The authorization pattern exposes its functionalities

through function calls:
- req(S,AT, PR): the subject S sends request about access type AT concern-
ing the protected resource or data PR.

4.2 Domain Specific Pattern Model (DSPM)

The objective of the specific design level is to specify the patterns for a specific
application domain. This level offers artifacts at down level of abstraction with
more precise information and constraints about the target domain. This mod-
eling level is a refinement of the DIPM, where the specific characteristics and

dependencies of the application domain are considered. Different DSPM would
refine a same DIPM for all needed domain. For instance, when using Capabili-
ties as a mechanism related to the application domain to refine the authorization
pattern at DSPM, we identify the following artifacts:

– Properties. In addition to the refinement of the property of confidentiality
identified in the DIPM, at this level, one can consider: deny unauthorized
access, permit authorized access, and efficiency properties.

– External Interfaces. This is a refinement of the DIPM external interface:
req(S,AT, PR,C): the subject S sends request about access type AT con-
cerning the protected resource PR passing its capability C.

– Technical Interfaces. Let the subset of functions related to the use of capabil-
ities to refine the authorization pattern:
- sign(C): the certification authority signs the capability C,
- verifyCert(): the attribute capability certificate is verified,
- extractCap(): the capability is extracted from the certificate,
- checkRight(S,AT, PR,C): the reference monitor verifies, using the capabil-
ity, whether PR appears in the C.

5 Pattern Validation Process

We propose to use theorem proving techniques to formalize patterns and to prove
their properties. This part completes the framework as depicted in Fig. 2 (see
Part C). In our work, we used the interactive Isabelle/HOL proof assistant [15]
to do so. First we model the pattern as a data type. Then we define and prove
a set of properties and constraints that it meets. These two steps are applied
successively to DIPM and DSPM levels. Finally, we deal with the correspondence
between the DIPM and DSPM formal models.

5.1 Pattern Formalization

Before coding the pattern and its properties in Isabelle/HOL, one has to define
what are an agent and an action. Both are records i.e. tuples, with a name
attached to each component. We note i action the record for an action defined
at the DIPM level, and we will talk about s action when dealing with the specific
level. The right part of the action data type with “...“ refers to specific actions
defined at the DSPM model.

Definitions mainly concern the refinement process of pattern from the DIPM
model to the DSPM model. We formalize this refinement by adding to the defin-
itions of DIPM a subset of functions related to the mechanisms employed in the
application domain. Compared to independent actions embodied by the i action

records at the DIPM level of the pattern, records of type s action devoted to
DSPM may have additional fields. This is easily done by the s action defini-
tion of which extends the first specification by the keyword + (see left part of
Table 1). We so consider that the DSPM formal model contains the same set

Table 1. Data types for the authorization pattern

DIPM DSPM

datatype agentType = S

datatype actionType = req | ...

datatype accessType = at

datatype dataType = PR

datatype capabilityType = C

record i action = datatype actionType = req | ... | checkRight

agent : : "agentType"

access : : "accessType" record s action = i action +

data : : "dataType"

capability : : "capabilityType"

record agent =

name : : "agentType"

i actions : : "i action set"

s actions : : "s action set"

of agents as the DIPM one. Its actions correspond to the external and internal
domain specific interface function calls.

For our case, we introduce how to specify the confidentiality property. Let
G be a set of agents, D be the critical data and A be the actual set of actions
that use D. Then, the confidentiality property on D, denoted by conf(A,D,G),
means that only agents in G are allowed to know the value of D. All others,
when looking at actions in A shall not be able to derive its value.

The definitions and the proofs used in this section are extracted from the code
of our experiment applied to the authorization pattern and its related mecha-
nism from the application domain: capabilities. Table 1 defines these artifacts in
Isabelle.

Domain Independent Pattern Model (DIPM). As previously defined in
Sect. 4.1, the authorization pattern exposes its functionalities through the func-
tion calls req(S,AT, PR). In this formula, the subject S sends requests about
access type AT concerning the protected data PR. Applying the previous defi-
nition conf, we get A = req(S, at, PR) where at ∈ AT, D = PR and G = S.

Function calls req(S, at, PR) are independent requests of the authorization
pattern formalized in Isabelle as shown in the left part of Table 2 owing to the
create i Action definition and the req constant. In the same way, an agent is
introduced by the createAgent definition and the subject constant nominates
the active computational entity of the pattern.

Domain Specific Pattern Model (DSPM). The DSPM model of the autho-
rization pattern introduces a capability C as mechanism to ensure the communi-
cation between the subject and the passive resources. Consequently, the DSPM
req(S,AT, PR,C) external interface is a refinement of the DIPM one where

Table 2. Definitions of the authorization pattern

DIPM DSPM

definition create i Action : :

"agentType ==> accessType ==> dataType

==> i action"

where

"create i Action ag a d == (agent=ag, definition create s Action : :

access=a, data=d)" "agentType ==> accessType

==> dataType ==> capabilityType

definition req : : "i action" where ==> s action" where

"req == create i Action S at PR" "create s Action ag a d c ==

(agent=ag, access=a, data=d,

definition createAgent : : capability=c)"

"agentType ==> (i action set)

==> (s action set) ==> agent" definition checkRight : : "s action"

where where

"createAgent ag i as s as == "checkRight == create s Action S

(name=ag, i actions=i as, s actions=s as)" at PR C"

definition subject : : "agent" where

"subject == createAgent S req

checkRight, ..."

the subject S sends requests about access type AT concerning the protected
resource PR passing its capability C. We formalize this refinement by the code
in the right part of Table 1 which adds to the definitions of the DIPM part the
subset of functions sign, verifyCert, extractCap and checkRight related to
capabilities. This code also defines the counterpart s action of an independent
action i action. For sake of clarity, we only give the code of the checkRight

constant defined as an s action.

Following the definition of Sect. 4.1 and applying the previous definition conf,

we get the confidentiality property conf(checkRight(S, at, PR,C), PR, S).

5.2 Pattern Validation

The goal now is to identify the set of assumptions required to prove the proper-
ties. Then, the proof consists to find a scheduling of valid steps using Isabelle’s
tactics such as applying (command apply) a simplification considering that each
step corresponds to a sub-goal to resolve. Our proof only uses simplification
rules (command simp) which consist in rewriting specified equations from left to
right in the current goal. Correctness of the proof is guaranteed by construction
from the first goal to resolve (a lemma or a theorem) until the message “no sub-
goals” is produced by the framework which confirms that the proof is finished
(command done).

Domain Independent Pattern Model (DIPM). For our case, we have
to find the assumptions for the conf(req(S, at, PR), PR,G) property to hold,
supposing S ∈ G and at ∈ AT. Informally, to achieve such a property, we need
to demonstrate that G is the only set of agents that can access to PR using an
action req(S, at, PR) and that such an action doesn’t provide any information
to an agent outside of G in order to derive the value of the protected data.
The pattern describes in fact who is authorized to access specific resources in a
system and whose accesses need to be controlled.

By definition, as presented in Sect. 2.2, we have a vector M [s1..sn][PR] to
denote the access rights. An entry in such a matrix M [si, PR] contains precisely
the list of operations of AT subject si that are allowed to request on the object
PR. At this level, it’s obvious that the only agents allowed to use the protected
data are those listed in the defined matrix. For the second concern, we have to
assume that the matrix is protected itself and that agents outside of G looking
at actions in req(S, at, PR) shall not be able to derive the value of PR.

Table 3. Proving the conf property

DIPM DSPM

definition isAllowed : :

"i action ==> dataType ==> agent

==> bool" where

"isAllowed a d ag == a in (i actions ag)

and data a = d"

definition isAllowedSubject : : "bool"

where

"isAllowedSubject == isAllowed req

PR subject"

definition conf s action : :

definition conf i action : : "s action ==> dataType ==> agent

"i action ==> dataType ==> agent ==> bool"

==> bool" where where

"conf i action a d ag == "conf s action a d ag == a

isAllowed a d ag and isProtected a d ag" in (s actions ag)

and data a = d"

lemma confReq : "conf i action req

PR subject" lemma confCheckRight :

apply (simp only : conf i Action def) "conf s action checkRight

apply (simp only : isAllowed def PR subject"

isProtected def)

apply (simp only : req def)

apply (simp only : create i Action def)

apply (simp only : subject def)

apply (simp only : createAgent def)

apply (simp add : req def)

apply (simp only : create i Action def)

done

In our Isabelle experiment, we have weakened these constraints assuming
two predicates isAllowed for authorized accesses to a specific resource and
isProtected related to its encapsulated access. We simulate the matrix by a
set of actions. We also ensure that the term req(S, at, PR) verifies these precon-
ditions. With these assumptions, the relation conf(req(S, at, PR), PR, S) holds
as proved by the lemma confReq (confidentiality of the req request) of the left
part of Table 3.

In the next section, using a specific mechanism, namely Capabilities, to imple-
ment such a pattern, we will refine these assumptions.

Domain Specific Pattern Model (DSPM). As an example, the confiden-
tiality property conf(checkRight(S, at, PR,C), PR, S) is then established by
the confCheckRight lemma (confidentiality of the checkRight request) given in
the right part of Table 3, with similar simplification tactics when proving the
confReq lemma of the left part of Table 3.

For our experiment, no assumptions have been introduced for this proof, but
we can easily extend our formalization by considering for instance a precedence
order between the calls sign, verifyCert, extractCap and checkRight related
to capabilities.

5.3 Correspondence between DIPM and DSPM

Correspondence between the DIPM and DSPM formal models is assumed when
proving that the property introduced at the DIPM model is transferred to the
DSPM model. More precisely, this means that the DIPM model is an abstraction
of the DSPM model. In particular, we must show that using a specific mechanism
for verifying the property together with function calls of the specific domain is
a specific case of proving the upper-level property.

We so have to map actions of the DSPM model onto the actions of the
DIPM model by an appropriate homomorphism h and then prove that this
homomorphism preserves the property. As a property is proved both for the
DIPM and DSPM models, h validates the refinement of the proof. In practice, h

is required to preserve each operation or a pseudo-operation which summarizes
the behavior of a set of operations.

In our case, we must show that using capabilities for verifying the property
conf(checkRight(S, at, PR,C), PR, S) together with function calls of the spe-
cific domain is a specific case of proving the upper-level property conf(req(S, at,

PR), PR, S). Fig. 4 specifies h and the resulting confReqH theorem (confidential-
ity of the req request using h). In this code, for simplicity of illustration, we only
map checkRight to req, and we introduce a null action for all other mappings.

Hence h preserves confidentiality into the DIPM request access to the pro-
tected data. The conf(req(S, at, PR), PR, S) relation transferred to the DSPM
model is identical to conf(checkRight(S, at, PR,C), PR, S). We can formally
verify this assumption according to the Isabelle’s framework which displays the
same sub-goals to resolve as soon as the DSPM current goal of Fig. 4 has been
split by a case distinction on a Boolean condition (command simp with if def).

Fig. 4. Proving the correspondence between DIPM and DPSM models

6 Related Works

Design patterns are a solution model to generic design problems, applicable in
specific contexts. Supporting research tackles the presented challenges includes
domain patterns, pattern languages and recently formalisms and modeling lan-
guages to foster their application in practice. To give an idea of the improvement
achievable by using specific languages for the specification of patterns, we look
at pattern formalization and modeling problems targeting the integration of the
pattern specification and validation steps into a broader MDE process.

Several tentatives exist in the literature to deal with patterns for specific con-
cern [7,22]. They allow to solve very general problems that appear frequently
as sub-tasks in the design of systems with security and dependability require-
ments. These elementary tasks include secure communication, fault tolerance,
etc. The pattern specification consists of a service-based architectural design and
deployment restrictions in form of UML deployment diagrams for the different
architectural services.

To give a overview of the improvement achievable by using specific languages,
we look at the pattern specification and formalization problems. UMLAUT [8] is
an approach that aims to formally model design patterns by proposing extensions
to the UML metamodel 1.3. They used OCL language to describe constraints
(structural and behavioral) in the form of meta-collaboration diagrams. In the
same way, RBML(Role-Based Metamodeling Language) [12] is able to capture
various design perspectives of patterns such as static structure, interactions, and
state-based behavior.

While many patterns for specific concern have been designed, still few works
propose general techniques for patterns. For the first kind of approaches [5],
design patterns are usually represented by diagrams with notations such as UML
object, annotated with textual descriptions and examples of code. There are
some well-proven approaches [3] based on Gamma et al. However, this kind of

technique does not allow to reach the high degree of pattern structure flexibility
which is required to reach our target.

Formal specification has also been introduced in [14] in order to give rigor-
ous reasoning of behavioral features of a design pattern in terms of high-level
abstractions of communication. In this paper, the author considers an object-
oriented formalism for reactive system (DisCo) [11] based on TLA (Tempo-
ral Logic of Actions) to express high-level abstractions of cooperation between
objects involved in a design pattern. However, patterns are directly formalized
at the pattern level including its classes, its relations and its actions, without
defining a metamodel.

[6] presents a formal and visual language for specifying design patterns called
LePUS. It defines a pattern in an accurate and complete form of formula in Z,

with a graphical representation. With regard to the integration of patterns in
software systems, the DPML (Design Pattern Modeling Language) [13] allows the
incorporation of patterns in UML class models. However, this kind of techniques
does not allow to achieve the high degree of pattern structure flexibility which
is required to reach our target, and offered by the proposed pattern modeling
language. The framework promoted by LePUS is interesting but the degree of
expressiveness proposed to design a pattern is too restrictive.

Regarding the analysis aspects, [10] used the concept of security problem
frames as analysis patterns for security problems and associated solution approaches.
They are also grouped in a pattern system with a list of their dependencies. The
analysis activities using these patterns are described with a highlight of how
the solution may be set, with a focus on the privacy requirement anonymity.
For software architecture, [9] presented an evaluation of security patterns in the
context of secure software architectures. The evaluation is based on the existing
methods for secure software development, such as guidelines as well as on threat
categories.

Another important issue is the identification of security patterns. [2] proposed
a new specification template inspired on secure system development needs. The
template is augmented with UML notations for the solution and with formal
artifacts for the requirement properties. Recently [4] presented an overview and
new directions on how security patterns are used in the whole aspects of software
systems from domain analysis to the infrastructures.

To summarize, in software engineering, design patterns are considered effec-
tive tools for the reuse of specific knowledge. However, a gap between the devel-
opment of systems using patterns and the pattern information still exists. This
becomes even more visible when dealing with specific concerns namely security
and dependability for several application sectors.

– From the pattern methodological point of view: The techniques presented
above do not allow to reach the high degree of pattern structure flexibility.
The framework promoted by LePUS is interesting but the degree of expres-
siveness proposed to design a pattern is too restrictive. The main critic of
these modeling languages is that no variability support of the pattern specifi-
cation, because a pattern by nature covers not only one solution, but describes

a set of solutions for a recurring design problem. Furthermore there are no
elements in existing modeling languages to model appropriate architectural
concepts and properties provided by patterns and even more security and
dependability aspects. The problem is obvious in UML and ADLs. The main
shortcoming of the UML collaboration approach stems from the non-support
of variability. However, we do believe that the advantages of using UML for
engineering software outweigh these disadvantages.

– From the pattern-based software engineering methodological point of view:
Few works are devoted to this concern. They are in line for the promotion of
the use of patterns in each system/software development stage. However, exist-
ing approaches using patterns often target one stage of development (architec-
ture, design or implementation) due to the lack of formalisms ensuring both
(1) the specification of these artifacts at different levels of abstraction, (2) the
specification of relationships that govern their interactions and complemen-
tarity and (3) the specification of the relationship between patterns and other
artifacts manipulated during the development lifecycle and those related to
the assessment of critical systems.

– From the pattern validation process point of view: There are mainly two
approaches when dealing with formal reasoning: model-checking and interac-
tive theorem proving. Model-checking is attractive because it offers a high
degree of automation and is therefore accessible to uninitiated users. How-
ever, model checkers have to provide an intuitive operational understanding
of a model under properties they have to verify. In contrast theorem proving
focuses on abstract properties on a model and not on its behavior. This is
the case for our pattern validation process with Isabelle/HOL: proof obliga-
tions introduce formulas that are so many assumptions to validate, and DSPM
actions mapped on to DIPM actions must normally encompass the same sub-
set of proof obligations.

– From the tool support point of view: Existing tools support the specification
of patterns and their application in the design of software systems, notably
Netbeans, StarUML, Sparx systems. In these tools, patterns are provided as
UML libraries and usually embedded in the tool without extension support.
The integration of pattern in these tools result merely in copying a solution
into a model.

7 Conclusion and Future Work

We present an approach for the design and verification of patterns to provide
practical solutions to meet security and dependability (S&D) requirements. As
it follows the MDE paradigm for system’s design, using patterns on different
levels of abstraction, it allows for integration into the system’s design process,
hence supports this process. To this end, the proposed representation takes into
account the simplification and the enhancement of such activities, namely : selec-
tion/search based on the properties, and integration based on interfaces. Yet the
system development process is not the topic we focus on in our paper.

Indeed, a classical form of pattern is not sufficient to tame the complexity of
safety critical systems – complexity occurs because of both the concerns and the
domain management. To reach this objective and to foster reuse, we introduced
the specification at domain independent and domain specific levels. The former
exhibits an abstract solution without specific knowledge on how the solution is
implemented with regard to the application domain. Following the MDE process,
the domain independent model of patterns is then refined towards a domain
specific level, taking into account domain artifacts, concrete elements such as
mechanisms to use, devices that are available, etc.

We also provide an accompanying formalization and validation framework
to help precise specification of patterns based on the interactive Isabelle/HOL
proof assistant. The resulting validation artefacts may mainly (1) complete the
definitions, and (2) provide semantics for the interfaces and the properties in the
context of S&D. Like this, validation artefacts may be added to the pattern for
traceability concerns. In the same way, the domain refinement is applied during
the formal validation process for the specification and validation of patterns.

Furthermore, we walk through a prototype of EMF tree-based editors sup-
porting the approach. Currently the tool suite named Semcomdt1 is provided as
Eclipse plugins. The approach presented here has been evaluated on two case stud-
ies from TERESA’s project2 resulting in the development of a repository of S&D
patterns with more than 30 S&D patterns. By this illustration, we can validate the
feasibility and effectiveness of the proposed specification and design framework.

The next step of this work consists in implementing other patterns including
those for security, safety, reconfiguration and dependability to build a repository
of multi-concerns patterns. Another objective for the near future is to provide
guidelines and tool-chain supporting the whole pattern life cycle (i.e., create,
store patterns, retrieve) and the integration of pattern in an application. All
patterns are stored in a repository. Thanks to this, it is possible to find a pattern
regarding to concern criteria. At last, guidelines will be provided during the
pattern development and the application development (i.e., help to choose the
appropriate pattern and its usage).

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1, 11–33 (2004)

2. Cheng, B., Cheng, B.H.C., Konrad, S., Campbell, L.A., Wassermann, R.: Using
security patterns to model and analyze security. In: IEEE Workshop on Require-
ments for High Assurance Systems, pp. 13–22 (2003)

3. Douglass, B.P.: Real-time UML: Developing Efficient Objects for Embedded Sys-
tems. Addison-Wesley, Reading (1998)

4. Fernandez, E.B., Yoshioka, N., Washizaki, H., Jürjens, J., VanHilst, M., Pernul,
G.: Using security patterns to develop secure systems. In: Mouratidis, H. (ed.)
Software Engineering for Secure Systems: Industrial and Research Perspectives,
pp. 16–31. IGI Global (2010)

1 http://www.semcomdt.org
2 http://www.teresa-project.org/

5. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Gasparis, E., Nicholson, J., Eden, A.H.: LePUS3: an object-oriented design descrip-
tion language. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS
(LNAI), vol. 5223, pp. 364–367. Springer, Heidelberg (2008)

7. Di Giacomo, V., et al.: Using security and dependability patterns for reaction
processes. In: Proceedings of the 19th International Conference on Database and
Expert Systems Application, pp. 315–319. IEEE Computer Society (2008)

8. Le Guennec, A., Sunyé, G., Jézéquel, J.-M.: Precise modeling of design patterns. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 482–496.
Springer, Heidelberg (2000)

9. Halkidis, S.T., Chatzigeorgiou, A., Stephanides, G.: A qualitative analysis of soft-
ware security patterns. Comput. Secur. 25(5), 379–392 (2006)

10. Hatebur, D., Heisel, M., Schmidt, H.: A security engineering process based on
patterns. In: Proceedings of the 18th International Conference on Database and
Expert Systems Applications, DEXA ’07, pp. 734–738. IEEE Computer Society,
Washington (2007)

11. Jarvinen, H.M., Kurki-Suonio, R.: Disco specification language: marriage of actions
and objects. In: 11th International Conference on Distributed Computing Systems,
pp. 142–151. IEEE Press (1991)

12. Kim, D.K., France, R., Ghosh, S., Song, E.: A UML-based metamodeling language
to specify design patterns. In: Patterns, Proceedings Workshop Software Model
Engineering (WiSME) with Unified Modeling Language Conference 2004, pp. 1–9
(2004)

13. Mapelsden, D., Hosking, J., Grundy, J.: Design pattern modelling and instantiation
using dpml. In: CRPIT ’02: Proceedings of the Fourteenth International Conference
on Tools Pacific, pp. 3–11. Australian Computer Society Inc. (2002)

14. Mikkonen, T.E.: Formalizing design patterns. In: Proceeding ICSE ’98 Proceedings
of the 20th International Conference on Software Engineering. IEEE Press (1998)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

16. OMG. OMG. A UML profile for MARTE: modeling and analysis of real-time
embedded systems, beta 2. (June 2008). http://www.omgmarte.org/Documents/
Specifications/08-06-09.pdf

17. Schmidt, D.: Model-driven engineering. IEEE Comput. 39(2), 41–47 (2006)
18. Schumacher, M.: Security Engineering with Patterns - Origins, Theoretical Models,

and New Applications. LNCS, vol. 2754. Springer, Heidelberg (2003)
19. Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F.: Security Patterns:

Integrating Security and Systems Engineering. Wiley, Chicester (2005)
20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework 2.0., 2nd edn. Addison-Wesley Professional, Reading (2009)
21. Tanenbaum, A.S., Steen, M.: Distributed systems, principles and paradigms, 2/E.

Prentice-Hall Inc., Upper Saddle River (2007)
22. Yoshioka, N., Washizaki, H., Maruyama, K.: A survey of security patterns. Prog.

Inform. (5), 35–47 (2008)
23. Ziani, A., Hamid, B., Trujillo, S.: Towards a unified meta-model for resources-

constrained embedded systems. In: 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 485–492. IEEE (2011)

