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Introduction 

 

Crowding on urban mass transit systems is common in both 

developed and developing countries. A roundtable report by the 

International Transport Forum identifies crowding as a major source 

of inconvenience that increases the generalized cost of travel (OECD, 

2014). Crowding occurs not only while riding buses and trains, but 

also when boarding and alighting from them, when purchasing 

tickets, while waiting on platforms or at stops, and while accessing 

stations by escalator, elevator or on foot (King et al., 2014). 

 

Several recent studies have documented the cost of crowding on 

transit networks. For example, Prud'homme et al. (2012) estimate that 

the 8% increase in densities in the Paris subway between 2002 and 

2007 imposed a welfare loss of at least €75 million per year. Veitch et 

al. (2013) estimate the annual total cost of crowding in Melbourne 

metropolitan trains in 2011 at $280 million. 

 

Tirachini et al. (2013) provide a detailed review of the extensive 

literature on public transport crowding. Studies find that crowding 

increases in-vehicle time and waiting time, reduces travel time 

reliability, and causes stress and feelings of exhaustion. A number of 

studies document how disutility from in-vehicle time increases with 

the number of users. 
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There is a large operations research literature on public transit system 

design. An extensive economic literature has also developed on 

public transit capacity investments, service frequency, and optimal 

pricing and subsidy policy. These two branches of literature have 

made significant advances in understanding public transit systems. 

However, in contrast to the literature on automobile traffic 

congestion, most of the studies have employed static models that 

cannot account for travelers' time-of-use decisions and the dynamics 

of transit congestion and crowding. 

 

The time profile of ridership is driven by the trade-off that users face 

between traveling at peak times and suffering crowding, and avoiding 

the peak by traveling earlier or later than they would like. A few 

studies2 have explored this trade-off using simple microeconomic 

models that combine trip-scheduling preferences as introduced by 

Vickrey (1969) with a crowding cost function that describes how 

utility from travel decreases with passenger loads. In this paper we 

use this modeling framework to analyze usage of a rail transit line, 

and assess the potential benefits from internalizing crowding 

externalities by setting differential train fares. We also present results 

on optimal train capacity and the number of trains put into service. 

 

The model 

 

Consider a transit line that connects two stations without intermediate 

stops. The line operates on a timetable to which the operator adheres 

precisely. There are m trains, indexed in order of departure. Train k 

leaves the origin station at time kt . The time headway between 

successive trains is a constant, h, so that 1k kt t h   , 1,..., 1k m  . 

The headway is set at the minimum feasible value consistent with 

safe operation. Travel time aboard a train is independent of both 

departure time and train occupancy, and without loss of generality it 

is normalized to zero. Each train therefore arrives at the destination as 

soon as it leaves the origin station. 

 

Each morning, a fixed number, N, of identical individuals use the line 

to get to work. Users know the timetable, and have to choose which 

train to take. They prefer to reach the destination at a common time, 
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*t . If they arrive before *t , they incur a disutility or “schedule delay 

costˮ of   per minute they are early. For late arrival the penalty is   

per minute. Hence, the schedule delay cost of taking train k,  kt , is 

(1)    * * ,   1,...,k k kt t t t t k m  
 

           , 

where  max 0,x x  . Users are assumed to board a train in random 

order, and (as in de Palma et al., 2015) thus cannot increase their 

chance of securing a good seat by arriving at the origin station early. 

The expected cost of crowding is  g n , where n is the number of 

users taking the same train. Function  g n  is an average over 

possible states: securing a good seat, getting a bad seat, having to 

stand in the middle of the corridor, standing close to the door, etc.. In 

this paper we assume that   /g n n s , where 0   and 0s   is a 

measure of train capacity. The linear form is supported by the meta-

analysis of Wardman and Whelan (2011). 

 

Let 
kn  denote the number of users on train k. A user taking train k 

incurs a combined schedule delay and crowding cost of 

  * * ,   1,..., .k

k k k

n
c t t t t k m

s
  

 

             

User equilibrium with a uniform fare 

In this subsection we derive and characterize user equilibrium (UE) 

when N is fixed, and the fare is uniform; i.e. the same for all trains. A 

uniform fare does not affect either the division of users between trains 

or crowding costs. Let ec  denote the equilibrium trip cost net of fare, 

and 
e

kn  equilibrium ridership on train k. In UE, users distribute 

themselves between the m trains so that the user cost net of fare on 

every train is ec . Given eq. (1) this implies 

(2)   ,   1,..., .
e

ek

k

n
t c k m

s
     

Since every user has to take some train, 

(3) 
1

.
m e

kk
n N


  
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Equilibrium ridership is solved by substituting eq. (2) into  (3): 

(4)   ,   1,...,e

k k

N s
n t k m

m
 


      , 

where  
1

/
m

kk
t m 


  is the unweighted average scheduling cost 

per train. Equation (4) reveals that timely trains (i.e., train that arrive 

closer to *t  and have lower   kt ) carry more users than other 

trains. The difference in passenger loads between two successive 

trains is proportional to train capacity, s, and the headway between 

trains, h, and inversely proportional to users' sensitivity to crowding, 

 . The equilibrium user cost works out to 

(5) e N
c

ms


  . 

Aggregate travel costs are easily derived. Let SDC denote total 

schedule delay costs, TCC total crowding costs, and TC total travel 

costs net of the fare. It is straightforward to show that 

(6)  2e s
SDC N m 


   , 

(7)  
2

2e N s
TCC m

ms





    , 

(8) 
2

,e e e N
TC SDC TCC N

ms


     

where  
2

1

m

kk
t


      and 2 0m   by the Cauchy-Schwarz 

inequality. 

 

In equilibrium, total schedule delay costs are lower than if users were 

equally distributed across trains (in which case eSDC N ) because 

users crowd onto timely trains that arrive closer to *t . Total crowding 

costs are higher by the same amount, so that total costs are the same 

as if users were equally distributed.  

 

We now derive the optimal uniform fare. The equilibrium private cost 

of a trip, 
ep , equals the user cost plus the fare,  : 
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(9) .e N
p

ms


      

From eq. (8), the marginal social cost of a trip is: 

(10) 
2

.
e

e TC N
MSC

N ms





  


 

The first term in (10) is the same as in (5). The second term is 

proportional to N, and it is twice the corresponding term in (5) 

because the marginal social cost of crowding is twice the average 

cost. The average external cost is 

 e e e N
MEC MSC c

ms


   . 

With elastic demand, considered later, it is optimal to charge a 

uniform fare equal to the average external cost: 

(11) ,u N

ms


   

where superscript “uˮ denotes the uniform-fare optimum. Total 

revenue from the optimal uniform fare is 

(12) 
2

.u u N
R N

ms


    

Given eqs. (11) and (9), the equilibrium private cost of a trip is 

(13) 
2

.u N
p

ms


   

The uniform fare does not support the social optimum because the 

marginal external cost of crowding varies with train occupancy, and it 

is larger on more heavily used trains. The social optimum is 

examined in the following subsection. 

 

Social Optimum 

In the social optimum (SO), the marginal social cost of trips is the 

same on all trains. The marginal social cost of using train k is 

 
 

  .
k k k

k k

k

c n n
MSC t

n s




 
  


 

Let superscript “oˮ denote the SO, and oMSC  the marginal social 

cost of a trip. At the optimum, 
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(14)   ,   1,..., .ok

k k

n
MSC t MSC k m

s





     

Since every user takes some train, the counterpart to eq. (3) holds: 

(15) 
1

.
m o

kk
n N


  

Solving eqs. (14) and (15) one obtains 

(16)   ,   1,...,
2

o

k k

N s
n t k m

m
 


      , 

(17) 
2

.o N
MSC

ms


   

It is evident from eqs. (16) and (4) that train loads in the SO are more 

even than in the uniform-fare equilibrium. Spreading users is 

desirable because the cost of crowding is a quadratic function of load, 

and the benefits from reducing loads on timely trains exceed the costs 

of greater crowding on other trains. 

 

The SO usage pattern can be decentralized by charging a fare on train 

k equal to the marginal external cost of usage. We will call this fare 

pattern the SO-fare. The marginal external cost of usage on train k is 

 ,   1,..., .k

k k k

n
MEC MSC c k m

s


     

The SO-fare on train k is therefore: 

(18) 
 

,   1,..., .
2

o
ko k

k

tn N
k m

s ms

  



     

Compared to the uniform fare in eq. (11), the fare in (18) is higher on 

timely trains and lower on the earliest and latest trains. Users of all 

trains incur a private cost equal to the social cost of a trip:  

 
2

,   1,..., .o o o o

k k k

N
p c MSC k m

ms


        

The private cost is the same as the cost with the uniform fare in eq. 

(13). It is higher than the cost if no fares are charged. To see this, note 

that at least one train is more crowded in the SO than the UE. 

Compared to the UE, in the SO a rider of this train incurs the same 

schedule delay cost, but a higher crowding cost and a positive fare. 

Since all users incur the same private cost in the UE, and all users 

incur the same private cost in the SO, private costs are higher in the 
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SO. Unless fare revenues are used to improve service in some way, 

charging fares to price crowding costs leaves users worse off.  

 

Total revenue from the SO-fare is 
1

mo o o

k kk
R n


 . Using eqs. (16) 

and (18) one obtains 

(19)  
2

2 .
4

o N s
R m

ms





     

The first term in (19) matches revenue from the optimal uniform fare 

in (12). The second term is extra revenue due to variation of the fare. 

This will be called variable revenue, oRV , where3 

(20)   
 

 

2

2 2 3

2
.

4 48

o
ss

RV m h m



   

   


 

Other aggregate costs in the SO work out to: 

(21) 2o e oSDC SDC RV  , 

(22) 3o e oTCC TCC RV  , 

(23) .o e oTC TC RV   

Total schedule delay costs are higher in the SO than the uniform-fare 

or no-fare equilibrium. However, crowding costs are smaller by 1.5 as 

much, and total costs are lower by variable revenue.  

 

As indicated in eq. (20), variable revenue is independent of N. The 

welfare gain from setting optimal fares is therefore independent of 

total usage. This may seem surprising since intuition would suggest 

that the welfare gain increases with N: first because crowding 

becomes more onerous for users on average, and second because 

more users suffer the higher cost. To understand the result, recall that 

the welfare gain arises from distributing users more evenly between 

trains. Since the difference in crowding costs between two successive 

trains equals the difference in schedule delay costs, the benefit from 

reallocating users between trains is independent of N. As N increases, 

marginal crowding costs on each train rise at the same rate. The 

uniform-fare component of the optimal toll in eq. (18) increases 

linearly with N, but the variable component does not change. 
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Another way to view the result is in terms of total costs. The marginal 

social costs of usage in the UE and SO are given in eqs. (11) and (17) 

respectively. Since the equations are the same, the marginal social 

costs are the same. In effect, the benefits of internalizing the 

crowding cost externality are exhausted once total usage is large 

enough for all trains to be used — as assumed throughout the paper. 

 

In a longer version of this paper (de Palma, Lindsey and 

Monchambert, 2015) we have shown that the welfare gains from 

congestion pricing depend on the shape of the crowding cost function, 

 .g . If  .g  is convex, the welfare gain decreases with N, and if 

 .g  is concave, the welfare gain increases with N. Most empirical 

studies find that  .g  is either linear or convex. This suggests that the 

benefits of differentiating fares by train (or, equivalently, time of day) 

may be limited on heavily used transit systems. The model thus offers 

one explanation for why peak-load pricing on transit systems is not 

very common. 

 

Optimal transit service with elastic demand 

 

We now turn attention to the long run when the transit authority can 

choose the number of trains, m, train capacity, s, and the train 

timetable. We continue to assume that all trains have the same 

capacity, and that the headway is uniform and exogenous. When the 

schedule delay and crowding cost functions are linear, as assumed, 

the optimal timetable is straightforward to derive and, due to space 

constraints, it is not described here. 

 

To investigate the optimal values of m and s we assume that the 

capital, operations and maintenance costs of providing service are 

described by a function  ,K m s  which is strictly increasing in m and 

s. To facilitate analysis, m will be treated as a continuous variable. 

 

We now allow total usage to depend on the price, defined in eq. (9), 

and let  p N  denote the inverse demand curve. With a uniform fare, 

social surplus net of capacity costs is 
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(24)    
2

0
 , .

N
e

n

N
SS p n dn N K m s

ms






 
    

 
  

The transit authority chooses m and s to maximize eSS . With a zero 

fare, the first-order conditions work out to: 

(25) 
2

2
For  with zero fare :        ,

/

N

s

N

p NN
s K

p N N msms







 

(26) 
2

For  with zero fare :      
/

N

m

N

p NN
m N K

m p N N msm s

 



 
  
  

, 

where 
sK and 

mK are derivatives of  ,K m s  with respect to s and m 

respectively. The first term of the product on the left-hand side of 

(25) is the marginal benefit from expanding train capacity if usage 

remained fixed. The average cost of crowding would decrease by 

 2/N ms for the N users. The actual reduction in crowding is 

smaller than this because the improved service quality attracts new 

users. Because usage is underpriced, the increase in usage is welfare-

reducing which shrinks the benefit from greater capacity. This latent 

demand effect accounts for the second term of the product on the left-

hand side of (25) which is less than 1. In the limit of perfectly elastic 

demand (i.e., 0Np  , the potential benefit is completely dissipated. 

In the opposite limit of fixed demand (i.e., Np  ), the second 

term converges to 1, and there is no dilution of benefit. 

 

Equation (26) for m is interpreted similarly. The first term in brackets 

on the left-hand side is the marginal benefit from less crowding. The 

second term in brackets is the marginal disbenefit due to greater 

schedule delay costs. This net benefit is diluted by the same factor as 

in eq. (25). With the optimal uniform fare, the first-order conditions 

work out to: 

(27) 
2

2
For  with optimal uniform fare :      ,s

N
s K

ms


  

(28) 
2

For  with optimal uniform fare :       .m

N
m N K

mm s

  
  
 

 



Lindsey 10 

In contrast to eqs. (25) and (26), the marginal benefits from 

expanding service in eqs. (27) and (28) are not diluted by additional 

usage because usage is priced efficiently. This might suggest that the 

optimal values of s and m, *

os  and *

om , are larger than their 

counterparts with a zero fare, *

ns  and *

nm . However, at least for given 

values of s and m, usage is higher in the no-fare regime because the 

private cost of usage is lower. This leaves the rankings of *

os  and *

ns , 

and *

om  and *

nm , theoretically ambiguous in general. 

 

With the SO-fare, social surplus net of capacity costs is given by 

(29)      
2

0
 , ,

N
o o

n

N
SS p n dn N K m s RV m s

ms






 
     

 
 . 

Equation (29) is the same as eq. (24) except for the last term, oRV , 

which is a function of m and s, but does not depend on N. Since usage 

is priced efficiently in both the SO-fare and optimal uniform-fare 

regimes, the first-order conditions for s and m are the same as for the 

optimal uniform toll, (27) and (28), with the derivatives of 

   , ,oK m s RV m s  in place of the derivatives of  ,K m s . Hence, 

(30) 
2

2
For  in the SO :      ,o

s s

N
s K RV

ms


   

(31) 
2

For  in the SO :       o

m m

N
m N K RV

mm s

  
   
 

, 

where 
o

sRV  and 
o

mRV  denote the derivatives of  ,oRV m s  with 

respect to s and m respectively. The right-hand sides of eqs. (30) and 

(31) are smaller than their counterparts for the optimal uniform toll, 

(27) and (28). The generation of variable revenue from the SO-fare 

effectively reduces the marginal financial cost of expanding capacity. 

In the case of (30) this implies that optimal train capacity conditional 

on the values of m and N is larger in the SO:    * *, ,o us m N s m N . 

Similarly, eq. (31) implies that the optimal number of trains 

conditional on the values of s and N is also larger in the social 

optimum:    * *, ,o um s N m s N . 



Lindsey 11 

These rankings may seem surprising given that total system costs are 

lower in the SO than the uniform-fare equilibrium. Inequality 

   * *, ,o um s N m s N  is explained by the fact that ridership is 

distributed more evenly across trains in the SO. More users take the 

earliest and latest trains in the SO which makes adding extra trains 

more beneficial. The reason for the inequality    * *, ,o us m N s m N  

is more subtle. It can be shown that while total user costs in the 

uniform-fare regime decrease with s, the deadweight loss from 

imbalanced ridership between trains increases with s. Expanding 

capacity is therefore more valuable in the social optimum. By 

contrast, in the Vickrey (1969) bottleneck model of road traffic 

congestion, optimal capacity is higher with a uniform fare. 

 

A numerical example 

 

Further properties of the model are difficult to derive analytically, and 

to proceed further we now adopt a specific capacity function that is 

based on Kraus and Yoshida (2002): 

(32)    0 1 2,K m s s m s     , 

where 
0v , 

1v  and 
2v  are all nonnegative parameters. The term 

0 1s   in (32) is the incremental cost of running an additional train, 

which includes both capital and operating costs. It is a linear 

increasing function of train capacity. If 
0 0v  , there are scale 

economies with respect to train size. The second term in (32), 2s , 

accounts for costs that depend on train capacity, but not the number 

of trains, such as terminal capital costs. 

 

The numerical example draws on recent empirical estimates of 

crowding costs, and is loosely calibrated to describe service on the 

Paris RER A line during the morning peak.4 Base-case parameter 

values are:  =5 [€/(hr⋅user)],  =20 [€/(hr⋅user)],  =2.72 [€/user], 

and  h=2 [min/train]. The demand function is assumed to have a 

constant-elasticity form 0N N p  with  =-1/3.5 Parameters 
0N , 

0 ,v  1v  and 2v  are chosen to yield equilibrium values for the optimal 
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uniform-fare equilibrium of uN =18,700, *

um =24, *

us =800 and fare 

revenue equal to 5/6 of capacity costs.  The resulting values are: 
0N

=35,598, 0v =412.8, 1v =0.5058 and 2v =49.78. Results for the three 

fare regimes are reported in Table 1. 

 

With no fare, the equilibrium private cost (which equals the 

equilibrium user cost) is €4.54. There are nN =21,500 users who are 

accommodated in *

nm =25.27 trains with (nominal) capacities of *

ns

=811. Total crowding costs are more than double total schedule delay 

costs. Capital costs ( nK ) amount to a little over 60% of total user 

costs ( nTC ). Given no fare, cost recovery,  , is zero. 

 

The optimal uniform fare works out to u = €2.65. It boosts the 

equilibrium private cost to 
up = €6.90 which is €2.36 above the no-

fare equilibrium price. Ridership drops to uN =18,700 which is 13% 

below the no-fare level. Both the number of trains and train capacity 

are also lower than with no fare although capacity costs are reduced 

by only 2.8%. Total crowding costs and total schedule delay costs are 

also lower than with no fare. Consumers' surplus is lower than with 

no fare, but social surplus is higher by €4,135 or about €0.22 per rider 

in the uniform-fare equilibrium. The relative efficiency of the optimal 

uniform fare can be measured as a fraction of the difference in social 

surplus between the SO and the no-fare equilibrium. It works out to 

about 0.82 so that the optimal uniform fare yields most of the 

efficiency gains from the SO-fare. 

 

The SO features more trains than either the no-fare or the uniform-

fare regime. However, train capacity is slightly lower than in the 

other two regimes. Ridership and consumers' surplus are slightly 

higher than with a uniform fare, whereas price, revenue per user and 

cost recovery are slightly lower. Crowding costs are significantly 

lower than in the other two regimes, but schedule delay costs are 

higher than with a uniform fare because the SO-fare spreads usage 

more evenly over trains. Capacity costs are intermediate between the 
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other two regimes. Social surplus is higher than with no fare by about 

€0.27 per rider. 

 

No-fare (n )Opt. uniform (u ) Social opt. (o )

m 25.27 24 25.69

s 811 800 787

N 21,500 18,700 18,814

p 4.54 6.90 6.77

Rev/user 0.00 2.65 2.63

TCC 68,493 55,563 49,424

SDC 29,092 23,896 28,588

TC 97,584 79,459 78,012

K 61,164 59,447 60,029

R 0 49,539 49,424

ρ 0 0.833 0.823324901

CS 1,004,019 956,898 959,244

SS 942,856 946,990 948,638

Gain/N
u

0.22 0.27

Rel.eff 0.00 0.822 1

Fare regime

 
 

Table 1: Comparison of no-fare, optimal uniform fare, and SO-fare 

(i.e., social optimum) regimes: base-case parameter values 

 

The number of trains has been treated as a continuous variable 

although it is discrete in reality. The model was resolved by 

restricting m to integer values to obtain 
*

nm =25 and 
*

om =26. Results 

were hardly affected, and social surplus was virtually unchanged.  

 

To test the sensitivity of the results to the demand function, solutions 

were derived with different values of the elasticity. With 0  , the 

uniform fare yields no welfare gain at all and merely transfers money 

from users to the transit authority. The SO-fare yielded a welfare gain 

of only €0.097 compared to €0.27 in the base case. With 2/3   , 
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the optimal uniform-fare yields a much higher welfare gain of €0.42. 

The welfare gain from the SO increases too to €0.51, and the relative 

efficiency of the uniform-fare regime is little changed. 

 

Conclusion 

 

In this paper we have studied the time profile of ridership on a 

crowded rail transit line. We solve for the user equilibrium and social 

optimum when supply is fixed, as well as the long run when service 

can be optimized. Some of the results parallel those obtained with 

road traffic congestion models. Passenger loads are distributed more 

evenly across trains in the social optimum than the user equilibrium. 

The social optimum can be decentralized by charging higher fares on 

more popular trains to internalize the crowding cost externality on 

each train. Imposing differentiated fares makes users worse off --- at 

least before accounting for how the revenues are used. Other results 

are less obvious. The welfare gains from tolling are independent of 

total ridership. Expanding the number of trains can also be more 

valuable in the social optimum than the user equilibrium even though 

total system costs are lower in the social optimum. 
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