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Abstract

The ridges of the wavelet transform, the Gabor transform or any time-frequency representation of a signal contain

crucial information on the characteristics of the signal. Indeed they mark the regions of the time-frequency plane

where the signal concentrates most of its energy. We introduce a new algorithm to detect and identify these ridges.

The procedure is based on an original form of Markov Chain Monte Carlo algorithm specially adapted to the present

situation. We show that this detection algorithm is especially useful for noisy signals with multi-ridge transforms. It is

a common practice among practitioners to reconstruct a signal from the skeleton of a transform of the signal (i.e. the

restriction of the transform to the ridges). After reviewing several known procedures we introduce a new reconstruction

algorithm and we illustrate its efficiency on speech signals.
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I. Introduction

A wide class of signals may be conveniently described in terms of time-dependent amplitude and frequency

(see for example [9] or [2]) or sums of such amplitude and frequency modulated components (like in speech

analysis and synthesis applications [11], [16], [12]). But the main problem remains the numerical evaluation

of these time-dependent characteristics. Time-frequency representations [9] offer a convenient set up and the

problem of the estimation of the local amplitude and frequency is well understood in the noise free case with only

one component, the situation gets much more complex in the presence of noise and/or of several components.

We proposed in [5] a new constrained optimization approach for processing one-component signals in very

noisy situations. At high signal to noise ratios (SNR’s for short), one-component signals can be analyzed by

means of their instantaneous amplitude and frequency for which the estimation theory is well developed [2].

The nonparametric approach used in [5] was based on the solution of variational problems. This choice

was motivated by the desire to handle low SNR’s. We also note that bilinear representations such as the

(generalized) Wigner distributions [9], [3] can yield extremely precise results in the one-component case, but

may completely fail in the multicomponent situation because of the presence of interference terms. We describe

here a new approach capable of handling multiple component signals. This new approach is based on a new

Markov Chain Monte Carlo (MCMC for short) which uses the energetic distribution provided by a time-

frequency representation of the signal. Given the fact that the energy of the signal concentrates around curves

in the time-frequency plane which we shall call “ridges”, the Markov chain is constructed in such a way that

the random walkers (hereafter called “crazy climbers”) are attracted by these one-dimensional structures. We

also add another step to the analysis. It is called “synthesis step” because it is devoted to the reconstruction

of the “part” of the signal that led to the ridge.

Throughout this paper, the discussion will be restricted to the cases of the Gabor and wavelet transforms.

The reason is our desire to consider applications to speech signals for which the Gabor transform is better

suited. It is important to notice that since our detection algorithm is only a special post-processing of a time-

frequency transform, it can be used with other time-frequency energetic representations, such as the family of

Wigner distributions for example. On the contrary, the reconstruction algorithm is specific to the considered

representations. We develop it for wavelet and Gabor transforms, but the modifications required to extend it

to other linbear time-frequency representations are straightforward.

The thrust of the present paper is twofold. First we give a new ridge detection algorithm which can efficiently

detect multiple ridges in the modulus of a transform and second we propose a signal reconstruction procedure

from the knowledge of the skeleton of its transform on arbitrary points of its ridges. Our detection procedure

is based on an original Markov Chain Monte Carlo algorithm. It is designed in such a way that weighted

occupation densities draw the ridges on the time-frequency plane. Since its nature is post-processing of a
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time-frequency energetic representation, is not restricted to linear transforms (in particular it can be used with

bilinear representations as discussed in [1]) and it can draw as many ridges as needed. But most importantly,

its robustness to noise is remarkable. The reconstruction procedure is based on the classical idea of spline

smoothing as presented in [19]. It is restricted to linear transforms and it was used in the case of the wavelet

transform (without much explanation) in the companion correspondence [5]. We present it in full details here.

As for the ridge detection, it performs very well in noisy situations. Both components of our work (ridge

detection and reconstruction) are illustrated on two specific data sets. The first one is the superposition of a

real life sonar bat signal with an artificially generated chirp. It is analyzed with the wavelet transform.

We close this introduction with a short summary of the contents of the paper. After a short section devoted

to notation and discretization issues, our detection algorithm is presented in a general setting in Section III.

We also try to emphasize the similarities and the differences with known procedures such as minimization by

simulated annealing or the more recent ”re-assignment” or ”re-allocation” procedures advocated in [1] or [13].

Section IV contains a detailed discussion of a first numerical examples and a discussion of the specifics of noisy

signals. Section V gives our reconstruction procedure of the original signal from the estimates of the transform

on the ridges. Some of the details of the penalization procedure are postponed to the Appendix. Because we

choose to illustrate the efficiency of this reconstruction on speech signals, a short Section VI is devoted to the

specifics of the sinusoidal model for speech.

All the detection and reconstruction algorithms presented in this paper have been implemented in the Splus

environment. The data files and the S-code needed to produce all the numerical results and figures given as

examples in this paper are available on the Internet [6].

II. Notation for the Continuous Gabor and Wavelet Transforms

We set the stage by introducing the time-frequency representations which we use to illustrate the crazy

climber algorithm. The latter may be used as post processing of any time frequency representation, we

shall restrict the present discussion to the cases of the continuous wavelet and Gabor transforms for the sake

of simplicity. Indeed, the behavior of these transforms is easy to understand for amplitude and frequency

modulated signals.

We work with the complex Hilbert space L2(IR) of square-integrable functions. Our convention for the

Fourier transform is:

f̂(ξ) =

∫ ∞

−∞
f(x)e−iξxdx (1)

and consequently the Plancherel formula reads ||f̂ ||2 = 2π||f ||2.
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A. Continuous Transforms

Let ψ(x) be a fixed integrable function such that:

0 < cψ =

∫ ∞

0

|ψ̂(ξ)|2
dξ

ξ
<∞ . (2)

Such a function ψ is called an analyzing wavelet and the wavelet transform of a signal f ∈ L2(IR) with respect

to ψ is defined by:

Tf (b, a) =
1

a

∫ ∞

−∞
f(x)ψ

(

x− b

a

)

dx. (3)

Throughout this paper, we use the Morlet wavelet ψ(x) = e−x
2/2eiω0x, but any complex-valued wavelet be-

longing to the complex Hardy space H2(IR), i.e. such that ψ̂(ξ) = 0 ∀ξ ≤ 0, would do as well. We use the

notation:

ψ(b,a)(x) =
1

a
ψ

(

x− b

a

)

(4)

for the wavelet with scale a and location b. In addition, we shall find convenient to introduce the auxiliary

variable ϕ = log(a). With such notation, it follows directly from Taylor’s formula that if we consider signals

of the form:

f(x) =
N
∑

k=1

Ak(x) cos(φk(x)) (5)

where the amplitudes Ak(x) are continuously differentiable and the phases φk(x) are twice continuously differ-

entiable, then their wavelet transform can be written in the form:

Tf (b, a) =
1

2

N
∑

k=1

Ak(x)e
iφk(b)ψ̂(aφ′k(b)) + r(b, a) (6)

with r(b, a) ∼ O(|A′
k|, |φ

′′
k |). As a consequence, if the wavelet ψ(x) is localized near a certain value ξ = ω0 in

the frequency domain, the wavelet transform square modulus M(b, a) = |Tf (b, a)|
2 is concentrated near the N

curves with equations a = ak(b) = ω0/φ
′
k(b). These curves of the time-frequency plane are called the ridges of

the transform, and our goal is to present efficient algorithms to estimate these ridges.

Next we describe the case of the Gabor transform (although Gabor’s original representation was discrete, we

use a continuous version which we still call the Gabor transform). The Gabor transform of a signal f ∈ L2(IR)

of finite energy is defined as:

Gf (b, ω) =

∫ ∞

−∞
f(x)g(x− b)e−iω(x−b) dx , (7)

where g(x) is a window function with a good time-frequency localization. We use the Gaussian window

g(x) = gs(x) =
1

s
√
2π
e−x

2/2s2 , where s is a scale parameter, but other choices such as the Hamming windows

(which are very popular in speech processing) would be as convenient. We shall use the notation

g(b,ω)(x) = g(x− b)eiω(x−b) (8)
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for the time-frequency atoms used in the definition of the Gabor transform. The same argument as before

shows that the continuous Gabor transform of signals of the type (5) may be written in the form:

Gf (b, ω) =
1

2

N
∑

k=1

Ak(x)e
iφk(b)ĝ(φ′k(b)− ω) + r(b, ω). (9)

Again the remainder term r(b, ω) depends upon the derivatives of the amplitudes and the local frequencies.

Assuming for simplicity (this is the case for the Gaussian windows as well as for the Hamming windows) that

the Fourier transform of the window has fast decay away from the origin of frequencies, we end up again with

a Gabor transform square modulus M(b, ω) = |Gf (b, ω)|
2 exhibiting a certain number of ridges.

B. Discretizations

In practice, we have only access to discrete data, and the wavelet and Gabor transforms have to be discretized.

The discretization of the Gabor transform is traditionally a regular sampling of the continuous formulas. In

practice, we sample the Gabor transform at the same rate as the signal.

Sampling the wavelet transform is somewhat more problematic. Indeed, the classical discretization scheme

for wavelet transforms involves the so-called dyadic grid, of the form (kb0a
j
0, a

j
0), j, k ∈ ZZ. Such a choice

is not convenient for our purpose, because it is not shift-invariant: the discrete transform of a shifted copy

of the signal is not the shifted copy of the original signal’s transform. To overcome such a drawback, it is

convenient to introduce more redundancy into the transform, and work with discretization grids of the form

(kb0, a
j
0), j, k ∈ ZZ. Or, in terms of the auxiliary variable ϕ, we will use a grid of the form (kb0, jϕ0), j, k ∈ ZZ,

with ϕ0 = log(a0), i.e. a regular grid again.

III. Drawing the Ridges of a Surface

As we have seen, characterization of the signal’s instantaneous frequency by the wavelet or the Gabor

transform can be achieved by extracting numerically the ridges as the set of local maxima of the transform’s

square modulus, denoted hereafter by M(b, ϕ), where ϕ is either the log of the scale variable (wavelet case) of

the frequency variable (Gabor case). The problem which we are addressing in this section is to determine the

ridges of the surfaceM(b, ϕ). When the surface is the energy landscape over the time-frequency plane given by

a specific transform, a second challenging problem is, for each ridge, to estimate the corresponding component

of the signal, and reconstruct it. We shall address this second problem in Section V below.

According to [10], ridges may be defined in a very general setting as curves on a surface z = f(x, y). They

are completely characterized by their projection on the (x, y) plane. We also call these curves ridges by a

convenient abuse of language. We shall be interested in the special class of ridges which we describe below.

We start with a subset D of the upper (time-frequency) half plane. D will be bounded in the applications

but we can think of D as the whole upper half-plane for the purpose of the present discussion. We shall use

September 21, 1998 DRAFT



7

the notation (b, ϕ) for the points of the domain D. We consider a nonnegative function M(b, ϕ) defined on D.

We define the ridge set R as the set of local maxima in ϕ of the functions ϕ →֒M(b, ϕ) when the variable b is

held fixed. We assume that the surface M(b, ϕ) is smooth enough so that the ridge set is the finite union of

the graphs of smooth functions slowly varying on their respective domains. In other words we assume that:

R = ∪Lℓ=1Rℓ (10)

where each Rℓ is the graph of a smooth function [bℓ,min, bℓ,max] ∋ b →֒ ϕℓ(b) defined on a (possibly strict)

subset of the domain of the variable b. In the practical applications which we have in mind, the ridge functions

ϕℓ(b) are slowly varying. But notice that we do not make any assumption on the lengths of the individual

ridges Rℓ or even the fact that they could cross1.

A. The Crazy Climber Detection Algorithm

The main idea of the “crazy climber” algorithm is as follows. A large number of particles (the climbers)

are initially randomly seeded on the domain D at step 0. Then each climber evolves according to a Markov

chain on D with a transition mechanism depending upon the local values of the M(b, ϕ) function. This chain

is designed to relax to a steady distribution which is essentially concentrated on the ridges. The projection of

the motion on the b-axis is the standard symmetric random walk, say with elastic reflection at the boundary

points of the interval and consequently, the projection of the steady distribution on the b-axis is the uniform

distribution. Vertically, the climbers are then encouraged to “climb on the hills” to reach the ridges by a

Hastings-Metropolis penalization and a temperature schedule similar to the simulated annealing algorithm.

But contrary to simulated annealing, the crazy climber algorithm looks for all the local maxima when the

time variable is fixed instead of searching only for the global maxima. In fact, a natural implementation of

the simulated annealing would lead to the simulation of one single sample path of a Markov chain in the very

complex space of all the ridge candidates (see for example [5] for an implementation in this spirit) while the

crazy climber detection algorithm requires the simulation of many sample paths of a Markov chain in the time-

frequency plane (or more precisely its discretized version) which is a state space of a much simpler complexity

indeed.

Obviously the implementation involves a discretized version of the time-frequency plane. We assume that the

time interval over which the signal is analyzed is discretized into a finite set {b0, b1, · · · , bB−1} with B elements.

We also assume that the values of the frequency variable ϕ are discretized into a finite set {ϕ0, ϕ1, · · · , ϕK−1}.

1In fact, in the cases under consideration, namely wavelet and Gabor transforms, ridges never cross; even if one generates a signal

whose analytical expression is the sum of two frequency modulated components with intersecting frequency modulation curves,

the ridges will not reproduce exactly the frequency modulations near their expected intersection. We have no simple explanation

for this “experimental” fact. Notice that such a remark is specific to wavelet or Gabor transforms. Indeed, ridges of Wigner-Ville

representations do cross.
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We thus reduce the analysis of the square modulus of the transform to the analysis of a finite B ×K matrix

with nonnegative entries.

A.1 Crazy Climbers

At time t = 0 we initialize the positions Xα(0) of N climbers on the grid Γ = {0, · · · , B−1}×{0, · · · ,K−1}.

The climbers are labeled by the parameter α = 1, · · · , N . The initial positions are chosen independently of

each other, uniformly over the grid Γ. The climbers evolve independently of each other according to the same

law. If a climber is at the point (j, k) at time t, i.e. if Xα(t) = (j, k), then its position at time t + 1, say

Xα(t+1) = (j′, k′) is determined according to the following law: j′ = j− 1 with probability 1/2 and j′ = j+1

with probability 1/2 (we do not discuss the particular cases j = 0 and j = B−1 involving boundary conditions

not to confuse the issue). Then when the climber has decided to move to the left (when j′ = j − 1) or to

the right (when j′ = j + 1) in the horizontal direction, a possible vertical move is considered. As for the

horizontal component, the climber tries to move up (i.e. k′ = k + 1) or down (i.e. k′ = k − 1) with equal

probabilities. Again we ignore the boundary conditions for the sake of simplicity. Unlike in the case of the

horizontal direction, the move does not always take place. The transition from (j′, k) to (j′, k′) takes place if

the value of the function increases, i.e. if its so-called Delta ∆M = M(j′, k′) −M(j′, k) is nonnegative. On

the other hand, the move does not necessarily take place if the function decreases, i.e. if ∆M < 0. Indeed, in

this case the transition is made i.e. Xα(t + 1) = (j′, k′) with probability exp[∆M/T (t)] and the climber does

not move vertically, i.e. Xα(t+ 1) = (j′, k) with probability 1− exp[∆M/T (t)].

At each time t we consider two occupation measures. The first one is defined by:

µ
(0)
t =

1

N

N
∑

α=1

δXα(t).

It is obtained by putting a mass 1/N at the location of each of the climbers on the grid. In other words,

µ
(0)
t (A) is the proportion of climbers in A at time t. The second one is the “weighted” occupation measure µt

defined by:

µt =
N
∑

α=1

M(Xα(t))δXα(t)

and obtained by putting a mass equal to the value of the function M at the location of the climber.

We finally consider the corresponding “integrated occupation measures”, defined by ergodic averages as

follows:

µ0
I =

1

T

T
∑

t=1

µ0
t (11)

and

µI =
1

T

T
∑

t=1

µt (12)
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The occupation measure µ0
I is only given here for the sake of completeness. Indeed its main shortcoming is the

fact that it assigns nonzero mass to regions without ridges if the lengths of the ridges are smaller than the length

of the window. This is due to the very nature of the unrestricted horizontal motions of the climbers. Because

the modulus of the denoised versions of the functions M which we use in the applications are essentially zero

away from the ridges, the occupation measure µI gives much better results when it comes to detecting ridges.

Further Remark: Notice that the climbers evolve independently of each other without interaction and with

the same distribution so that the computer code generating the motions of the climbers is the same for all the

climbers. This is an indication that the algorithm can naturally be parallelized on a SIMDIM machine (such as

for example the massively parallel computers MASPAR I & II). We shall not report of such an implementations

here.

A.2 A Simple Example

To illustrate the crazy climber algorithm, we first present in Figure 1 a simple example, namely that of the

Gabor transform of a sine wave multiplied by a Gaussian envelop (top left). The square modulus of the Gabor

transform with a Gaussian window is displayed at the top right of the figure, and the two integrated occupation

measures are displayed in the bottom of the figure. We clearly see on the figure the different meanings of the

two measures: in particular the weighted occupation measure appears as a shrunk copy of the Gabor square

modulus. In addition, note that the weighting of the measure also plays the role of a thresholding for the ridge

detection.

A.3 Chaining

The output of the algorithm described above is a measure on the domain D. We identify it with its density

which is a function on D. The next step of the algorithm is to identify the various ridges Rℓ. This is done

via a chaining procedure which replaces the occupation density by one-dimensional curves. This procedure is

based on the following two steps:

1. Thresholding of the density function given as the output of the crazy climbers algorithm.

2. “Propagation” in the b direction: given a point (b, ϕ) belonging to a given ridge Rℓ, look for the “best

neighbor” among (b + ǫb, ϕ) and (b + ǫb, ϕ ± ǫϕ) (here ǫb and ǫϕ are parameters fixed in advance); then

iterate the process until only values below the threshold can be reached.

The result is a series of ridges, which are graphs of curves ϕ = ϕℓ(b), b = bℓ0 · · · b
ℓ
kℓ
.

IV. Numerical Results and Examples

The crazy climber algorithm was tested on several signals containing multiple ridges. We restrict the present

discussion to two examples, one treated with the wavelet transform and the other with the Gabor transform.
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A. First Numerical Results

The first signal (displayed at the top of Figure 2) is the sum of a (real) sonar signal emitted by a bat (this

particular signal, displayed at the very top of Figure 2, together with noisy versions, was intensively studied

in [5]) and a “linear chirp”, i.e. a function of the form A(x) cos(φ(x)) with A(x) a Gaussian function and

φ(x) a quadratic phase. Figure 2 shows the modulus of the wavelet transform of the signal, together with the

three different ridges found by the crazy climber method: the main ridge of the bat signal, the first harmonic

component, and the chirp signal. The horizontal axis is the time axis, and the vertical axis corresponds to

the logarithm of the scale (i.e. the variable ϕ alluded to above). The modulus is represented with gray levels

proportional to the values of the modulus of the wavelet transform. The different ridges are displayed with

different gray levels.

The second signal is a speech signal, namely 250 ms of the word /one/ sampled at 8kHz. The signal is

displayed at the very top of Figure 5, and the squared modulus of its Gabor transform is the third item of the

figure (here we used a Gaussian window of size approximately equal to 16ms (following the lines of [11]), and

we computed the Gabor transform over the range 0Hz–4000Hz (with 100 different values for the frequency,

regularly sampled, see the discussion above)). The horizontal axis is the time axis, and the vertical axis is the

frequency axis (the conventions for the square modulus and ridge displays are the same as before). The crazy

climbers algorithm (run with 500 climbers, and 10000 time steps each) found 18 different ridges, which are

displayed at the bottom of Figure 5.

We shall come back to these examples when discussing the reconstruction from ridges, which are displayed

on the same figures.

B. The Case of Noisy Signals

In many applications we can assume that we have observations f(x) of an unknown signal f0(x) in the

presence of an additive noise ǫ(x) with mean zero. In other words we work with the model:

f(x) = f0(x) + ǫ(x)

and we assume that the noise is given by a mean zero stationary process with (unknown) covariance:

IE{ǫ(x)ǫ(y)} = Γ(x− y).

The case Γ = I (i.e. Γ(x − y) = δ(x − y)) corresponds to the case of an additive white noise. In some

situations, “a-priori” knowledge of the noise is available. For instance it may happen that the power spectrum

of the noise is known, or a piece of the signal is known to contain only noise, which gives us the chance to

learn about the statistics of this noise. Then the detection algorithm may be improved by “renormalizing” the

time-frequency representation, i.e. subtracting what is supposed to be the “typical” contribution of the noise.

September 21, 1998 DRAFT



11

This contribution could be chosen to be the expectation IE{Mǫ(b, ϕ)}. Moreover, if an a-priori model for the

noise is available, such a quantity may be estimated by Monte-Carlo simulations, or sometimes by a direct

computation.

Example: Assume that {ǫ(x)} is a second order mean zero stationary process with power spectrum of the

form p(ξ) ∼ σ2ξα, and that we are using with the continuous wavelet transform. In this case, IE{Mǫ(b, a)} =

IE{|Tǫ(b, a)|
2} ∼ Kασ

2a−α−1 provided the analyzing wavelet ψ(x) is such that Kα =
∫

uα|ψ̂(u)|2du <∞.

In most practical applications, we only have one realization of the noise component and it is impossible to

compute directly this expectation. A simple ergodic argument justifies the use of the estimate:

V (ϕ) =
1

B

∫ B

0

M(b, ϕ)db. (13)

Then in the penalty term used to define the ϕmotion of the climbers, the squared modulus of the time-frequency

transform may be replaced with:

M̃(b, ϕ) =M(b, ϕ)− V (ϕ) . (14)

The effect of such a modification is to avoid “trapping” the ridge in regions dominated by the noise.

As an illustration, we display in Figure 4 the ridges of the same signal as before, embedded into a Gaussian

white noise, with SNR = 0dB. We can see that the main ridge is quite well reconstructed, and that the ridge

of the chirp is also recovered, although only a part of it has been detected, namely the most energetic part.

The first harmonic component of the bat signal has not been detected (the corresponding wavelet transform

square modulus was too low compared to the typical size of the noise, here of the form K/a for some constant

K).

V. Reconstructions from the Ridges

We now address the problem of the reconstruction of a signal from the knowledge of a transform on its

ridge(s). This problem was already discussed in [8] as well as many articles on speech processing (see e.g. [11]).

We describe here an approach based on a penalization procedure, alluded to in [5]. Even though the ridge

detection part of the algorithm was independent of the time-frequency representation, this is not the case for

the reconstruction. In particular, our approach is not adapted to bilinear time-frequency representations such

as those given by the Wigner-Ville transform. We shall restrict ourselves to the cases of the wavelet and the

Gabor transforms. Nevertheless, our approach extends to linear representations such as those obtained from

matching pursuit as discussed in [14] or those developed in [18].

A. General Discussion

In order to put our reconstruction algorithm in perspective we first review the procedures currently used.

The methods outlined in subsection V-A.3 will be developed with more details in section V-B.
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A.1 The Transform Skeleton

The first reconstruction is the simplest one (once the ridges have been estimated). It consists in restricting

the transform (whether we are working with the wavelet transform of the Gabor transform) to the ridges. It

is motivated by the approximate formulas (6) and (9). More precisely, using the notation used throughout the

paper, this reconstruction is given in the Gabor case by:

f̂(x) = 2ℜ

L
∑

ℓ=1

Gf (x, ωℓ(x)) (15)

where the summation in the right hand side is restricted to the ℓ’s for which ωℓ(x) makes sense (in particular,

f̂(x) = 0 when there is no ridge at “time” x), and by a similar formula in the wavelet case. The restriction of

a transform to a ridge is sometimes called the “skeleton” of the transform [8].

This is a very simple scheme and as Figure 3 shows, the results of this naive reconstruction can be extremely

good. Its main shortcoming is that it requires the knowledge of the transform at ALL the points of the ridges

. This limitation makes it impossible to subsample the ridge (for compression purposes for example).

A.2 Parametric Reconstruction

The main drawback of the above mentioned reconstruction schemes is that they are fundamentally linear,

and as such, constrained by the theory of frames of wavelets and/or Gabor functions (see [7] for a review).

This puts severe limitations on possible subsampling.

For the sake of completeness we quote a non-linear reconstruction scheme that has been successfully used

in speech processing in the framework of the so-called sinusoidal model. See [11] for a review. The main

observation is that although the wavelet and the Gabor transforms restricted to ridges are often very oscillatory

(and then uneasy to compress), the corresponding amplitudes Aℓ(b) and frequencies νℓ(b) =
1
2πφ

′
ℓ(b) are often

slowly varying. This is the case for the Gabor transform of speech signals when the window is broad band.

The rationale is then to try to restrict these functions to a specific class which can be characterized by a small

number of numerical parameters. The reconstructed signal is then obtained by any parametric estimation of

the amplitude and the frequency, and the by integrating the estimate of the frequency to recover the phase

φℓ(b) = φℓ(b0) +
1

2π

∫ b

b0

νℓ(x)dx ,

and then computing Aℓ(b) cos(φℓ(b)). This may be done for all the ridges of the considered time-frequency

representation, and the reconstructed signal is then the sum of all the components of the form Aℓ(b) cos(φℓ(b)).

A.3 Ridge Penalization

In order to reduce the amount of data necessary for the reconstruction, it is tempting to start by selecting a

few sample points from each ridge, and use such points and the corresponding values of the representation to
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reconstruct a signal. The reconstructed signal then takes the form of a superposition of elementary waveforms

located at the sample points of the ridge. Such waveforms are in general mere perturbations of the wavelets

or Gabor functions one starts with.

As we shall see, such solutions may be derived from general principles, namely by minimizing a suitably

chosen quadratic functional, and using the values of the time-frequency representation at the sample points of

the ridge as linear constraints.

B. The Penalization Approach

We now focus on the penalization approach, and we treat the Gabor case and the wavelet case in the same

setting. Our purpose is to present a reconstruction algorithm which produces, from the mere knowledge of the

considered time-frequency transform at sample points of the ridges, a very good approximation of the original

signal (this reconstruction procedure was implemented and tested in [5] in the case of the wavelet transform

of a signal when the latter had only one ridge).

We assume that the ridges can be parametrized by continuous functions [bℓ,min, bℓ,max] ∋ b →֒ ϕℓ(b) ∈ (0,∞)

where ℓ ∈ {1, . . . , L} is the ridge label. These ridges are usually constructed as smooth functions resulting

from fitting procedures (spline smoothing is an example we are using in practical applications) from the sample

points obtained from ridge estimation algorithms such as the crazy climbers algorithm presented in this paper

or the snake annealing described in [5].

B.1 Statement of the Problem

We consider a (linear) time-frequency transform of an unknown signal of finite energy f0(x), which we

denote generically by Tf (b, ϕ) = 〈f0, e(b,ϕ)〉, where the time-frequency atoms e(b,ϕ) are either wavelets or

Gabor functions. We assume that the values of Tf (b, ϕ) are known at sample points (bℓ,j , ϕℓ,j), with j =

1, . . . nℓ , ℓ = 1, . . . L, which are regarded as representative of the ridges associated with the (unknown) signal

f0(x). We use the notation zℓ,j for the value of the transform of f0 at the point (bℓ,j , ϕℓ,j), and eℓ,j(x) for

the corresponding function e(bℓ,j ,ϕℓ,j)(x). The set of sample points (bℓ,j , ϕℓ,j) together with the values zℓ,j

constitute what we call the skeleton of the transform of the signal to be reconstructed. Let us denote by Lℓ,j

the linear form defined by

Lℓ,jf = 〈f, eℓ,j〉 . (16)

As we already explained, we use smooth functions b →֒ ϕℓ(b) which fit the sample points and we use the graphs

of these functions as our best guesses for the ridges of the modulus of the transform of f0. The reconstruction

problem is to find a signal f(x) of finite energy whose transform Tf (b, ϕ) satisfies

Lℓ,jf = zℓ,j , ℓ = 1, · · ·L, j = 1, . . . , nℓ (17)
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and has the union R of the graphs of the functions ϕℓ(b) as set of ridges. We recall that this last statement

means that for each b, the points (b, ϕℓ(b)) of the time-frequency plane are the local maxima of the function

ϕ →֒ |Tf (b, ϕ)|
2. We are about to show how to construct such a signal. We will also show that it is a very good

approximation of the original signal f0(x).

B.2 The Penalty Functions

We start with the case of the wavelet transform. Let us assume that we are given a series of L ridges of

the form b →֒ aℓ(b), ℓ = 1, . . . L. As explained in the introduction, the reconstructed signal is obtained as the

function f̃(x) minimizing a quadratic functional F [f ] = 〈f,Qf〉 with the constraints Tf̃ (bℓ,j , aℓ,j) = zℓ,j . In

the case of the wavelet transform we use Q given by the integral operator defined by the kernel:

W(x, y) = δ(x− y) + ǫW2(x, y) . (18)

The aim of the term W2(x, y) is to enforce smoothness of |Tf̃ | on the ridges, i.e. of the functions b →

|Tf̃ (b, aℓ(b))I. t is given by:

W2(x, y) =
∑

ℓ

∫

db

aℓ(b)4

(

ψ

(

x− b

aℓ(b)

)

ψ

(

y − b

aℓ(b)

)

[

a′ℓ(b)
2 − ω2

0

]

+ψ
′
(

x− b

aℓ(b)

)

ψ′

(

y − b

aℓ(b)

)[

(x− b)(y − b)

aℓ(b)2
+ 1 +

x− 2b+ y

aℓ(b)

]

+ψ

(

x− b

aℓ(b)

)

ψ′

(

y − b

aℓ(b)

)

a′ℓ(b)

[

1 +
y − b

aℓ(b)

]

+ψ
′
(

x− b

aℓ(b)

)

ψ

(

y − b

aℓ(b)

)

a′ℓ(b)

[

1 +
x− b

aℓ(b)

])

.

(19)

In the case of the Gabor transform the quadratic form Q is given by the integral kernel:

G(x, y) = δ(x− y) + ǫG2(x, y) , (20)

where G2(x, y) enforces smoothness of |Gf̃ | on the ridges, i.e. of the functions b → |Gf (b, ωℓ(b))|. It is given

by:

G2(x, y) =
∑

ℓ

(
∫
(

g′(x− b)g′(y − b) + g(x− b)g(y − b)
[

(x− b)(y − b)ω′
ℓ(b)

2

− (x+ y − 2b)ωℓ(b)ω
′′
ℓ (b)

]

)

cos (ωℓ(b)(x− y)) db

+

∫
(

g′(x− b)g(y − b)
[

ωℓ(b)− (y − b)ω′
ℓ(b)

]

− g(x− b)g′(y − b)
[

ωℓ(b)− (x− b)ω′
ℓ(b)

]

)

sin (ωℓ(b)(x− y))

)

db

(21)

For the sake of simplicity we have assumed that the window g(x) is real valued.

C. Solution of the Optimization Problem

The reconstruction problem has been reformulated as a problem of minimization of a sesquilinear functional,

with linear constraints. This is a classical problem: We outline the solution for the sake of completeness. It may
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be conveniently reformulated as a minimization problem in the real domain rather than the complex domain

by noticing that since we restrict ourselves to real-valued signals, both kernels are sesquilinear (G(x, y) is even

real valued), and may be be replaced by their real part (which we shall still denote by the same letter). For

each ℓ = 1, . . . L, the nℓ complex constraints (17) may be replaced by the 2nℓ real constraints as follows. Set







ρℓ,j(x) = ℜeℓ,j(x), j = 1, · · · , nℓ,

ρℓ,j(x) = ℑeℓ,j(x), j = n+ 1, · · · , 2nℓ,
(22)

and rj = ℜzj and rn+j = ℑzj (here, ℜ and ℑ stand for the real and imaginary parts respectively). Then the

new constraints read

Rj(f) = 〈f, ρℓ,j〉 = rj , j = 1, . . . , 2n . (23)

Consequently, there exist real numbers λℓ,j , j = 1, . . . 2nℓ, ℓ = 1, . . . L (the Lagrange multipliers of the problem)

such that the solution f̃(x) of the optimization problem is given by:

f̃(x) =
L
∑

ℓ=1

2nℓ
∑

j=1

λℓ,j ρ̃ℓ,j(x) (24)

where the functions ρ̃ℓ,j(x) are defined by: ρ̃ℓ,j = Q−1ρℓ,j . The Lagrange multipliers are determined by

requiring that the constraints (23) be satisfied. In other words, by demanding that the wavelet transform of

the function f̃ given in (24) be equal to the zj ’s at the sample points (bj , ϕj) of the time-scale plane. This

gives a system of linear equations from which the Lagrange multipliers λj ’s can be computed. More precisely,

if we denote by Λ the column vector consisting of the Lagrange multipliers, and by R the vector of values rℓ,j ,

we obtain

Λ = M−1R , (25)

Mℓ,j;ℓ′,j′ = 〈Q−1ρℓ,j , ρℓ′,j′〉 . (26)

Remark: If we denote by N =
∑

ℓ nℓ the total number of ridge samples, we have to deal with N×N matrices,

i.e. very large matrices. However, such matrices are in general sparse because of the localization properties of

the functions. In particular, if the different ridges of the transform are ”well separated”, i.e. if they are located

in different regions of the time-frequency domain, the matrix M may be approximated by a block diagonal

matrix. In other words, the contributions of all ridges may be reconstructed independently. This reduces the

complexity from N3 to Ln3, where n is an average number of sample points per ridge. The Lagrange multipliers

are then obtained as follows. If we denote by Λℓ the column vector consisting of the Lagrange multipliers for

fixed ℓ, and by Rℓ the vector of values rℓ,j for fixed ℓ, we obtain the following expression for the Lagrange

multipliers λℓ,j with fixed ℓ

Λℓ = M−1
ℓ Rℓ , (27)
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with a new nℓ × nℓ matrix Mℓ whose elements are given by

(Mℓ)j,j′ = 〈Q−1ρℓ,j , ρℓ,j′〉 . (28)

D. The Reconstruction Algorithm

The results of the discussion of this section may be summarized in an algorithmic walk through our solution

to the reconstruction problem.

• Determination of a finite set {Rℓ}ℓ=1,···,L of ridges and, on each of them, of a set of sample points (b1, ϕℓ,1) =

ϕℓ(b1), · · · , (bn, ϕℓ,n(ℓ) = ϕℓ(bn(ℓ)) on the ridge.

• Construction of smooth estimates b →֒ ϕℓ(b) of the ridges from the sample points.

• Computation of the matrix (i.e. W(x, y) or G(x, y)) of the smoothness penalty along the ridge estimate.

• Computation of the reconstruction time-frequency atoms ẽℓ,j = Q−1e(bℓ,j ,ϕℓ,j) localized (in the time-

frequency plane) at the ridge sample points.

• Computation of the coefficients λℓ,j .

The solution f̃ of the reconstruction problem is then given by formula (24). Numerical examples are discussed

below.

E. The Case of Noisy Signals: Smoothing Spline Type Reconstruction

Section V-B addresses the problem of the reconstruction from observations of the wavelet or Gabor transform

at a finite sample of points of the time/scale or time/frequency plane. This problem was considered in [5] when

the values of the transform were assumed to be observed faithfully. In this paper we consider the possibility

of an additive (possibly colored) noise in the observations of the input signal and the possibility of noise in

the computation of the transform of the signal. As before our approach is motivated by the smoothing splines

technique as presented in [19]. The generalization presented in this paper was alluded to as a possible extension

to the reconstruction algorithm derived and used in [4] and [5]. The motivation of [4] was to simplify and shed

light on the algorithm introduced by Mallat and Zhong in [15] to reconstruct a signal from the extrema of its

dyadic wavelet transform. The motivation of [5] was to generalize this approach to the case of the continuous

wavelet transform, the role of the extrema of the dyadic wavelet transform being played by the ridges of the

continuous wavelet transform. Notice that the estimation of the ridge was taking into account the possible

presence of noise while the reconstruction algorithm was assuming that the observations of the transform were

correct. The reconstruction which we present now is based on a variational approach involving a penalty on the

smoothness of the transform along the estimated ridges. But contrary to [5], the observations of the transform

along the ridges are not brought into the problem in the form of ”knowledge” - constraints. Instead they are

used to define a second penalty component. This form of the variational problem allows for a delicate balance

between the fit of the transform of the solution to the observations and the smoothness of the modulus of the
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transform along the ridges. Moreover the generality of the present approach makes it easy to avoid penalizing

a finite dimensional space of signals which one can choose apriori.

The purpose of this subsection is to derive the formulas for the reconstruction of the original signal from the

observations of the values of the transform at sample points of time/scale or time/frequency plane. As before,

we use the notation Tf (b, ϕ) for the transform of the signal f . This notation stands for the wavelet transform

Tf (b, a) as well as for the Gabor transform Gf (b, ω).

We assume that we are dealing with the signal+noise model introduced earlier in Subsection IV-B and after

computation of the transform of the observations, estimation of the ridges of the transform and sampling

these estimates, we end up with a discrete set {(bℓ,j , ϕℓ,j), ℓ = 1, . . . L, j = 1, . . . nℓ}, in the transform plane

and observations Tf (bℓ,j , ϕℓ,j) of the transform of the unknown signal at these points. We assume that the

observations follow the usual linear model:

zℓ,j = Tf (bℓ,j , ϕℓ,j) + ǫ′ℓ,j

where the computational noise terms ǫ′ℓ,j are assumed to be identically distributed and uncorrelated between

themselves and with the observation noise terms ǫ(x). Hence the final model is of the form:

zℓ,j = Lℓ,jf0 + ǫℓ,j , ℓ = 1, . . . L, j = 1, . . . , nℓ (29)

where Lℓ,j is the linear form representing the value of the transform at the point (bℓ,j , ϕℓ,j) and where:

ǫℓ,j = Tǫ(bℓ,j , ϕℓ,j) + ǫ′ℓ,j .

The assumption that the two sources of noise are uncorrelated implies that the covariance matrix Σ of the ǫℓ,j

is the sum of the covariance of the Tǫ(bℓ,j , ϕℓ,j) and the covariance of the ǫ′ℓ,j . The latter being of the form

σ′2I we have:

Σ = σ′2I +Σ(1)

where the entries of the matrix Σ(1) are given by the formula:

Σ
(1)
ℓ,j;ℓ′,j′k =

∫

eℓ,j(x) Γ(x− y) eℓ′,j′(x) dxdy.

The reconstruction algorithm is formulated as the solution of the minimization problem:

min
f

1

n
‖Σ−1/2(Z − Tf (·, ·)‖

2 + λ〈Qf, f〉 (30)

where Z denotes the vector of observations zℓ,j and Tf (·, ·) denotes the vector of values of the transform of the

candidate function f at the points (bℓ,j , ϕℓ,j) and where the constant λ > 0 is introduced to balance the effects

of the two components of the penalty. Theorem 1.3.1 of [19] implies that the solution is given by:

f̂λ(x) =

n
∑

j=1

λℓ,j ẽℓ,j(x) =

n
∑

j=1

λℓ,j Q
−1eℓ,j(x) . (31)
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The coefficients λℓ,j in (31) are given by

Λ =
(

nλI + Σ̃
)−1

Σ−1/2Z (32)

where the matrix Σ̃ is given by

Σ̃j,k = 〈ψ̃j , ψk〉 . (33)

Remarks:

• Notice that we did not use the full generality of the smoothing spline problem as defined in [19]. Indeed,

we could have chosen a quadratic penalty of the form ‖Q1/2P1f‖
2 where P1 is the projection onto the

orthogonal complement of a subspace of finite dimension. In this generality it is possible to avoid penalizing

special subspaces of functions (for example, the space of polynomial functions of degree smaller than a fixed

number, ....). Since the form of the solution is much more involved and since we did not find an application

justifying this level of generality, we decided to use the smoothing spline approach in our simpler context.

The reader interested in this specific feature of the smoothing splines technique can consult [19].

• The approach presented here was alluded to as a possible extension to the reconstruction algorithm derived

and used in [4] and [5]. The latter corresponds to the case where the knowledge of the wavelet transform of

the unknown signal is assumed to be perfect. In other words to the case where both Γ and σ′2 are assumed

to be zero. It is easy to see that, under these extra assumptions, the reconstruction procedure given by

the above minimization problem reduces to the minimization of the quadratic form 〈f,Qf〉 under the

constraints (17). This is the problem which was solved in [4] and [5]. It appears as a particular case of the

more general procedure presented here. The advantages of the latter were explained in the introduction.

We shall not reproduce this discussion here.

• Notice that the reconstructed signal appears as a linear function of the observations. Nevertheless, our

whole analysis is nonlinear because of the ridge estimation and the sampling of the latter.

F. An Example

Let us return to the wavelet analysis of the bat signal with the additional chirp. We used L = 3 ridges,

say R1, R2 and R3, and we chose on each ridge estimate a number of samples proportional to the length of

the ridge and inversely proportional to the corresponding scale, according to the sampling theory of wavelet

transforms, see [7].

We used the value ǫ = .5 to reconstruct the signal. The result of the reconstruction is given in the second

part of Figure 3. The last two plots of Figure 3 give the reconstructions of the two components: the bat signal,

reconstructed from two ridges (to be compared with the top plot in Figure 2), and the chirp (the original chirp

and the reconstructed one are displayed on the same plot, bottom of Figure 3). As we can see, the agreement

is very good (except at the end of the chirp, where the ridge was a bit smaller than the true signal. In addition,
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we stress that the number of coefficients needed to characterize such a signal (i.e. twice the number of complex

constraints) was approximately one fifth of the number of samples. Although compression was not our goal,

the method seems to have an definite potential.

VI. Ridges and the Sinusoidal Model for Speech Signal

A popular representation of speech signals is to regard the signal as the output of a slowly time-varying filter

excited by a glottal waveform. The filter models the resonant characteristics of the vocal tract. We shall not go

into details of speech modeling here (we refer to [11] and [13] for a detailed presentation), but we notice that the

resulting model for speech signal is of the form given in equation (5). Hence it is natural to use a time-frequency

representation in order to separate the components of the signal and to express them separately. Since those

components are close to harmonic components, the Gabor transform is better suited than the wavelet transform

for the description of the speech signals which we want to consider. Indeed, since the wavelet processing may be

viewed as a filter bank of constant relative frequency, it is not able to separate the high frequencies components

(see nevertheless [13] for a method to separate the first low frequency components).

Hence, we use the continuous Gabor transform with a Gaussian window of length approximately equal to

160 ms. Our approach is, at least in spirit, similar to that of [11]. However there is a major difference: since

the detection algorithm described in section III returns ridges, i.e. one-dimensional structures, the chaining

method required by the Mc Aulay-Quatieri approach is not needed here.

We illustrate this discussion on the example of the /one/ signal displayed at the top of Figure 5. Our results

were obtained using approximately 200 ridge samples, i.e. 400 real constraints, while the signal’s length is

2048. As can be seen on the top two plots of the figure, the reconstructed signal is very close to the true one.

Of course such a comparison is not significant from the speech processing point of view. However, we stress the

fact that the main features of the signal are preserved (in particular the pitch). We also tried the ”ultimate

test”: Listening to the two sounds. They turn out to be almost indistinguishable.

VII. Conclusions

We presented a new technique to detect ridges in a surface. This algorithm is based on the stochastic

relaxation of a particle system of a new type. Our detection technique performs extremely well, especially at

very low SNR’s. It can be used to detect ridges in all the energetic distribution representations of a signal

and it is especially useful for multicomponent signals. We also presented a reconstruction procedure from the

knowledge of a linear transform (such as the wavelet or the Gabor transform) on the ridges. In the case of

the Gabor transform, we showed that it was performing very well on speech signals, even in the presence of

significant noise disturbances.

The most important extension to the results presented in this paper would be a real time implementation.
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It is relatively easy to find approximations of the reconstruction procedure which would be amenable to on line

implementations. It seems more difficult to modify the ridge detection algorithm to accommodate frequent

updates.

Acknowledgments: This work was done while the third named author (B.T.) was visiting the Department

of Mathematics of the University of California at Irvine. Its warm hospitality should be acknowledged.

Appendix: Derivation of the Reconstruction Kernels

We give here a derivation of formulas (18) and (19) and their counterparts (20) and (21) in the case of the

Gabor transform. In both cases the first term aims to enforce the localization of the transform near the ridges.

This is achieved by simply minimizing F1[f ] = ||f ||2 with the constraints (17). This term alone would yield a

solution of the form:

f(x) =
∑

ℓ,j

λℓ,jψℓ,j(x)

where the time-frequency atoms eℓ,j(x) = e(bℓ,j ,aℓ,j)(x) are either the wavelets or the Gabor functions and where

the coefficients λℓ,j are obtained from the zℓ,j by multiplication with the inverse of the matrix [〈eℓ,j , eℓ′,j′〉]ℓ,j,ℓ′,j′ .

Numerical tests show that such a solution gives accurate results if the sampling of the ridge is fine enough.

Otherwise, an extra term has to be introduced, in order to enforce the smoothness of |Tf |
2 on the ridges. An

adequate candidate for such a term could be given by the H1-norm of the restriction of the modulus of the

transform to the ridges. In the case of the wavelet transform, such a term reads
∑

ℓ

∫

| ddb |Tf (b, aℓ(b))||
2db, but

unfortunately this does not define a sesquilinear form. However, if we set Ω(b, a) = arg Tf (b, a), it follows from

the analysis of [8] that near the ridges number ℓ, we have d
dbΩ(b, a) ≈

ω0

aℓ(b)
. This suggests to approximate

d

db
Tf (b, aℓ(b)) ≈

d

db
|Tf (b, aℓ(b)| e

iΩ(b,aℓ(b) + i
ω0

aℓ(b)
|Tf (b, aℓ(b))|e

iΩ(b,aℓ(b)) , (34)

and thus use the sesquilinear functional

F [f ] = 〈f,Qf〉 = ||f ||2 + ǫ
∑

ℓ

∫

(

∣

∣

∣

∣

d

db
Tf (b, aℓ(b))

∣

∣

∣

∣

2

−
ω2
0

aℓ(b)2
|Tf (b, aℓ(b))|

2

)

db . (35)

An explicit computation shows that the kernel of such a form is precisely as in (18) and (19).

The derivation in the Gabor case goes along the same lines. Instead of minimizing

||f ||2 + ǫ
∑

ℓ

∫
∣

∣

∣

∣

d

db
|Gf (b, ωℓ(b)|

∣

∣

∣

∣

2

db

we approximate it with the sesquilinear form

F [f ] = 〈f,Qf〉 = ||f ||2 + ǫ
∑

ℓ

∫

(

∣

∣

∣

∣

d

db
Gf (b, ωℓ(b))

∣

∣

∣

∣

2

− ωℓ(b)
2 |Gf (b, ωℓ(b))|

2

)

db . (36)

The complete derivation is left to the reader.
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[10] P. Hall, W. Qian and D.M. Titterington (1992): Ridge Finding from Noisy Data. J. Comput. and Graph. Statist. 1,

197-211.

[11] R.J. McAulay and T.F. Quatieri (1986): Speech Analysis/Synthesis Based on a Sinusoidal Representation. IEEE Trans.

on Audio, Speech and Sign. Proc. 34 #4 744–754.

[12] R.J. McAulay and T.F. Quatieri (1992): Low Rate Speech Coding Based on the Sinusoidal Model. In Advances in Speech

Signal Processing, Edited by S. Furui and M. Mohan Sondui.

[13] S. Maes (1994): Dissertation, Rutgers University.

[14] S. Mallat and Zhang (1993): Matching Pursuit with Time-Frequency Dictionaries, preprint.

[15] S. Mallat and S. Zhong (1992): Characterization of Signals from Multiscale Edges. IEEE Trans. Pattern Anal. Machine

Intel. 14, 710-732.

[16] T.F. Quatieri and R.J. McAulay (1989): Phase coherence in speech reconstruction for enhancement and coding applica-

tions. Proc. IEEE Int. Conf. Audio, Speech and Sig. Proc., Glasgow, 207-209.

[17] Ph. Tchamitchian and B. Torrésani (1992): Ridge and Skeleton Extraction from the Wavelet Transform. In Wavelets

and Applications, M.B. Ruskai & al Eds, Jones & Bartlett Pub. Comp. Boston, 123–151.

[18] B. Torrésani (1992): Time-Frequency Distributions: Wavelet Packets and Optimal Decompositions. Annales de l’Institut
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Fig. 1. The occupation measures for a simple windowed sine wave: left top, the signal; right top: its Gabor transform modulus;

left bottom: unweighted occupation measure; right bottom: weighted occupation measure.
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Fig. 2. Bat sonar signal with an additional chirp.
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Fig. 3. Reconstruction from the ridges: last plot: full curve: reconstructed chirp; dashed curve: the original chirp.
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Fig. 4. Bat’s sonar signal and chirp embedded into a Gaussian white noise (SNR=1dB)
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Fig. 5. 250 ms of the speech signal /one/ (sampling frequency: 8 kHz)
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