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Abstract

We present a couple of new algorithmic procedures for the detection of ridges in the modulus of

the (continuous) wavelet transform of one-dimensional signals. These detection procedures are shown

to be robust to additive white noise. We also derive and test a new reconstruction procedure. The

latter uses only information from the restriction of the wavelet transform to a sample of points from

the ridge. This provides with a very efficient way to code the information contained in the signal.
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1 Introduction

The characterization and the separation of amplitude and frequency modulated signals is a classical

problem of signal analysis and signal processing. Applications can be found in many situations, such

as for instance radar/sonar detection and speech processing [10]. Many methods have been proposed

in the past few years to analyze the time-frequency localization of signals. The most noticeable are the

family of bilinear representations such as the Wigner representation and its generalizations (see [1, 7]

for a review) and the linear representations such as the wavelet and Gabor transforms.

In 1990 by the Marseille group proposed a new algorithm (see [6] for a survey) based on the study

of the phase of the wavelet (or Gabor) transform. The present work is an attempt to extend the latter

to noisy situations. The main thrust of this correspondence is to use the localization properties of

the modulus of the transform (which is generally more robust than the phase, eventhough the latter

provides more precise estimates [6]). In the case of frequency-modulated signals, the wavelet transform

is “concentrated” in the neighborhood of curves (the ridges of the transform). We develop a scheme

in which these curves are searched as such, in a (high dimensional) space of ridges, via a stochastic

relaxation procedure. This alternate characterization of the ridges is better suited to the needs of

noisy signal analyses. We also propose a stable method for signal reconstruction from the numerically

computed ridges. This method is also based on an L2-minimization procedure.

For the sake of simplicity, our discussion is restricted to the case of the wavelet transform. But since

our algorithms deal only with post-processing of time-frequency transforms, they can be extended to

any time-frequency energetic representations. The case of the Gabor transform will be considered in

the companion paper [4] where still another stochastic search algorithm, adapted to different situations,

will be introduced.

We close this introduction with a short summary of the contents of the paper. Section 2 below

is devoted to the statement of the problem and the definition of the ridges, Section 3 presents the

main features of the variational problems which we propose and solve to estimate the ridges. We also

give a Bayesian interpretation of this approach and we describe how one can modify the penalization

functional in order to accommodate the presence of an additive noise in the signal. This section ends

with a discussion of an example of a bat sound signal which we embed in noise. Section 4 is devoted to a

quick account of the reconstruction problem. Namely, given a set of points in the time-scale domain, find

the signal most likely to have a ridge going through these points. As before we outline the mathematical

derivations and we illustrate the efficiency of the method on a numerical example.
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2 Ridges

The first goal of this section is to set up an abstract formalism for the mathematical definition of

the ridges of functions of two variables. Then, we propose two Monte Carlo algorithms to detect and

identify these ridges. Let ψ ∈ L1(IR) be such that 0 < cψ =
∫∞
0 |ψ̂(ξ)|2 dξ/ξ <∞, i.e. fulfills the wavelet

admissibility condition. The corresponding wavelet transform of f(x) is given by:

Tf (b, a) = 〈f, ψ(b,a)〉 =
1

a

∫ ∞

−∞
f(x)ψ

(

x− b

a

)

dx = e−ϕ
∫ ∞

−∞
f(x)ψ (e−ϕ(x− b))dx , (1)

where we have introduced the auxiliary variable ϕ = log(a). We are mostly interested in frequency

modulated signals which can be written as the sum of finitely many components of the form:

f(x) = A(x) cosφ(x) , (2)

but for the purpose of the present correspondence we shall restrict ourselves to monocomponent signals.

See [4] for a detailed analysis of the multicomponent case. It is convenient to use the so-called “pro-

gressive wavelets”, i.e. with vanishing negative frequencies. If ψ(x) is such a wavelet, then the wavelet

coefficients of f(x) are given by: Tf (b, a) = 〈f, ψ(b,a)〉 =
1
2〈Zf , ψ(b,a)〉 where Zf (x) is the “analytic signal”

of f(x) given by: Zf (x) =
1
π P.

∫

f(x+y)dyy , where P denotes principal value integral. It is well-known [1]

that a signal of the form (2) with A(x) and φ′(x) slowly varying gives Zf (x) ≈ A(x) exp{iφ(x)}. If we

assume that the Fourier transform ψ̂(ξ) is peaked near a particular value ξ = ω0 of the frequency, like

for instance the Morlet wavelet given in the Fourier domain by ψ̂(ξ) = exp{−(ξ − 2π)2/2}, it follows

from standard arguments [6] that the wavelet transform may be approximated as:

Tf (b, a) ≈
1

2
A(b) exp{iφ(b)}ψ̂(aφ′(b)) +O(|A′|/|A|, |φφ′′|/|φ′|2) . (3)

From the localization properties of the wavelet in the Fourier domain one can see that the modulus |Tf |

of the wavelet transform is essentially maximum in the neighborhood of a curve a = ar(b) = expϕ(b),

the ridge of the wavelet transform, related to the instantaneous frequency of the signal by ar(b) =

eϕr(b) = ω0/φ
′(b). In [6], the phase coherence of the wavelet transform was used to get a numerical

estimate of the ridge. Since the phase can be somewhat difficult to control in noisy situations, we shall

mainly focus here on the localization of the maxima of the modulus of the wavelet transform.

3 Ridge Detection: Variational Approaches

The purpose of this section is to give two examples of ridge detection algorithms both derived from

variational problems. In both cases the ridge is searched in a high-dimensional space of curves and the
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ridge estimate appears as the graph of the argument of the minimization of a suitable penalty function.

Unlike the methods in [6], the penalty function is mainly on the square modulus of the wavelet transform.

The loss of accuracy is weak, since the signals for which the methods are designed are supposed to have

slowly varying frequencies. In the first case, the ridge is the graph of a function b → ϕ(b) while it is

the graph of a parametric curve in the second case. The results of this section can be used beyond the

single component case (the wavelet transform has a single ridge) when the ridges can be separated by

a preprocessing localization procedure and then analyzed separately.

3.1 A Direct Search Algorithm: We first assume that the ridge of the wavelet transform of the

signal f can be parametrized by a function b →֒ ϕ(b) defined for all the values of b. For the sake of

the present discussion we denote by Φ the space of all the twice differentiable functions with square

integrable derivatives. We then define the penalty function Ff on the set Φ of ridge candidates ϕ by:

Ff (ϕ) = −

∫

|Tf (b, e
ϕ(b))|2db+

∫

[

λϕ′(b)2 + µϕ′′(b)2
]

db (4)

Such a penalty function clearly implements the two following features: the smoothness of the ridge and

the localization in the time-frequency plane (for λ = µ = 0, minimizing Ff (ϕ) is equivalent to searching

maxima of |Tf |
2 in the a direction). Our estimate of the unknown ridge of the wavelet transform of

the signal f will be the function ϕ(b) which minimizes Ff (ϕ). The Euler equation associated with this

minimization problem can easily be obtained, and once discretized into a finite difference equations,

solved numerically. However, such an approach is efficient only for weak noise. The presence of a strong

noise component implies the existence of many local extrema in which the algorithm may get trapped.

We need a procedure which can jump over the local extrema to reach the global one(s). A natural

candidate for this is the simulated annealing algorithm [9].

3.2 Snake Penalization We now consider a ridge as a parametrized curve r : s ∈ [0, 1] → r(s) =

[ρ1(s), ρ2(s)] in the time-scale plane. The ridge then takes the form of a “snake” (see [8] for a description

of the method in an image processing context). We use a cost function which takes into account the

modulus of the wavelet transform, as well as additional terms needed in order to ensure the smoothness

of the ridge (both in the b and a directions). We set:

Ff (r) = −

∫

|Tf (ρ1(s), ρ2(s)) |
2ds+

∫

[

λaρ
′
2(s)

2 + µaρ
′′
2(s)

2 + λbρ
′
1(s)

2 + µbρ
′′
1(s)

2
]

ds , (5)

where λa, λb, µa and µb are positive constants. In the “snake terminology” of [8] the second term

is the “internal energy” of the snake. Its role is to control the smoothness and the rigidity of the

snake. The first term is the “external energy” of the snake. It accounts for the interaction of the snake

with the wavelet transform modulus. For the reasons mentioned in the previous section, we turn to
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stochastic optimization techniques (see [8] for a direct solution of the corresponding Euler equations)

for the numerical solution of such a minimization problem.

Remark: In many applications the signal f(x) is the sum of a pure component f0(x) and a noise

component n(x). When some information on the noise is available, it may be included into the penalty

function (see e.g [3, 4, 5] for more details on this point).

3.3 Bayesian Interpretation: Both ridge detection procedures have a Bayesian interpretation.

Let us present it in the case of the direct search. Consider the prior probability measure defined for-

mally by µprior(dϕ) = Z−1
1 exp{−

∫ [

µa|ϕ
′(b)|2 + λa|ϕ

′′(b)|2
]

db} ′′dϕ′′ and the conditional probability

µϕ(df) = Z−1
2 e

∫

|Tf (b,ϕ(b))|
2 ′′df ′′ . which gives the probalility, conditioned by ϕ, that the signal is in the

infinitesimal ′′df ′′ in the space of finite energy signals. Then according to Bayes’ rule, the conditional

probability knowing the signal is given by µposterior(dϕ|f) = exp−F [ϕ]′′dϕ′′/Z for some constant Z.

Maximizing µposterior(dϕ|f) is equivalent to minimizing (4).

3.4 Cost Minimization by Simulated Annealing: We included the ridge detection procedures

described above in a package of S functions made available on the Internet [5]. The implementation

was done by solving the variational problems by simulated annealing (see [9] for background on this

combinatorial optimization technique). The details are spelled out in [3] and the book [5].

3.5 Examples: Numerical experiments have been made on various types of academic and real signals.

We illustrate the method described above with a (real) sonar signal emitted by certain species of bats.

The signal is frequency modulated, with approximately hyperbolic instantaneous frequency. The wavelet

transform (w.r.t. Morlet’s wavelet) was computed for frequencies ranging from νs/16 to νs/2, with νs the

sampling frequency, in geometric progression (i.e. of the form a = 2a
n/20
0 , n = 0, . . . 59). Figure 1 shows

the wavelet transform of the signal (left) and the wavelet transform of the same signal with additive

Gaussian white noise, with input SNR = −5dB. Superimposed are the ridges estimated with the direct

search procedure. Both transforms are coded with gray levels proportional to their modulus square. In

Figure 2, we show the ridge estimated with the snake procedure (left, notice that the boundaries have

been fairly well reproduced), and a comparison of ridge estimations in various situations (right).

4 Reconstruction from the Skeleton on a Ridge

We present in this section a new algorithmic reconstruction of a signal from the knowledge of sample

values of its wavelet transform on the ridges of its modulus. For the sake of simplicity we restrict

ourselves to the case of a single ridge. See nevertheless [4] for the analysis (in the case of the Gabor

transform) of the more general case of finitely many arbitrary ridges. Let us focus on ridges given in
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the form b → ϕ(b). In practical applications one only knows sample points (b1, a1), . . . , (bn, an) and

the smooth function b →֒ ϕ(b) which we use in lieu of the true (unknown) ridge function is merely a

guess which one constructs from the sample points. We use a smoothing spline (but any other kind of

nonlinear regression curve would do as well). From now on, ϕ(b) is a smooth ridge function which is

constructed from the n sample data points.

4.1 Statement of the Problem: We are concerned with the implementation of the folk belief

that a signal can be characterized by the values of the restriction of its wavelet transform to its ridges.

Illustrations can be found in [6], where it is shown that in the case of signals of the form (2) the

restriction of the wavelet transform to its ridge of the wavelet transform behaves as A(x) exp[iφ(x)] (see

also [10] for similar remarks for the Gabor transform in the context of speech, yielding good quality

reconstruction with high compression rate). Such an approach can be used in non-noisy situations, but

it does fail in the presence of a significant noise component. We assume that the values of the wavelet

transform, say zj , are known at sample points (bj , aj). The set of sample points together with the values

zj constitutes the wavelet transform skeleton of the signal to be reconstructed. We look for a signal

f(x) of finite energy whose wavelet transform has the graph of the function ar(b) as ridge and satisfies:

Tf (bj , aj) = zj , j = 1, . . . , n . (6)

4.2 The Penalization Approach: We use a strategy which was successfully used by Mallat and

Zhong to reconstruct a signal from the extrema of its dyadic wavelet transform [11, 2]. In the present

setting, we look for a signal f(x) which satisfies the constraints (6) while the L2-norm in the scale

variable a of the modulus is kept to a minimum for each b. This may be achieved by minimizing

F1(f) =
1

cψ

∫

db

∫

da

|a|
|Tf (b, a)|

2 (7)

(note that when the integration is performed on the whole half-plane, F1(f) = ||f ||2 by the energy

conservation formula). Since the cost function F1(f) is a quadratic form in the unknown function f , the

solution is easily computed by means of Lagrange multipliers. A solution can be constructed as a linear

combination of the wavelets ψ(bj ,aj) at the sample points of the ridge, the coefficients being given by the

solution of a n×n linear system. This solution is not completely satisfactory, especially when the number

of sample points is small. It ignores the empirical fact that (in most of the practical cases) the restriction

of the modulus |Tf (b, a)| to the ridge, i.e. the function b →֒ |Tf (b, ar(b))|, is smooth and slowly varying.

In order to force the solution of the constrained optimization problem to respect this requirement, we

introduce the extra term F̃2(f) =
∫ bmax

bmin

∣

∣

∣

d
db |Tf (b, ar(b))|

∣

∣

∣

2
db, and consider the minimization of the cost

function F̃ (f) = F1(f)+ǫF̃2(f) where the free parameter ǫ > 0 is chosen to balance the two contributions

to the penalty. Unfortunately, F̃2(f) is not quadratic in f . In order to remedy this problem we remark
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that according to the analysis of [6], d
dbΩ(b, ar(b)) ≈ F ′(b) = ω0/ar(b) , where Ωf (b, a) = arg Tf (b, a).

Then we replace F̃2(f) by a quadratic form which gives a good approximation of it, and F̃ with

F (f) =
1

cψ

∫

db

∫

da

|a|
|Tf (b, a)|

2 + ǫ

∫ bmax

bmin

(

|
d

db
Tf (b, ϕ(b))|

2 −
ω2
0

ϕ(b)2
|Tf (b, ϕ(b))|

2

)

db = 〈Qf, f〉 . (8)

4.3 Solution of the Optimization Problem: The constrained minimization problem can be solved

using Lagrange multipliers. The solution is given by

f̂(x) =
∑2n
j=1 λjQ

−1ψj(x) (9)

where Q is the operator (matrix after discretization of the problem) defined in (8) and the functions ψj

are defined by: ψj(x) = a−1
j ψ ((x− bj)/aj) , j = 1, . . . , n, The Lagrange multipliers are determined by

imposing the constraints (6). This gives a system of (2n) × (2n) linear real equations from which the

Lagrange multipliers λj ’s can be computed.

4.4 Examples: To illustrate the reconstruction procedure, we selected a subset of n = 500 consecutive

samples from the bat signal (Figure 3, left). We used 40 sample points on the estimate of the ridge and

the value ǫ = .5 to reconstruct the signal. The result of the reconstruction is given at the bottom of

Figure 3. As may be seen, the reconstruction is of extremely good quality. An analysis (not presented

here) of the modulus of the wavelet transform of the reconstructed signal shows that, because we chose

a ridge estimate which ignored the existence of a secondary ridge, the latter is not present in the

reconstruction. Further results (see [4, 5]) confirm the quality of the reconstruction method. This

justifies a posteriori the approximation we made in the definition of the quadratic penalty function.

5 Conclusions

We presented a new approach to the problem of ridge detection in an energetic distribution of a sig-

nal. Our approach is based on the minimization of a penalty function on the set of all possible ridge

candidates. The penalty function takes into account a-priori information on the signal (namely the

time-frequency representation of the signal which is essentially localized around a curve, this curve is

smooth,...) and possibly on the noise (through an a-priori noise model, or simulations). The mini-

mization is achieved through Monte-Carlo type methods. We also proposed a new synthesis procedure

which requires only a small number of values of the transform on the ridge and which is very robust

to noise. We have focused here on the case where the time-frequency representation is given by the

square modulus of the wavelet transform (the scale variable being interpreted as an inverse frequency

variable). Any time-frequency representation can be used as well. The case of the the square modulus

of the Gabor transform will be considered in a forthcoming publication. [4].
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Figure 1: Left) Intensity plot of the modulus square of the wavelet transform of the bat signal. The

ridge superimposed. Right) Ridge estimate, annealing method; SNR = −5dB.
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Figure 2: Left) Ridge estimate, snake method; SNR = −5dB. Right) Comparison of several ridge

estimates for the bat sonar signal. Notice that the scale is now increasing upward as opposed to all the

other plots where it is increasing downward.
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Figure 3: Top) Bat signal used to illustrate the reconstruction procedure. Bottom) Result of the

reconstruction from the values of the wavelet transform at the 40 points of the estimate of the ridge.
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