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In large scale systems such as the Internet, replicating data is an essential feature in order to provide avail-
ability and fault-tolerance. Attiya and Welch proved that using strong consistency criteria such as atomicity
is costly as each operation may need an execution time linear with the latency of the communication net-
work. Weaker consistency criteria like causal consistency and PRAM consistency do not ensure convergence.
The different replicas are not guaranteed to converge towards a unique state. Eventual consistency guaran-
tees that all replicas eventually converge when the participants stop updating. However, it fails to fully
specify the semantics of the operations on shared objects and requires additional non-intuitive and error-
prone distributed specification techniques. In addition existing consistency conditions are usually defined
independently from the computing entities (nodes) that manipulate the replicated data; i.e., they do not take
into account how computing entities might be linked to one another, or geographically distributed. In this
deliverable, we address these issues with two novel contributions.
The first contribution proposes a notion of proximity graph between computing nodes. If two nodes are
connected in this graph, their operations must satisfy a strong consistency condition, while the operations
invoked by other nodes are allowed to satisfy a weaker condition. We use this graph to provide a generic
approach to the hybridization of data consistency conditions into the same system. Based on this, we design
a distributed algorithm based on this proximity graph, which combines sequential consistency and causal
consistency (the resulting condition is called fisheye consistency).
The second contribution of this deliverable focuses on improving the limitations of eventual consistency.
To this end, we formalize a new consistency criterion, called update consistency, that requires the state of a
replicated object to be consistent with a linearization of all the updates. In other words, whereas atomicity
imposes a linearization of all of the operations, this criterion imposes this only on updates. Consequently
some read operations may return out-dated values. Update consistency is stronger than eventual consis-
tency, so we can replace eventually consistent objects with update consistent ones in any program. Finally,
we prove that update consistency is universal, in the sense that any object can be implemented under this
criterion in a distributed system where any number of nodes may crash.
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1 Introduction

Reliability of large scale systems is a big challenge when building massive distributed applica-
tions over the Internet. At this scale, data replication is essential to ensure availability and fault-
tolerance. In a perfect world, distributed objects should behave as if there is a unique physical
shared object that evolves following the atomic operations issued by the participants†. This is the
aim of strong consistency criteria such as linearizability and sequential consistency. These criteria
serialize all the operations so that they look as if they happened sequentially, but they are costly
to implement in message-passing systems. If one considers a distributed implementation of a
shared register, the worst-case response time must be proportional to the latency of the network
either for the reads or for the writes to be sequentially consistent [LS88] and for all the operations
for linearizability [AW94]. This generalizes to many objects [AW94]. Moreover, the availability
of the shared object cannot be ensured in asynchronous systems where more than a minority
of the processes of a system may crash [ABD95]. In large modern distributed systems such as
Amazon’s cloud, partitions do occur between data centers, as well as inside data centers [Vog08].
Moreover, it is economically unacceptable to sacrifice availability. The only solution is then to
provide weaker consistency criteria. Several weak consistency criteria have been considered for
modeling shared memory such as PRAM [LS88] or causality [ANB+95]. They expect the local
histories observed by each process to be plausible, regardless of the other processes. However,
these criteria do not impose that the data eventually converges to a consistent state. Eventual con-
sistency [Vog08] is another weak consistency criterion which requires that when all the processes
stop updating then all replicas eventually converge to the same state.

These weaker consistency models are not a desirable goal in themselves [AF92], but rather
an unavoidable compromise to obtain acceptable performance and availability [AW94, Bre00,
XSK+14]. These works try in general to minimize the violations of strong consistency, as these
create anomalies for programmers and users. They further emphasize the low probability of such
violations in their real deployments [DHJ+07].

In this deliverable we therefore present two contributions that aim to improve the state of the
art of consistency criteria for large-scale geo-replicated systems. The first contribution, published
in [FTR15], consists of a hybrid consistency criterion that links the strength of data consistency
with the proximity of the participating nodes. The second, published in [PMJ15], addresses the
limitations of eventual consistency by precisely defining the nature of the converged state.

Motivation and problem statement

Roadmap This deliverable consists of 7 sections. Section 2 introduces the definition of our first
contribution, fisheye consistency. Then, Section 3 builds on top of this communication abstraction
a distributed algorithm implementing this hybrid proximity-based data consistency condition.
Section 4 introduces preliminary notions towards the definition of our second contribution. Sec-
tion 5 defines the new update-consistency criterion. Section 6 presents a generic construction for
any UQ-ADT object with a sequential specification. Finally, Section 7 concludes the document.

† We use indifferently participant or process to designate the computing entities that invoke the distributed object.
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2 Fisheye Consistency

In spite of their benefits, the above consistency conditions generally ignore the relative “dis-
tance” between nodes in the underlying “infrastructure”, where the notions of “distance” and
“infrastructure” may be logical or physical, depending on the application. This is unfortunate
as distributed systems must scale out and geo-replication is becoming more common. In a geo-
replicated system, the network latency and bandwidth connecting nearby servers is usually at
least an order of magnitude better than what is obtained between remote servers. This means that
the cost of maintaining strong consistency among nearby nodes becomes affordable compared to
the overall network costs and latencies in the system.

Some production-grade systems acknowledge the importance of distance when enforcing con-
sistency, and do propose consistency mechanisms based on node locations in a distributed sys-
tem (e.g. whether nodes are located in the same or in different data-centers). Unfortunately
these production-grade systems usually do not distinguish between semantics and implementa-
tion. Rather, their consistency model is defined in operational terms, whose full implications
can be difficult to grasp. In Cassandra [LM10], for instance, the application can specify for
each operation the type of consistency guarantee it desires. For example, the constraints QUO-
RUM and ALL require the involvement of a quorum of replicas and of all replicas, respectively;
while LOCAL QUORUM is satisfied when a quorum of the local data center is contacted, and
EACH QUORUM requires a quorum in each data center. These guarantees are defined by their
implementation, but do not provide the programmer with a precise image of the consistency they
deliver.

The need to take into account “distance” into consistency models, and the current lack of any
formal underpinning to do so are exactly what motivates the hybridization of consistency condi-
tions that we propose in our work (which we call fisheye consistency). Fisheye consistency condi-
tions provide strong guarantees only for operations issued at nearby servers. In particular, there
are many applications where one can expect that concurrent operations on the same objects are
likely to be generated by geographically nearby nodes, e.g., due to business hours in different time
zones, or because these objects represent localized information, etc. In such situations, a fisheye
consistency condition would in fact provide global strong consistency at the cost of maintaining
only locally strong consistency.

Consider for instance a node A that is “close” to a node B, but “far” from a node C, a causally
consistent read/write register will offer the same (weak) guarantees to A on the operations of B, as
on the operations of C. This may be suboptimal, as many applications could benefit from varying
levels of consistency conditioned on “how far” nodes are from each other. Stated differently: a
node can accept that “remote” changes only reach it with weak guarantees (e.g., because infor-
mation takes time to travel), but it wants changes “close” to it to come with strong guarantees (as
“local” changes might impact it more directly).

In this work, we propose to address this problem by integrating a notion of node proximity in
the definition of data consistency. To that end, we formally define a new family of hybrid consis-
tency models that links the strength of data consistency with the proximity of the participating
nodes. In our approach, a particular hybrid model takes as input a proximity graph, and two con-
sistency conditions, taken from a set of totally ordered consistency conditions, namely a strong
one and a weaker one. A classical set of totally ordered conditions is the following one: lineariz-
ability, sequential consistency, causal consistency, and PRAM-consistency [LS88]. Moreover, as
already said, the notion of proximity can be geographical (cluster-based physical distribution of
the nodes), or purely logical (as in some peer-to-peer systems).

The philosophy we advocate is related to that of Parallel Snapshot Isolation (PSI) proposed
in [SPAL11]. PSI combines strong consistency (Snapshot Isolation) for transactions started at
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nodes in the same site of a geo-replicated system, but only ensures causality among transactions
started at different sites. In addition, PSI prevents write-write conflicts by preventing concurrent
transactions with conflicting write sets, with the exception of commutable objects.

Although PSI and our work operate at different granularities (fisheye-consistency is expressed
on individual operations, each accessing a single object, while PSI addresses general transactions),
they both show the interest of consistency conditions in which nearby nodes enjoy stronger se-
mantics than remote ones. In spite of this similitude, however, the family of consistency condi-
tions we propose distinguishes itself from PSI in a number of key dimensions. First, PSI is a spe-
cific condition while fisheye-consistency offers a general framework for defining multiple such
conditions. PSI only distinguished between nodes at the same physical site and remote nodes,
whereas fisheye-consistency accepts arbitrary proximity graphs, which can be physical or logical.
Finally, the definition of PSI is given in [SPAL11] by a reference implementation, whereas fisheye-
consistency is defined in functional terms as restrictions on the ordering of operations that can be
seen by applications, independently of the implementation we propose. As a result, we believe
that our formalism makes it easier for users to express and understand the semantics of a given
consistency condition and to prove the correctness of a program written w.r.t. such a condition.

2.1 System Model

The system consists of n processes denoted p1, ..., pn. We note Π the set of all processes. Each
process is sequential and asynchronous. “Asynchronous” means that each process proceeds at its
own speed, which is arbitrary, may vary with time, and remains always unknown to the other
processes. Said differently, there is no notion of a global time that could be used by the processes.

Processes communicate by sending and receiving messages through channels. Each channel is
reliable (no message loss, duplication, creation, or corruption), and asynchronous (transit times
are arbitrary but finite, and remain unknown to the processes). Each pair of processes is connected
by a bi-directional channel.

2.1.1 Basic notions and definitions

This section is a short reminder of the fundamental notions typically used to define the consis-
tency guarantees of distributed objects, namely, operation, history, partial order on operations,
and history equivalence. Interested readers will find in-depth presentations of these notions in
textbooks such as [AW04, HS08, Lyn96, Ray12].

Concurrent objects with sequential specification A concurrent object is an object that can be
simultaneously accessed by different processes. At the application level the processes interact
through concurrent objects [HS08, Ray12]. Each object is defined by a sequential specification,
which is a set including all the correct sequences of operations and their results that can be applied
to and obtained from the object. These sequences are called legal sequences.

Execution history The execution of a set of processes interacting through objects is captured by
a history Ĥ = (H,→H), where→H is a partial order on the set H of the object operations invoked by
the processes.

Concurrency and sequential history If two operations are not ordered in a history, they are said
to be concurrent. A history is said to be sequential if it does not include any concurrent operations.
In this case, the partial order→H is a total order.

Equivalent history Let Ĥ ∣p represent the projection of Ĥ onto the process p, i.e., the restriction
of Ĥ to operations occurring at process p. Two histories Ĥ1 and Ĥ2 are equivalent if no process can
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distinguish them, i.e., ∀p ∈Π ∶ Ĥ1∣p = Ĥ2∣p.

Legal history Ĥ being a sequential history, let Ĥ ∣X represent the projection of Ĥ onto the object
X . A history Ĥ is legal if, for any object X , the sequence Ĥ ∣X belongs to the specification of X .

Process Order Notice that since we assumed that processes are sequential, in the following, we
restrict the discussion to execution histories Ĥ for which for every process p, Ĥ ∣p is sequential.
This total order is also called the process order for p.

2.2 The Family of Fisheye Consistency Conditions

This section introduces a hybrid consistency model based on (a) two consistency conditions and
(b) the notion of a proximity graph defined on the computing nodes (processes). The two consis-
tency conditions must be totally ordered in the sense that any execution satisfying the stronger
one also satisfies the weaker one. Linearizability and SC define such a pair of consistency condi-
tions, and similarly SC and CC are such a pair.

2.2.1 The notion of a proximity graph

Let us assume that for physical or logical reasons linked to the application, each process (node)
can be considered either close to or remote from other processes. This notion of “closeness” can be
captured trough a proximity graph denoted G = (Π,EG ⊆ Π×Π), whose vertices are the n processes
of the system (Π). The edges are undirected. NG(pi) denotes the neighbors of pi in G.

The aim of G is to state the level of consistency imposed on processes in the following sense: the
existence of an edge between two processes in G imposes a stronger data consistency level than
between processes not connected in G.

Example To illustrate the semantic of G, we extend the original scenario that Ahamad, Niger et
al use to motivate causal consistency in [ANB+95]. Consider the three processes of Figure 1, paris,
berlin, and new-york. Processes paris and berlin interact closely with one another and behave sym-
metrically : they concurrently write the shared variable X , then set the flags R and S respectively
to 1, and finally read X . By contrast, process new-york behaves sequentially w.r.t. paris and berlin:
new-york waits for paris and berlin to write on X , using the flags R and S, and then writes X .

process paris is
X ← 1
R← 1
a← X

end process

process berlin is
X ← 2
S← 1
b← X

end process

process new-york is
repeat c← R until c = 1
repeat d← S until d = 1
X ← 3

end process

Figure 1: new-york does not need to be closely synchronized with paris and berlin, calling for a
hybrid form of consistency

If we assume a model that provides causal consistency at a minimum, the write of X by new-york
is guaranteed to be seen after the writes of paris and berlin by all processes (because new-york waits
on R and S to be set to 1). Causal consistency however does not impose any consistent order on
the writes of paris and berlin on X . In the execution shown on Figure 2, this means that although
paris reads 2 in X (and thus sees the write of berlin after its own write), berlin might still read 1 in
b (thus perceiving ‘X .write(1)’ and ‘X .write(2)’ in the opposite order to that of paris).

Sequential consistency removes this ambiguity: in this case, in Figure 2, berlin can only read 2
(the value it wrote) or 3 (written by new-york), but not 1. Sequential consistency is however too
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paris
X .write(1) R.write(1) X .read→2

berlin
X .write(2) S.write(1) X .read→b?

new-york
. . . S.read→1 R.read→1 X .write(3)

Figure 2: Executing the program of Figure 1.

p bny

Figure 3: Capturing the synchronization needs of Fig. 1 with a proximity graph G

strong here: because the write operation of new-york is already causally ordered with those of
paris and berlin, this operation does not need any additional synchronization effort. This situation
can be seen as an extension of the write concurrency freedom condition introduced in [ANB+95]:
new-york is here free of concurrent write w.r.t. paris and berlin, making causal consistency equiv-
alent to sequential consistency for new-york. paris and berlin however write to X concurrently, in
which case causal consistency is not enough to ensure strongly consistent results.

If we assume paris and berlin execute in the same data center, while new-york is located on a
distant site, this example illustrates a more general case in which, because of a program’s logic or
activity patterns, no operations at one site ever conflict with those at another. In such a situation,
rather than enforce a strong (and costly) consistency in the whole system, we propose a form
of consistency that is strong for processes within the same site (here paris and berlin), but weak
between sites (here between paris,berlin on one hand and new-york on the other).

In our model, the synchronization needs of individual processes are captured by the proxim-
ity graph G introduced at the start of this section and shown in Figure 3: paris and berlin are
connected, meaning the operations they execute should be perceived as strongly consistent w.r.t.
one another ; new-york is neither connected to paris nor berlin, meaning a weaker consistency is
allowed between the operations executed at new-york and those of paris and berlin.

2.2.2 Fisheye consistency for the pair (sequential consistency, causal consis-
tency)

When applied to the scenario of Figure 2, fisheye consistency combines two consistency condi-
tions (a strong and a weaker one, here causal and sequential consistency) and a proximity graph to
form an hybrid distance-based consistency condition, which we call G-fisheye (SC,CC)-consistency.

The intuition in combining SC and CC is to require that (write) operations be observed in the
same order by all processes if:

• They are causally related (as in causal consistency),

• Or they occur on “close” nodes (as defined by G).

Formal definition Formally, we say that a history Ĥ is G-fisheye (SC,CC)-consistent if:

• There is a causal order ↝H induced by Ĥ (as in causal consistency); and
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p
op1

p: X .write(2) op2
p: Y .write(4)

q
op1

q: X .write(3) op2
q: Y .read→4 op3

q: Y .read→5

r
op1

r : X .read→2 op2
r : X .read→3 op3

r : Y .write(5)

s
op1

s : X .read→3 op2
s : X .read→x? op3

s : Y .read→5 op4
s : Y .read→y?

q

p

r

s

Figure 4: Illustrating G-fisheye (SC,CC)-consistency

• ↝H can be extended to a subsuming order
★↝H,G (i.e. ↝H ⊆ ★↝H,G) so that

∀p,q ∈ G ∶ ( ★↝H,G)∣{p,q} is a total order

where ( ★↝H,G)∣({p,q}∩W) is the restriction of
★↝H,G to the write operations of p and q; and

• for each process pi there is a history Ŝi that

– (a) is sequential and legal;

– (b) is equivalent to Ĥ ∣(pi+W); and

– (c) respects
★↝H,G , i.e., ( ★↝H,G)∣(pi+W) ⊆ (→Si).

If we apply this definition to the example of Figure 2 with the proximity graph proposed in
Figure 3 we obtain the following: because paris and berlin are connected in G, X .write(1) by paris
and X .write(2) by berlin must be totally ordered in

★↝H,G (and hence in any sequential history Ŝi
perceived by any process pi). X .write(3) by new-york must be ordered after the writes on X by
paris and berlin because of the causality imposed by ↝H . As a result, if the system is G-fisheye
(SC,CC)-consistent, b? can be equal to 2 or 3, but not to 1. This set of possible values is as in
sequential consistency, with the difference that G-fisheye (SC,CC)-consistency does not impose
any total order on the operation of new-york.

Given a system of n processes, let ∅ denote the graph G with no edges, and K denote the graph
G with an edge connecting each pair of distinct processes. It is easy to see that CC is ∅-fisheye
(SC,CC)-consistency. Similarly SC is K-fisheye (SC,CC)-consistency.

A larger example Figure 4 and Table 1 illustrate the semantic of G-fisheye (SC,CC) consistency
on a second, larger, example. In this example, the processes p and q on one hand, and r and s
on the other hand, are neighbors in the proximity graph G (shown on the left). There are two
pairs of write operations: op1

p and op1
q on the register X , and op2

p and op3
r on the register Y . In

a sequentially consistency history, both pairs of writes must be seen in the same order by all
processes. As a consequence, if r sees the value 2 first (op1

r ) and then the value 3 (op2
r ) for X , s

must do the same, and only the value 3 can be returned by x?. For the same reason, only the value
3 can be returned by y?, as shown in the first line of Table 1.

In a causally consistent history, however, both pairs of writes ({op1
p,op1

q} and {op2
p,op3

r}) are
causally independent. As a result, any two processes can see each pair in different orders. x? may
return 2 or 3, and y? 4 or 5 (second line of Table 1).

G-fisheye (SC,CC)-consistency provides intermediate guarantees: because p and q are neigh-
bors in G, op1

p and op1
q must be observed in the same order by all processes. x? must return 3, as

in a sequentially consistent history. However, because p and r are not connected in G, op2
p and op3

r
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Table 1: Possible executions for the history of Figure 4

Consistency x? y?
Sequential Consistency 3 5
Causal Consistency {2,3} {4,5}
G-fisheye (SC,CC)-consistency 3 {4,5}

may be seen in different orders by different processes (as in a causally consistent history), and y?
may return 4 or 5 (last line of Table 1).

3 Implementing Fisheye Consistency

Our implementation of G-fisheye (SC,CC)-consistency relies on a broadcast operation with hybrid
ordering guarantees. In this section, we present this hybrid broadcast abstraction, before moving
on the actual implementation of of G-fisheye (SC,CC)-consistency in Section 3.3.

3.1 G-fisheye (SC,CC)-broadcast: definition

The hybrid broadcast we proposed, denoted G-(SC,CC)-broadcast, is parametrized by a proximity
graph G which determines which kind of delivery order should be applied to which messages,
according to the position of the sender in the graph G. Messages (SC,CC)-broadcast by processes
which are neighbors in G must be delivered in the same order at all the processes, while the
delivery of the other messages only need to respect causal order.

The (SC,CC)-broadcast abstraction provides the processes with two operations, denoted
TOCO broadcast() and TOCO deliver(). We say that messages are toco-broadcast and toco-
delivered.

Causal message order. Let M be the set of messages that are toco-broadcast. The causal message
delivery order, denoted ↝M , is defined as follows [BJ87, RST91]. Let m1,m2 ∈ M; m1 ↝M m2, iff one
of the following conditions holds:

• m1 and m2 have been toco-broadcast by the same process, with m1 first;

• m1 was toco-delivered by a process pi before this process toco-broadcast m2;

• There exists a message m such that (m1↝M m) ∧ (m↝M m2).

Definition of the G-fisheye (SC,CC)-broadcast. The (SC,CC)-broadcast abstraction is defined
by the following properties.

• Validity. If a process toco-delivers a message m, this message was toco-broadcast by some pro-
cess. (No spurious message.)

• Integrity. A message is toco-delivered at most once. (No duplication.)

• G-delivery order. For all the processes p and q such that (p,q) is an edge of G, and for all the
messages mp and mq such that mp was toco-broadcast by p and mq was toco-broadcast by q,
if a process toco-delivers mp before mq, no process toco-delivers mq before mp.

• Causal order. If m1↝M m2, no process toco-delivers m2 before m1.
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• Termination. If a process toco-broadcasts a message m, this message is toco-delivered by all pro-
cesses.

It is easy to see that if G has no edges, this definition boils down to causal delivery, and if G is fully
connected (clique), this definition specifies total order delivery respecting causal order. Finally,
if G is fully connected and we suppress the “causal order” property, the definition boils to total
order delivery.

3.2 G-fisheye (SC,CC)-broadcast: algorithm

3.2.1 Local variables.

To implement the G-fisheye (SC,CC)-broadcast abstraction, each process pi manages three local
variables.

• causali[1..n] is a local vector clock used to ensure a causal delivery order of the messages;
causali[ j] is the sequence number of the next message that pi will toco-deliver from p j.

• totali[1..n] is a vector of logical clock values such that totali[i] is the local logical clock of pi
(Lamport’s clock), and totali[ j] is the value of total j[ j] as known by pi.

• pendingi is a set containing the messages received and not yet toco-delivered by pi.

3.2.2 Description of the algorithm.

Let us remind that for simplicity, we assume that the channels are FIFO. Algorithm 1 describes
the behavior of a process pi. This behavior is decomposed into four parts.

The first part (lines 1-6) is the code of the operation TOCO broadcast(m). Process pi first in-
creases its local clock totali[i] and sends the protocol message TOCOBC(m,⟨causali[⋅],totali[i], i⟩) to
each other process. In addition to the application message m, this protocol message carries the
control information needed to ensure the correct toco-delivery of m, namely, the local causality
vector (causali[1..n]), and the value of the local clock (totali[i]). Then, this protocol message is
added to the set pendingi and causali[i] is increased by 1 (this captures the fact that the future
application messages toco-broadcast by pi will causally depend on m).

The second part (lines 7-14) is the code executed by pi when it receives a protocol message
TOCOBC(m,⟨s causm

j [⋅], s totm
j , j⟩) from p j. When this occurs pi adds first this protocol message

to pendingi, and updates its view of the local clock of p j (totali[ j]) to the sending date of the
protocol message (namely, s totm

j ). Then, if the local clock of pi is late (totali[i] ≤ s totm
j ), pi catches

up (line 11), and informs the other processes of it (line 12).

The third part (lines 15-17) is the processing of a catch up message from a process p j. In this
case, pi updates its view of p j’s local clock to the date carried by the catch up message. Let us
notice that, as channels are FIFO, a view stotali[ j] can only increase.

The final part (lines 18-31) is a background task executed by pi, where the application messages
are toco-delivered. The set C contains the protocol messages that were received, have not yet
been toco-delivered, and are “minimal” with respect to the causality relation ↝M . This minimal-
ity is determined from the vector clock s causm

j [1..n], and the current value of pi’s vector clock
(causali[1..n]). If only causal consistency was considered, the messages in C could be delivered.

Then, pi extracts from C the messages that can be toco-delivered. Those are usually called stable
messages. The notion of stability refers here to the delivery constraint imposed by the proximity
graph G. More precisely, a set T1 is first computed, which contains the messages of C that (thanks
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Algorithm 1 The G-fisheye (SC,CC)-broadcast algorithm executed by pi

1: operation TOCO broadcast(m)
2: totali[i]← totali[i]+1
3: for all p j ∈Π∖{pi} do send TOCOBC(m,⟨causali[⋅],totali[i], i⟩) to p j
4: pendingi← pendingi∪ ⟨m,⟨causali[⋅],totali[i], i⟩⟩
5: causali[i]← causali[i]+1
6: end operation

7: on receiving TOCOBC(m,⟨s causm
j [⋅],s totm

j , j⟩)
8: pendingi← pendingi∪ ⟨m,⟨s causm

j [⋅],s totm
j , j⟩⟩

9: totali[ j]← s totm
j ▷ Last message from p j had timestamp s totm

j
10: if totali[i] ≤ s totm

j then
11: totali[i]← s totm

j +1 ▷ Ensuring global logical clocks
12: for all pk ∈Π∖{pi} do send CATCH UP(totali[i], i) to pk
13: end if
14: end on receiving

15: on receiving CATCH UP(last date j, j)
16: totali[ j]← last date j
17: end on receiving

18: background task T is
19: loop forever
20: wait until C ≠∅ where
21: C ≡ {⟨m,⟨s causm

j [⋅],s totm
j , j⟩⟩ ∈ pendingi ∣ s causm

j [⋅] ≤ causali[⋅]}

22: wait until T1 ≠∅ where
23: T1 ≡ {⟨m,⟨s causm

j [⋅],s totm
j , j⟩⟩ ∈C ∣ ∀pk ∈NG(p j) ∶ ⟨totali[k],k⟩ > ⟨s totm

j , j⟩}
24: wait until T2 ≠∅ where

25: T2 ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨m,⟨s causm
j [⋅],s totm

j , j⟩⟩ ∈ T1

RRRRRRRRRRRRRRRRRR

∀pk ∈NG(p j),
∀⟨mk,⟨s causmk

k [⋅],s totmk
k ,k⟩⟩

∈ pendingi ∶
⟨s totmk

k ,k⟩ > ⟨s totm
j , j⟩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
26: ⟨m0,⟨s causm0

j0
[⋅],s totm0

j0
, j0⟩⟩← argmin

⟨m,⟨s causm
j [⋅],s totm

j , j⟩⟩∈T2

{⟨s totm
j , j⟩}

27: pendingi← pendingi∖ ⟨m0,⟨s causm0
j0
[⋅],s totm

j , j0⟩⟩
28: TOCO deliver(m0) to application layer
29: if j0 ≠ i then causali[ j0]← causali[ j0]+1 end if ▷ for causali[i] see line 5
30: end loop forever
31: end background task
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to the FIFO channels and the catch up messages) cannot be made unstable (with respect to the
total delivery order defined by G) by messages that pi will receive in the future. Then the set T2
is computed, which is the subset of T1 such that no message received, and not yet toco-delivered,
could make incorrect – w.r.t. G – the toco-delivery of a message of T2.

Once a non-empty set T2 has been computed, pi extracts the message m whose timestamp
⟨s totm

j [ j], j⟩ is “minimal” with respect to the timestamp-based total order (p j is the sender of
m). This message is then removed from pendingi and toco-delivered. Finally, if j ≠ i, causali[ j] is
increased to take into account this toco-delivery (all the messages m′ toco-broadcast by pi in the
future will be such that m↝m′, and this is encoded in causali[ j]). If j = i, this causality update was
done at line 5.

Theorem 1. Algorithm 1 implements a G-fisheye (SC,CC)-broadcast.

3.2.3 Proof of Theorem 1

The proof combines elements of the proofs of the traditional causal-order [BSS91, RST91] and
total-order broadcast algorithms [Lam78, AW94] on which Algorithm 1 is based. It relies in par-
ticular on the monoticity of the clocks causali[1..n] and totali[1..n], and the reliability and FIFO
properties of the underlying communication channels. We first prove some useful lemmata, be-
fore proving termination, causal order, and G-delivery order in intermediate theorems. We finally
combine these intermediate results to prove Theorem 1.

We use the usual partial order on vector clocks:

C1[⋅] ≤C2[⋅] iff ∀pi ∈Π ∶C1[i] ≤C2[i]

with its accompanying strict partial order:

C1[⋅] <C2[⋅] iff C1[⋅] ≤C2[⋅]∧C1[⋅] ≠C2[⋅]

We use the lexicographic order on the scalar clocks ⟨s tot j, j⟩:

⟨s tot j, j⟩ < ⟨s toti, i⟩ iff (s tot j < s toti)∨(s tot j = s toti∧ i < j)

We start by three useful lemmata on causali[⋅] and totali[⋅]. These lemmata establish the traditional
properties expected of logical and vector clocks.

Lemma 1. The following holds on the clock values taken by causali[⋅]:

1. The successive values taken by causali[⋅] in Process pi are monotonically increasing.

2. The sequence of causali[⋅] values attached to TOCOBC messages sent out by Process pi are
strictly increasing.

Proof Proposition 1 is derived from the fact that the two lines that modify causali[⋅] (lines 5,
and 29) only increase its value. Proposition 2 follows from Proposition 1 and the fact that line 5
insures successive TOCOBC messages cannot include identical causali[i] values. ◻Lemma 1

Lemma 2. The following holds on the clock values taken by totali[⋅]:

1. The successive values taken by totali[i] in Process pi are monotonically increasing.

2. The sequence of totali[i] values included in TOCOBC and CATCH UP messages sent out by
Process pi are strictly increasing.
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3. The successive values taken by totali[⋅] in Process pi are monotonically increasing.

Proof Proposition 1 is derived from the fact that the lines that modify totali[i] (lines 2 and 11) only
increase its value (in the case of line 11 because of the condition at line 10). Proposition 2 follows
from Proposition 1, and the fact that lines 2 and 11 insures successive TOBOBC and CATCH UP
messages cannot include identical totali[i] values.

To prove Proposition 3, we first show that:

∀ j ≠ i ∶ the successive values taken by totali[ j] in pi are monotonically increasing. (1)

For j ≠ i, totali[ j] can only be modified at lines 9 and 16, by values included in TOBOBC and
CATCH UP messages, when these messages are received. Because the underlying channels are
FIFO and reliable, Proposition 2 implies that the sequence of last date j and s totm

j values received
by pi from p j is also strictly increasing, which shows equation (1).

From equation (1) and Proposition 1, we conclude that the successive values taken by the vector
totali[⋅] in pi are monotonically increasing (Proposition 3). ◻Lemma 2

Lemma 3. Consider an execution of the protocol. The following invariant holds: for i ≠ j, if m is a
message sent from p j to pi, then at any point of pi’s execution outside of lines 28-29, s causm

j [ j] <
causali[ j] iff that m has been toco-delivered by pi.

Proof We first show that if m has been toco-delivered by pi, then s causm
j [ j] < causali[ j], outside

of lines 28-29. This implication follows from the condition s causm
j [⋅] ≤ causali[⋅] at line 21, and the

increment at line 29.

We prove the reverse implication by induction on the protocol’s execution by process pi. When
pi is initialized causali[⋅] is null:

causal0
i [⋅] = [0⋯0] (2)

because the above is true of any process, with Lemma 2, we also have

s causm
j [⋅] ≥ [0⋯0] (3)

for all message m that is toco-broadcast by Process p j.

(2) and (3) imply that there are no messages sent by p j so that s causm
j [ j] < causal0

i [ j], and the
Lemma is thus true when pi starts.

Let us now assume that the invariant holds at some point of the execution of pi. The only step
at which the invariant might become violated in when causali[ j0] is modified for j0 ≠ i at line 29.
When this increment occurs, the condition s causm

j0[ j0] < causali[ j0] of the lemma potentially be-
comes true for additional messages. We want to show that there is only one single additional
message, and that this message is m0, the message that has just been delivered at line 28, thus
completing the induction, and proving the lemma.

For clarity’s sake, let us denote causal○i [ j0] the value of causali[ j0] just before line 29, and
causal●i [ j0] the value just after. We have causal●i [ j0] = causal○i [ j0]+1.

We show that s causm0
j0
[ jo]= causal○i [ j0], where s causm0

j0
[⋅] is the causal timestamp of the message

m0 delivered at line 28. Because m0 is selected at line 26, this implies that m0 ∈ T2 ⊆ T1 ⊆C. Because
m0 ∈C, we have

s causm0
j0
[⋅] ≤ causal○i [⋅] (4)

at line 21, and hence
s causm0

j0
[ j0] ≤ causal○i [ j0] (5)
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At line 21, m0 has not been yet delivered (otherwise it would not be in pendingi). Using the
contrapositive of our induction hypothesis, we have

s causm0
j0
[ j0] ≥ causal○i [ j0] (6)

(5) and (6) yield
s causm0

j0
[ j0] = causal○i [ j0] (7)

Because of line 5, m0 is the only message tobo broadcast by Pj0 whose causal timestamp verifies
(7). From this unicity and (7), we conclude that after causali[ j0] has been incremented at line 29,
if a message m sent by Pj0 verifies s causm

j0[ j0] < causal●i [ j0], then

• either s causm
j0[ j0] < causal●i [ j0]−1 = causal○i [ j0], and by induction assumption, m has already

been delivered;

• or s causm
j0[ j0] = causal●i [ j0]− 1 < causal○i [ j0], and m = m0, and m has just been delivered at

line 28.

◻Lemma 3

Termination

Theorem 2. All messages toco-broadcast using Algorithm 1 are eventually toco-delivered by all processes
in the system.

Proof We show Termination by contradiction. Assume a process pi toco-broadcasts a message mi
with timestamp ⟨s causmi

i [⋅],s totmi
i , i⟩, and that mi is never toco-delivered by p j.

If i ≠ j, because the underlying communication channels are reliable, p j receives at some point
the TOCOBC message containing mi (line 7), after which we have

⟨mi,⟨s causmi
i [⋅],s totmi

i , i⟩⟩ ∈ pending j (8)

If i = j, mi is inserted into pendingi immediately after being toco-broadcast (line 4), and (8) also
holds.

mi might never be toco-delivered by p j because it never meets the condition to be selected into
the set C of p j (noted C j below) at line 21. We show by contradiction that this is not the case.
First, and without loss of generality, we can choose mi so that it has a minimal causal timestamp
s causmi

i [⋅] among all the messages that j never toco-delivers (be it from pi or from any other
process). Minimality means here that

∀mx, p j never delivers mx⇒ ¬(s causmx
x < s causmi

i ) (9)

Let us now assume mi is never selected into C j, i.e., we always have

¬(s causmi
i [⋅] ≤ causal j[⋅]) (10)

This means there is a process pk so that

s causmi
i [k] > causal j[k] (11)
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If i = k, we can consider the message m′
i sent by i just before mi (which exists since the above

implies s causmi
i [i] > 0). We have s causm′i

i [i] = s causmi
i [i]−1, and hence from (11) we have

s causm′i
i [i] ≥ causal j[k] (12)

Applying Lemma 3 to (12) implies that p j never toco-delivers m′
i either, with s causm′i

i [i] <
s causmi

i [i] (by way of Proposition 2 of Lemma 1), which contradicts (9).

If i≠ k, applying Lemma 3 to causali[⋅] when pi toco-broadcasts mi at line 3, we find a message mk
sent by pk with s causmk

k [k]= s causmi
i [k]−1 such that mk was received by pi before pi toco-broadcast

mi. In other words, mk belongs to the causal past of mi, and because of the condition on C (line 21)
and the increment at line 29, we have

s causmk
k [⋅] < s causmi

i [⋅] (13)

As for the case i = k, (11) also implies

s causmk
k [k] ≥ causal j[k] (14)

which with Lemma 3 implies that that p j never delivers the message mk from pk, and with (13)
contradicts mi’s minimality (9).

We conclude that if a message mi from pi is never toco-delivered by p j, after some point mi
remains indefinitely in C j

mi ∈C j (15)

Without loss of generality, we can now choose mi with the smallest total order timestamp
⟨s totmi

i , i⟩ among all the messages never delivered by p j. Since these timestamps are totally or-
dered, and no timestamp is allocated twice, there is only one unique such message.

We first note that because channels are reliable, all processes pk ∈ NG(pi) eventually receive the
TOCOBC protocol message of pi that contains mi (line 7 and following). Lines 10-11 together with
the monotonicity of totalk[k] (Proposition 1 of Lemma 2), insure that at some point all processes
pk have a timestamp totalk[k] strictly larger than s totmi

i :

∀pk ∈NG(pi) ∶ totalk[k] > s totmi
i (16)

Since all changes to totalk[k] are systematically rebroadcast to the rest of the system using TO-
COBC or CATCHUP protocol messages (lines 2 and 11), p j will eventually update total j[k] with a
value strictly higher than s totmi

i . This update, together with the monotonicity of total j[⋅] (Propo-
sition 3 of Lemma 2), implies that after some point:

∀pk ∈NG(pi) ∶ total j[k] > s totmi
i (17)

and that mi is selected in T j
1 . We now show by contradiction that mi eventually progresses to T j

2 .
Let us assume mi never meets T j

2 ’s condition. This means that every time T j
2 is evaluated we have:

∃pk ∈NG(pi),∃⟨mk,⟨s causmk
k [⋅],s totmk

k ,k⟩⟩ ∈ pending j ∶
⟨s totmk

k ,k⟩ ≤ ⟨s totm
i , i⟩

(18)
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Note that there could be different pk and mk satisfying (18) in each loop of Task T . However,
because NG(pi) is finite, the number of timestamps ⟨s totmk

k ,k⟩ such that ⟨s totmk
k ,k⟩ ≤ ⟨s totm

i , i⟩ is
also finite. There is therefore one process pk0 and one message mk0 that appear infinitely often in
the sequence of (pk,mk) that satisfy (18). Since mk0 can only be inserted once into pending j, this
means mk0 remains indefinitely into T j

2 , and hence pending j, and is never delivered. (18) and the
fact that i ≠ k0 (because pi /∈NG(pi)) yields

⟨s tot
mk0
k ,k0⟩ < ⟨s totm

i , i⟩ (19)

which contradicts our assumption that mi has the smallest total order timestamps ⟨s totmi
i , i⟩

among all messages never delivered to p j. We conclude that after some point mi remains in-
definitely into T j

2 .

mi ∈ T j
2 (20)

If we now assume mi is never returned by argmin at line 26, we can repeat a similar argument
on the finite number of timestamps smaller than ⟨s totm

i , i⟩, and the fact that once they have been
removed form pending j (line 27), messages are never inserted back, and find another message
mk with a strictly smaller time-stamp that p j that is never delivered. The existence of mk con-
tradicts again our assumption on the minimality of mi’s timestamp ⟨s totm

i , i⟩ among undelivered
messages.

This shows that mi is eventually delivered, and ends our proof by contradiction. ◻T heorem 2

Causal Order We prove the causal order property by induction on the causal order relation↝M .

Lemma 4. Consider m1 and m2, two messages toco-broadcast by Process pi, with m1 toco-
broadcast before m2. If a process p j toco-delivers m2, then it must have toco-delivered m1 before
m2.

Proof We first consider the order in which the messages were inserted into pending j (along with
their causal timestamps s caus

m1∣2
i ). For i = j, m1 was inserted before m2 at line 4 by assumption.

For i ≠ j, we note that if p j delivers m2 at line 28, then m2 was received from pi at line 7 at some
earlier point. Because channels are FIFO, this also means

m1 was received and added to pending j before m2 was. (21)

We now want to show that when m2 is delivered by p j, m1 is no longer in pending j, which will
show that m1 has been delivered before m2. We use an argument by contradiction. Let us assume
that

⟨m1,⟨s causm1
i ,s totm1

i , i⟩⟩ ∈ pending j (22)

at the start of the iteration of Task T which delivers m2 to p j. From Proposition 2 of Lemma 1, we
have

s causm1
i < s causm2

i (23)

which implies that m1 is selected into C along with m2 (line 21):

⟨m1,⟨s causm1
i ,s totm1

i , i⟩⟩ ∈C

Similarly, from Proposition 2 of Lemma 2 we have:

s totm1
i < s totm2

i (24)
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which implies that m1 must also belong to T1 and T2 (lines 23 and 25). (24) further implies that
⟨s totm2

i , i⟩ is not the minimal s tot timestamp of T2, and therefore m0 ≠ m2 in this iteration of Task
T . This contradicts our assumption that m2 was delivered in this iteration; shows that (22) must
be false; and therefore with (21) that m1 was delivered before m2. ◻Lemma 4

Lemma 5. Consider m1 and m2 so that m1 was toco-delivered by a process pi before pi toco-
broadcasts m2. If a process p j toco-delivers m2, then it must have toco-delivered m1 before m2.

Proof Let us note pk the process that has toco-broadcast m1. Because m2 is toco-broadcasts by
pi after pi toco-delivers m1 and increments causali[k] at line 29, we have, using Lemma 3 and
Proposition 1 of Lemma 1:

s causm1
k [k] < s causm2

i [k] (25)

Because of the condition on set C at line 21, when p j toco-delivers m2 at line 28, we further have

s causm2
i [⋅] ≤ causal j[⋅] (26)

and hence using (25)
s causm1

k [k] < s causm2
i [k] ≤ causal j[k] (27)

Applying Lemma 3 to (27), we conclude that p jmust have toco-delivered m1 when it delivers
m2. ◻Lemma 5

Theorem 3. Algorithm 1 respects causal order.

Proof We finish the proof by induction on↝M . Let’s consider three messages m1, m2, m3 such that

m1↝M m3↝M m2 (28)

and such that:

• if a process toco-delivers m3, it must have toco-delivered m1;

• if a process toco-delivers m2, it must have toco-delivered m3;

We want to show that if a process toco-delivers m2, it must have tolo-delivered m1. This follows
from the transitivity of temporal order. This result together with Lemmas 4 and 5 concludes the
proof. ◻T heorem 3

G-delivery order

Theorem 4. Algorithm 1 respects G-delivery order.

Proof Let’s consider four processes pl , ph, pi, and p j. pl and ph are connected in G. pl has toco-
broadcast a message ml , and ph has toco-broadcast a message mh. pi has toco-delivered ml before
mh. p j has toco-delivered mh. We want to show that p j has toco-delivered ml before mh.

We first show that:
⟨s totmh

h ,h⟩ > ⟨s totml
l , l⟩ (29)

We do so by considering the iteration of the background task T (lines 18-18) of pi that toco-delivers
ml . Because ph ∈NG(pl), we have

⟨totali[h],h⟩ > ⟨s totml
l , l⟩ (30)
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at line 23.

If mh has not been received by pi yet, then because of Lemma 3.2, and because communication
channels are FIFO and reliable, we have:

⟨s totmh
h , l⟩ > ⟨totali[h],h⟩ (31)

which with (30) yields (29).

If mh has already been received by pi, by assumption it has not been toco-delivered yet, and is
therefore in pendingi. More precisely we have:

⟨mh,⟨s causmh
h [⋅],s totmh

h ,h⟩⟩ ∈ pendingi (32)

which, with ph ∈NG(pl), and the fact that ml is selected in T i
2 at line 25 also gives us (29).

We now want to show that p j must have toco-delivered ml before mh. The reasoning is some-
what the symmetric of what we have done. We consider the iteration of the background task T of
p j that toco-delivers mh. By the same reasoning as above we have

⟨total j[l], l⟩ > ⟨s totmh
h ,h⟩ (33)

at line 23.

Because of Lemma 3.2, and because communication channels are FIFO and reliable, (33) and
(29) imply that ml has already been received by p j. Because mh is selected in T j

2 at line 25, (29)
implies that mh is no longer in pending j, and so must have been toco-delivered by p j earlier, which
concludes the proof. ◻T heorem 4

Theorem 1. Algorithm 1 implements a G-fisheye (SC,CC)-broadcast.

Proof

• Validity and Integrity follow from the integrity and validity of the underlying communica-
tion channels, and from how a message m j is only inserted once into pendingi (at line 4 if i= j,
at line 8 otherwise) and always removed from pendingi at line 27 before it is toco-delivered
by pi at line 28;

• G-delivery order follows from Theorem 4;

• Causal order follows from Theorem 3;

• Termination follows from Theorem 2.

◻T heorem 1

3.3 An Algorithm Implementing G-Fisheye (SC,CC)-Consistency

3.3.1 The high level object operations read and write

Algorithm 2 uses the G-fisheye (SC,CC)-broadcast we have just presented to realized G-fisheye
(SC,CC)-consistency using a fast-read strategy. This algorithm is derived from the fast-read algo-
rithm for sequential consistency proposed by Attiya and Welch [AW94], in which the total order
broadcast has been replaced by our G-fisheye (SC,CC)-broadcast.

The write(X ,v) operation uses the G-fisheye (SC,CC)-broadcast to propagate the new value of
the variable X . To insure any other write operations that must be seen before write(X ,v) by pi are
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Algorithm 2 Implementing G-fisheye (SC,CC)-consistency, executed by pi

1: operation X .write(v)
2: TOCO broadcast(WRITE(X ,v, i))
3: deliveredi← f alse ;
4: wait until deliveredi = true
5: end operation

6: operation X .read()
7: return vx
8: end operation

9: on toco deliver WRITE(X ,v, j)
10: vx← v ;
11: if (i = j) then deliveredi← true endif
12: end on toco deliver

properly processed, pi enters a waiting loop (line 4), which ends after the message WRITE(X ,v, i)
that has been toco-broadcast at line 2 is toco-delivered at line 11.

The read(X) operation simply returns the local copy vx of X . These local copies are updated in
the background when WRITE(X ,v, j) messages are toco-delivered.

Theorem 5. Algorithm 2 implements G-fisheye (SC,CC)-consistency.

3.3.2 Proof of Theorem 5

The proof uses the causal order on messages ↝M provided by the G-fisheye (SC,CC)-broadcast
to construct the causal order on operations ↝H . It then gradually extends ↝H to obtain

★↝H,G . It
first uses the property of the broadcast algorithm on messages to-broadcast by processes that are
neighbors in G, and then adapts the technique used in [MZR95, Ray13] to show that WW (write-
write) histories are sequentially consistent. The individual histories Ŝi are obtained by taking a
topological sort of ( ★↝H,G)∣(pi+W).

For readability, we denote in the following rp(X ,v) the read operation invoked by process p on
object X that returns a value v (X .read→ v), and wp(X ,v) the write operation of value v on object
X invoked by process p (X .write(v)). We may omit the name of the process when not needed.

Let us consider a history Ĥ = (H,
po→H) that captures an execution of Algorithm 2, i.e.,

po→H cap-
tures the sequence of operations in each process (process order, po for short). We construct the
causal order↝H required by the definition of Section 2.2.2 in the following, classical, manner:

• We connect each read operation rp(X ,v) = X .read → v invoked by process p (with v ≠ �,
the initial value) to the write operation w(X ,v) = X .write(v) that generated the WRITE(X ,v)
message carrying the value v to p (line 10 in Algorithm 2). In other words, we add an

edge ⟨w(X ,v) rf→ rp(X ,v)⟩ to
po→H (with w and rp as described above) for each read operation

rp(X ,v) ∈H that does not return the initial value �. We connect initial read operations r(X ,�)
to an � element that we add to H.

We call these additional relations read-from links (noted
rf→).

• We take ↝H to be the transitive closure of the resulting relation.

↝H is acyclic, as assuming otherwise would imply at least one of the WRITE(X ,v) messages
was received before it was sent. ↝H is therefore an order. We now need to show ↝H is a causal
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order, i.e., that the result of each read operation r(X ,v) is the value of the latest write w(X ,v) that
occurred before r(X ,v) in ↝H (said differently, that no read returns an overwritten value).

Lemma 6. ↝H is a causal order.

Proof We show this by contradiction. We assume without loss of generality that all values writ-

ten are distinct. Let us consider wp(X ,v) and rq(X ,v) so that wp(X ,v) rf→ rq(X ,v), which implies
wp(X ,v)↝H rq(X ,v). Let us assume there exists a second write operation wr(X ,v′) ≠ wp(X ,v) on
the same object, so that

wp(X ,v)↝H wr(X ,v′)↝H rq(X ,v) (34)

(illustrated in Figure 5). wp(X ,v)↝H wr(X ,v′) means we can find a sequence of operations opi ∈H
so that

wp(X ,v)→0 op0...→i opi→i+1 ...→k wr(X ,v′) (35)

with →i∈ {
po→H ,

rf→},∀i ∈ [1,k]. The semantics of
po→H and

rf→ means we can construct a sequence of
causally related (SC,CC)-broadcast messages mi ∈M between the messages that are toco-broadcast
by the operations wp(X ,v) and wr(X ,v′), which we note WRITEp(X ,v) and WRITEr(X ,v′) respec-
tively:

WRITEp(X ,v) =m0↝M m1...↝M mi↝M ...↝M mk′ = WRITEr(X ,v′) (36)

where↝M is the message causal order introduced in Section 3.1. We conclude that WRITEp(X ,v)↝M
WRITEr(X ,v′), i.e., that WRITEp(X ,v) belongs to the causal past of WRITEr(X ,v′), and hence that q
in Figure 5 toco-delivers WRITEr(X ,v′) after WRITEp(X ,v).

p
wp(X ,v)

q
rq(X ,v)

r
wr(X ,v′)

rf→
↝H

↝H

Figure 5: Proving that↝H is causal by contradiction

We now want to show that WRITEr(X ,v′) is toco-delivered by q before q executes rq(X ,v). We
can apply the same reasoning as above to wr(X ,v′)↝H rq(X ,v), yielding another sequence of op-
erations op′i ∈H:

wr(X ,v′)→′
0 op′0...→′

i op′i →′
i+1 ...→′

k′′ rq(X ,v) (37)

with→′
i∈ {

po→H ,
rf→}. Because rq(X ,v) does not generate any (SC,CC)-broadcast message, we need to

distinguish the case where all op′i relations correspond to the process order
po→H (i.e., op′i =

po→H ,∀i).
In this case, r = q, and the blocking behavior of X .write() (line 4 of Algorithm 2), insures that
WRITEr(X ,v′) is toco-delivered by q before executing rq(X ,v). If at least one op′i corresponds to
the read-from relation, we can consider the latest one in the sequence, which will denote the toco-
delivery of a WRITEz(Y,w) message by q, with WRITEr(X ,v′)↝M WRITEz(Y,w). From the causality
of the (SC,CC)-broadcast, we also conclude that WRITEr(X ,v′) is toco-delivered by q before exe-
cuting rq(X ,v).

Because q toco-delivers WRITEp(X ,v) before WRITEr(X ,v′), and toco-delivers WRITEr(X ,v′) be-
fore it executes rq(X ,v), we conclude that the value v of vx is overwritten by v′ at line 10 of Algo-

rithm 2, and that rq(X ,v) does not return v, contradicting our assumption that wp(X ,v) rf→ rq(X ,v),
and concluding our proof that↝H is a causal order. ◻Lemma 6
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To construct
★↝H,G , as required by the definition of (SC,CC)-consistency (Section 2.2.2), we need

to order the write operations of neighboring processes in the proximity graph G. We do so as
follows:

• We add an edge wp(X ,v) ww→ wq(Y,w) to ↝H for each pair of write operations wp(X ,v) and
wq(Y,w) in H such that:

– (p,q) ∈ EG (i.e., p and q are connected in G);

– wp(X ,v) and wq(Y,w) are not ordered in↝H ;

– The broadcast message WRITEp(X ,v) of wp(X ,v) has been toco-delivered before the
broadcast message WRITEp(Y,w) of wq(Y,w) by all processes.

We call these additional edges ww links (noted
ww→).

• We take
★↝H,G to be the recursive closure of the relation we obtain.

★↝H,G is acyclic, as assuming otherwise would imply that the underlying (SC,CC)-broadcast vio-
lates causality. Because of the G-delivery order and termination of the toco-broadcast (Section 3.1),
we know all pairs of WRITEp(X ,v) and WRITEp(Y,w) messages with (p,q) ∈ EG as defined above
are toco-delivered in the same order by all processes. This insures that all write operations of
neighboring processes in G are ordered in

★↝H,G .

We need to show that
★↝H,G remains a causal order, i.e., that no read in

★↝H,G returns an over-
written value.

Lemma 7.
★↝H,G is a causal order.

Proof We extend the original causal order↝M on the messages of an (SC,CC)-broadcast execution
with the following order↝GM :

m1↝GM m2 if

• m1↝M m2; or

• m1 was sent by p, m2 by q, (p,q) ∈ EG , and m1 is toco-delivered before m2 by all processes; or

• there exists a message m3 so that m1↝GM m3 and m3↝GM m2.

↝GM captures the order imposed by an execution of an (SC,CC)-broadcast on its messages. The
proof is then identical to that of Lemma 6, except that we use the order↝GM , instead of↝M . ◻Lemma 7

Theorem 5. Algorithm 2 implements G-fisheye (SC,CC)-consistency.

Proof The order
★↝H,G we have just constructed fulfills the conditions required by the definition

of G-fisheye (SC,CC)-consistency (Section 2.2.2):

• by construction
★↝H,G subsumes ↝H (↝H ⊆ ★↝H,G);

• also by construction
★↝H,G , any pair of write operations invoked by processes p,q that are

neighbors in G are ordered in
★↝H,G ; i.e., ( ★↝H,G)∣({p,q}∩W) is a total order.
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To finish the proof, we choose, for each process pi, Ŝi as one of the topological sorts of
( ★↝H,G)∣(pi +W), following the approach of [MZR95, Ray13]. Ŝi is sequential by construction. Be-
cause

★↝H,G is causal, Ŝi is legal. Because
★↝H,G respects

po→H , Ŝi is equivalent to Ĥ ∣(pi+W). Finally,
Ŝi respects ( ★↝H,G)∣(pi+W) by construction. ◻T heorem 5

4 Towards Update Consistency

We now introduce the second contribution of this deliverable. This contribution follows the long
quest of the (a) strongest consistency criterion (there may exist several incomparable criteria) im-
plementable for different types of objects in an asynchronous system where all but one process
may crash (wait-free systems [Her91]). A contribution of this line of work consists in proving
that weak consistency criteria such as eventual consistency and causal consistency cannot be
combined is such systems. In this second part of our work we therefore explore the enforce-
ment of eventual consistency. The relevance of eventual consistency has been illustrated many
times. It is used in practice in many large scale applications such as Amazon’s Dynamo highly
available key-value store [DHJ+07]. It has been widely studied and many algorithms have been
proposed to implement eventually consistent shared object. Conflict-free replicated data types
(CRDT) [SPBZ11] give sufficient conditions on the specification of objects so that they can be im-
plemented. More specifically, if all the updates made on the object commute or if the reachable
states of the object form a semi-lattice then the object has an eventually consistent implementation
[SPBZ11]. Unfortunately, many useful objects are not CRDTs.

The limitations of eventual consistency led to the study of stronger criteria such as strong even-
tual consistency [SPB+11]. Indeed, eventual consistency requires the convergence towards a com-
mon state without specifying which states are legal. In order to prove the correctness of a program,
it is necessary to fully specify which behaviors are accepted for an object. The meaning of an op-
eration often depends on the context in which it is executed. The notion of intention is widely
used to specify collaborative editing [SJZ+98, LZM00]. The intention of an operation not only
depends on the operation and the state on which it is done, but also on the intentions of the con-
current operations. In another solution [BZP+12], it is claimed that, it is sufficient to specify what
the concurrent execution of all pairs of non-commutative operations should give (e.g. an error
state). This result, acceptable for the shared s et, cannot be extended to other more complicated
objects. In this case, any partial order of updates can lead to a different result. This approach was
formalized in [BGYZ14], where the concurrent specification of an object is defined as a function
of partially ordered sets of updates to a consistent state leading to specifications as complicated
as the implementations themselves. Moreover, a concurrent specification of an object uses the
notion of concurrent events. In message-passing systems, two events are concurrent if they are
produced by different processes and each process produced its event before it received the notifi-
cation message from the other process. In other words, the notion of concurrency depends on the
implementation of an object not on its specification. Consequently, the final user may not know
if two events are concurrent without explicitly tracking the underlying messages. A specification
should be independent of the system on which it is implemented.

To avoid restricting our results to a given data structure, we first define a class of data types
called UQ-ADT for update-query abstract data type. This class encompasses all data structures
where an operation either modifies the state of the object (update) or returns a function on the
current state of the object (query). This class excludes data types such as a stack where the pop op-
eration removes the top of the stack and returns it (update and query at the same time). However,
such operations can always be separated into a query and an update (lookup top and delete top
in the case of the stack) which is not a problem as, in weak consistency models, it is impossible to
ensure atomicity anyway. Based on this notion, we then present three main contributions.
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• We prove that in a wait-free asynchronous system, it is not possible to implement eventual
and causal consistency for all UQ-ADTs.

• We introduce update consistency, a new consistency criterion stronger than eventual con-
sistency and for which the converging state must be consistent with a linearization of the
updates.

• Finally, we prove that for any UQ-ADT object with a sequential specification there exists an
update consistent implementation by providing a generic construction.

4.1 Abstract Data Types and Consistency Criteria

Before introducing the new consistency criterion, this section formalizes the notion of object and
how a consistency criterion is defined. In distributed systems, sharing objects is a way to ab-
stract message-passing communication between processes. The abstract type of these objects has
a sequential specification, which we describe by means of a transition system that characterizes
the sequential histories allowed for this object. However, shared objects are implemented in a
distributed system using replication and the events of the distributed history generated by the
execution of a distributed program is a partial order [Lam78]. The consistency criterion makes
the link between the sequential specification of an object and a distributed execution that invokes
it. This is done by characterizing the partially ordered histories of the distributed program that are
acceptable. The formalization used in this deliverable is explained with more details in [PPJM14].

An abstract data type is specified using a transition system very close to Mealy machines
[Mea55] except that infinite transition systems are allowed as many objects have an unbounded
specification. As stated above, this part of our work focuses on ”update-query” objects. On the
one hand, the updates have a side-effect that usually affects the state of the object (hence all pro-
cesses), but return no value. They correspond to transitions between abstract states in the tran-
sition system. On the other hand, the queries are read-only operations. They produce an output
that depends on the state of the object. Consequently, the input alphabet of the transition system
is separated into two classes of operations (updates and queries).

Definition 1 (Update-query abstract data type). An update-query abstract data type (UQ-ADT)
is a tuple O = (U,Qi,Qo,S,s0,T,G) such that:

• U is a countable set of update operations;

• Qi and Qo are countable sets called input and output alphabets; Q = Qi×Qo is the set of query
operations. A query operation (qi,qo) ∈Q is denoted qi/qo (query qi returns value qo).

• S is a countable set of states;

• s0 ∈ S is the initial state;

• T ∶ S×U → S is the transition function;

• G ∶ S×Qi→Qo is the output function.

A sequential history is a sequence of operations. An infinite sequence of operations (wi)i∈N ∈
(U ∪Q)ω is recognized by O if there exists an infinite sequence of states (si)i≥1 ∈ Sω (note that s0
is the initial state) such that for all i ∈ N, T(si,wi) = si+1 if wi ∈ U or si = si+1 and G(si,qi) = qo if
wi = qi/qo ∈Q. The set of all infinite sequences recognized by O and their finite prefixes is denoted
by L(O). Said differently, L(O) is the set of all the sequential histories allowed for O.

In the following, we use replicated sets as the key example. Three kinds of operations are
possible: two update operation by element, namely insertion (I) and deletion (D) and a query
operation read (R) that returns the values that belong to the set. Let Val be the support of the
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replicated set (it contains the values that can be inserted/deleted). At the beginning, the set is
empty and when an element is inserted, it becomes present until it is deleted. More formally, it
corresponds to the UQ-ADT given in Example 1.
Example 1 (Specification of the set). Let Val be a countable set, called support. The set object SVal
is the UQ-ADT (U,Qi,Qo,S,∅,T,G) with:

• U = {I(v),D(v) ∶ v ∈ Val};

• Qi = {R}, and Qo = S =P<∞(Val) contain all the finite subsets of Val;

• for all s ∈ S and v ∈ Val, G(s,R) = s,
T(s,I(v)) = s∪{v} and T(s,D(v)) = s∖{v}.

The set U of updates is the set of all insertions and deletions of any value of Val. The set of
queries Qi contains a unique operation R, a read operation with no parameter. A read operation
may return any value in Qo, the set of all finite subsets of Val. The set S of the possible states is
the same as the set of possible returned values Qo as the read query returns the content of the set
object. I(v) (resp. D(v)) with v ∈ Val denotes an insertion (resp. a deletion) operation of the value
v into the set object. R/s denotes a read operation that returns the set s representing the content of
the set.

During an execution, the participants invoke an object instance of an abstract data type using
the associated operations (queries and updates). This execution produces a set of partially ordered
events labelled by the operations of the abstract data type. This representation of a distributed
history is generic enough to model a large number of distributed systems. For example, in the
case of communicating sequential processes, an event a precedes an event b in the program order
if they are executed by the same process in that sequential order. It is also possible to model
more complex modern systems in which new threads are created and destroyed dynamically, or
peer-to-peer systems where peers may join and leave.
Definition 2 (Distributed History). A distributed history is a tuple H = (U,Q,E,Λ,↦):

• U and Q are disjoint countable sets of update and query operations, and all queries q ∈ Q are
in the form q = qi/qo;

• E is a countable set of events;

• Λ ∶ E →U ∪Q is a labelling function;

• ↦⊂ E ×E is a partial order called program order, such that for all e ∈ E, {e′ ∈ E ∶ e′↦ e} is finite.

Let H = (U,Q,E,Λ,↦) be a history. The sets UH = {e ∈ E ∶Λ(e) ∈U} and QH = {e ∈ E ∶Λ(e) ∈Q} de-
note its sets of update and query events respectively. We also define some projections on the his-
tories. The first one allows to withdraw some events: for F ⊂E, HF = (U,Q,F,Λ∣F ,↦∩(F×F)) is the
history that contains only the events of F . The second one allows to substitute the order relation: if
→ is a partial order that respects the definition of a program order (↦), H→ = (U,Q,E,Λ,→∩(E×E))
is the history in which the events are ordered by →. Note that the projections commute, which
allows the notation H→F .

Definition 3 (Linearizations). Let H = (U,Q,E,Λ,↦) be a distributed history. A linearization of H
corresponds to a sequential history that contains the same events as H in an order consistent with
the program order. More precisely, it is a word Λ(e0) . . .Λ(en) . . . such that {e0, . . . ,en, . . .} = E and
for all i and j, if i < j, e j /↦ ei. We denote by lin(H) the set of all linearizations of H.

Definition 4 (Consistency criterion). A consistency criterion C characterizes which histories are
allowed for a given data type. It is a function C that associates with any UQ-ADT O, a set of
distributed histories C(O). A shared object (instance of an UQ-ADT O) is C-consistent if all the
histories it allows are in C(O).
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●
I(1)

●
R/{2}

●
R/{1}

●
R/∅ω

●
I(2)

●
R/{1}

●
R/{2}

●
R/∅ω

(a) EC but not SEC nor
UC

●
I(1)

●
D(2)

●
R/{1,2}ω

●
I(2)

●
D(1)

●
R/{1,2}ω

(b) SEC but not UC

●
I(1)

●
R/∅

●
R/{1,2}ω

●
I(2)

●
R/{1,2}ω

(c) SEC and UC but not
SUC

●
I(1)

●
R/{1}

●
I(2)

●
R/{1,2}ω

●
R/{2}

●
R/{1,2}ω

(d) SUC but not PC

Figure 6: Four histories for an instance of SN (cf. example 1), with different consistency criteria.
The arrows represent the program order, and an event labeled ω is repeated an infinite number of
times.

4.2 Eventual Consistency

In this section, we recall the definitions of eventual consistency [Vog08] and strong eventual
consistency [SPB+11]. Fig. 6 illustrates these two consistency criteria on small examples. In
the remaining of this article, we consider an UQ-ADT O = (U,Qi,Qo,S,s0,T,G) and a history
H = (U,Q,E,Λ,↦).

Eventual consistency eventual consistency requires that, if all the participants stop updating,
all the replicas eventually converge to the same state. In other word, H is eventually consistent if
it contains an infinite number of updates (i.e. the participants never stop writing) or if there exists
a state (the consistent state) compatible with all but a finite number of queries.
Definition 5 (Eventual consistency). A history H is eventually consistent (EC) if UH is infinite or
there exists a state s ∈ S such that the set of queries that return non consistent values while in the
state s, {qi/qo ∈QH ∶G(s,qi) ≠ qo}, is finite.

All the histories presented in Fig. 6 are eventually consistent. The executions represent two
processes sharing a set of integers. In Fig. 6a, the first process inserts value 1 and then reads twice
the set and gets respectively {2} and {1}; afterwards, it executes an infinity of read operations that
return the empty set (ω in superscript denotes the operation is executed an infinity of times). In the
meantime, the second process inserts a 2 then reads the set an infinity of times. It gets respectively
{1} and {2} the two first times, and empty set an infinity of times. Both processes converge to the
same state (∅), so the history is eventually consistent. However, before converging, the processes
can read anything a finite but unbounded number of times.

Strong eventual consistency strong eventual consistency requires that two replicas of the same
object converge as soon as they have received the same updates. The problem with that definition
is that the notions of replica and message reception are inherent to the implementation, and are
hidden from the programmer that uses the object, so they should not be used in its specification.
A visibility relation is introduced to model the notion of message delivery. This relation is not an
order since it is not required to be transitive.
Definition 6 (Strong eventual consistency). A history H is strong eventually consistent (SEC) if

there exists an acyclic and reflexive relation
visÐ→ (called visibility relation) that contains↦ and such

that:

• Eventual delivery: when an update is viewed by a replica, it is eventually viewed by all
replicas, so there can be at most a finite number of operations that do not view it:

∀u ∈UH ,{e ∈ E,u /visÐ→ e} is finite;

• Growth: if an event has been viewed once by a process, it will remain visible forever:

∀e,e′,e′′ ∈ E,(e
visÐ→ e′∧e′↦ e′′)⇒ (e

visÐ→ e′′);

• Strong convergence: if two query operations view the same past of updates V , they can be
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●a
I(1) ●b

I(3)
●c

R/{1,3} ●d
R/{1,2,3}

●e
R/{1,2}ω

● f
I(2)

●g

D(3) ●h
R/{2} ●i

R/{1,2} ● j
R/{1,2,3}ω

w1 = I(1) ⋅ I(3) ⋅R/{1,3} ⋅ I(2) ⋅R/{1,2,3} ⋅D(3) ⋅R/{1,2}ω

w2 = I(2) ⋅D(3) ⋅R/{2} ⋅ I(1) ⋅R/{1,2} ⋅ I(3) ⋅R/{1,2,3}ω

Figure 7: PC but not EC

issued in the same state s: ∀V ⊂UH ,∃s ∈ S,∀qi/qo ∈QH ,

V = {u ∈UH ∶ u visÐ→ qi/qo}⇒G(s,qi) = qo.

The history of Fig. 6a is not strong eventually consistent because the I(1) must be visible by all
the queries of the first process (by reflexivity and growth), so there are only two possible sets of
visible updates ({I(1)} and{I(1),I(2)}) for these events, but the queries are done in three different
states ({1}, {2} and ∅); consequently, at least two of these queries see the same set of updates and
thus need to return the same value. Fig. 6c, on the contrary, is strong eventually consistent: the
replicas that see {I(1)} are in state ∅ and those that see {I(1),I(2)} are in state {1,2}.

4.3 Pipelined Convergence

A straightforward way to strengthen eventual consistency is to compose it with another consis-
tency criterion that imposes restrictions on the values that can be returned by a read operation.
Causality is often cited as a possible candidate to play this role [SJZ+98]. As causal consistency
is well formalized only for memory, we will instead consider Pipelined Random Access Mem-
ory (PRAM) [LS88], a weaker consistency criterion. As the name suggests, PRAM was initially
defined for memory. However, it can be easily extended to all UQ-ADTs. Let’s call this new con-
sistency criterion pipelined consistency (PC). In a pipelined consistent computation, each process
must have a consistent view of its local history with all the updates of the computation. More
formally, it corresponds to Def. 7. Pipelined consistency is local to each process, as different
processes can see concurrent updates in a different order.
Definition 7. A history H is pipelined consistent (PC) if, for all maximal chains (i.e. sets of totally
ordered events) p of H, lin(HUH∪p)∩L(O) ≠∅.

Pipelined consistency can be implemented at a very low cost in wait-free systems. Indeed, it
only requires FIFO reception. However, it does not imply convergence. For example, the history
given in Figure 7 is pipelined consistent but not eventually consistent. In this history, two pro-
cesses p1 and p2 share a set of integers. Process p1 first inserts 1 and then 3 in the set and then
reads the set forever. Meanwhile, process p2 inserts 2, deletes 3 and reads the set forever. The
words w1 and w2 are correct linearizations for both processes, with regard to Definition 7 so the
history is pipelined consistent, but after stabilization, p2 sees the element 3 whereas p1 does not.
Proposition 1 (Implementation). Pipelined convergence, that imposes both pipelined consistency and
eventual consistency, cannot be implemented in a wait-free system.

Proof. We consider the same program as in Figure 7, and we suppose the shared set is pipelined
convergent. By the same argument as developed in [AW94], it is not possible to prevent the
processes from not seeing each other’s first update at their first reads. Indeed, if p1 did not receive
any message from process p2, it is impossible for p1 to make the difference between the case
where p2 crashed before sending any message and the case where all its messages were delayed.
To achieve availability, p1 must compute the return value based solely on its local knowledge,
so it returns {1,3}. Similarly, p2 returns {2}. To circumvent this impossibility, it is necessary to
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make synchrony assumption on the system (e.g. bounds on transmission delays) or to assume the
correctness of a majority of processes.

If the first read of p1 returns {1,3}, as the set is pipelined consistent, there must exist a lin-
earization for p1 that contains all the updates, R/{1,3} and an infinity of queries. As 2 /∈ {1,3}, the
possible linearizations are defined by the ω-regular language I(1) ⋅I(3) ⋅R/{1,3}+ ⋅I(2) ⋅R/{1,2,3}⋆ ⋅
D(3) ⋅R/{1,2}ω, so any history must contain an infinity of events labelled R/{1,2}ω. Similarly, if
p2 starts by reading {2}, it will eventually read {1,2,3} an infinity of times. This implies that
pipelined convergence cannot be provided in wait-free systems.

Consequently causal consistency, that is stronger than pipelined consistency, cannot be satisfied
together with eventual consistency in a wait-free system.

5 Update Consistency

We now introduce our new consistency criteria: update consistency and strong update consis-
tency. Section 5.1 provides their main definitions, while Section 5.2 discusses their expressive
power by means of a case study.

5.1 Definitions

We give below the definitions of consistency and strong update consistency. Then, in Figure 6, we
compare them to eventual consistency and strong eventual consistency on four small examples.

Update consistency eventual consistency and strong eventual consistency are not interested
in defining the states that are reached during the histories (the same updates have to lead to
the same state whatever is the state). They do not depend on the sequential specification of the
object, so they give very little constraints on the histories. For example, an implementation that
ignores all the updates is strong eventually consistent, as all the queries return the initial state.
In update consistency, we impose the existence of a total order on the updates, that contains the
program order and that leads to the consistent state according to the abstract data type. Another
equivalent way to approach update consistency is that, if the number of updates is finite, it is
possible to remove a finite number of queries such that the history is sequentially consistent.

Definition 8 (Update consistency). A history H is update consistent (UC) if UH is infinite or if
there exists a finite set of queries Q′ ⊂QH such that lin(HE∖Q′)∩L(O) ≠∅.

The history of Fig. 6c is update consistent because the sequence of operations I(1)I(2) is a
possible explanation for the state {1,2}. The history of Fig. 6b is not update consistent because
any linearization of the updates would position a deletion as the last event. Only three consistent
states are actually possible: state ∅, e.g. for the linearization I(1) ⋅ I(2) ⋅D(1) ⋅D(2), state {1} for the
linearization I(2) ⋅D(1) ⋅ I(1) ⋅D(2) and state {2} for the linearization I(1) ⋅D(2) ⋅ I(2) ⋅D(1). Update
consistency is incomparable with strong eventual consistency.

Strong update consistency strong update consistency is a strengthening of both update consis-
tency and strong eventual consistency. The relationship between update consistency and strong
update consistency is analogous to the relation between eventual consistency and strong eventual
consistency.
Definition 9 (Strong update consistency). A history H is strong update consistent (SUC) if there

exists (1) an acyclic and reflexive relation
visÐ→ that contains ↦ and (2) a total order ≤ that contains

visÐ→ such that:
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• Eventual delivery:

∀u ∈UH ,{e ∈ E,u /visÐ→ e} is finite;

• Growth:
∀e,e′,e′′ ∈ E,(e

visÐ→ e′∧e′↦ e′′)⇒ (e
visÐ→ e′′) ;

• Strong sequential convergence: A query views an update if this update precedes it accord-

ing to
visÐ→. Each query is the result of the ordered execution, according to ≤, of the updates

it views:
∀q ∈QH , lin(H≤V(q)∪{q})∩L(O) ≠∅

where V(q) = {u ∈UH ∶ u visÐ→ q}.

Fig. 6d shows an example of strong update consistent history: nothing prevents the second
process from seeing the insertion of 2 before that of 1. Strong eventual consistency and update
consistency does not imply strong update consistency: in the history of Fig. 6c, after executing
event I(1), the only three possible update linearizations are I(1), I(1) ⋅ I(2) and I(2) ⋅ I(1) and
none of them can lead to the state ∅ according to the sequential specification of a set object. So
the history of Fig. 6c is not strong update consistent, while it is update consistent and strong
eventually consistent.
Proposition 2 (Comparison of consistency criteria). If a history H is update consistent, then it is
eventually consistent. If H is strong update consistent, then it is both strong eventually consistent and
update consistent.

Proof. Suppose H is update consistent. If H contains an infinite number of updates, then it is
eventually consistent. Otherwise, there exists a finite set Q′ ⊂ QH and a word w ∈ lin(HEH∖Q′)∩
L(O). As the number of updates is finite, there is a finite prefix v of w that contains them all.
v ∈ L(O), so it labels a path between s0 and a state s in the UQ-ADT. All the queries that are in w
but not in v return the same state s, and the number of queries in Q′ and v is finite. Hence, H is
eventually consistent.

Suppose H is strong update consistent with a finite number of updates.
Q′ = ⋃u∈UH{q ∈ QH ,q ≤ u} is finite, and lin(EH ∖Q′) contains only one word that is also contained
into L(O). Obviously, H is update consistent

Now, suppose H is strong update consistent. Strong update consistency respects both eventual
delivery and growth properties. Let V ⊂UH . As the relation ≤ is a total order, there is a unique
word w in lin(H≤V )∩L(O). Let us denote s the state obtained after the execution of w. For all

q ∈QH such that V = {u ∈UH ∶ u visÐ→ q}, lin(H≤Eq∪{q})∩L(O) = {w ⋅Λ(q)}, so q = qi/qo with G(s,qi) = qo.
Consequently, H is strong eventually consistent.

5.2 Expressiveness of Update Consistency: a Case Study

The set is one of the most studied eventually consistent data structures. Different types of sets
have been proposed as extensions to CRDTs to implement eventually consistent sets even though
the insert and delete operations do not commute. The simplest set is the Grow-Only Set (G-
Set) [SPB+11], in which it is only possible to insert elements. As the insertion of two elements
commute, G-Set is a CRDT. Using two G-Set, a white list for inserted elements and a black list
for the deleted ones, it is possible to build a Two-Phases Set (2P-Set, a.k.a. U-Set, for Unique Set)
[WB86], in which it is possible to insert and remove elements, but never insert again an element
that has already been deleted. Other implementations such as C-Set [AMSM+11] and PN-Set, add
counters on the elements to determine if they should be present or not. The Observe-Remove
Set (OR-Set) [SPB+11, MSS14] is the best documented alg orithm for the set. It is very close to
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the 2P-Set in its principles, but each insertion is timestamped with a unique identifier, and the
deletion only black-lists the identifiers that it observes. It guaranties that, if an insertion and
a deletion of the same element are concurrent, the insertion will win and the element will be
added to the set. Finally, the last-writer-wins element set (LWW-element-Set) [SPB+11] attaches
a timestamp to each element to decide which operation should win in case of conflict. All these
sets, and the eventually consistent objects in general, have a different behavior when they are
used in distributed programs.

The above mentioned implementations are eventually consistent. However, as eventual con-
sistency does not impose a semantic link between updates and queries, it is hazardous to say
anything on the conformance to the specification of the object. Burckhardt et al. [BGYZ14] pro-
pose to specify the semantics of a query by a function on its concurrent history, called visibility,
that corresponds to the visibility relation in strong eventual consistency, and a linearization of this
history, called arbitration. In comparison, sequential specifications are restricted to the arbitration
relation. It implies that fewer update consistent objects than eventually consistent objects can be
specified. Although the variety of objects with a distributed specification seems to be a chance
that compensates the lower level of abstraction it allows, an important bias must be taken into
account: from the point of view of the user, the visibility of an operation is not an a priori property
of the system, but an a posteriori way to explain what happened. If one only focuses on the final
state, an update consistent object is appropriate to be used instead of an eventually consistent
object, since the final state is the same as if no operations were concurrent.

By adding further constraints on the histories, concurrent specifications strengthen the consis-
tency criteria. Even if strong update consistency is stronger than strong eventual consistency,
we cannot say in general that a strong update consistent object can always be used instead of
its strong eventually consistent counterpart. We claim that this is true in practice for reasonable
objects, and we prove this in the case of the Insert-wins set (the concurrent specification of the
OR-set). The arbitration relation is not used for the OR-set, and the visibility relation has already
been defined for strong eventual consistency. The concurrent specification only adds one more
constraint on this relation: an element is present in the set if and only if it was inserted and is not
yet deleted.
Definition 10 (Strong eventual consistency for the Insert-wins set). A history H is strong even-
tually consistent for the Insert-wins set on a support Val if it is strong eventually consistent for

the set SVal and the visibility relation
visÐ→ verifies the following additional property. For all x ∈ Val

and q ∈QH , with Λ(q) =R/s, x ∈ s⇔ (∃u ∈ vis(q,I(x)),∀u′ ∈ vis(q,D(x)),u /visÐ→ u′), where for all o ∈U ,

vis(q,o) = {u ∈UH ∶ u visÐ→ q∧Λ(u) = o}.

The OR-Set implementation of a set is not update consistent. The history on Fig. 6b is not
update consistent, as the last operation must be a deletion. However, if the updates made by a
process are not viewed by the other process before it makes its own updates, the insertions will
win and the OR-set will converge to {1,2}. On the contrary, a strong update consistent implemen-
tation of a set can always be used instead of an Insert-wins set, as it only forbids more histories.
Proposition 3 (Comparison with Insert-wins set). Let H = (U,Q,E,Λ,↦) be a history that is strong
update consistent for SVal. Then H is strong eventually consistent for the Insert-wins set.

Proof. Suppose H is strong update consistent for SVal. We define the new relation
IWÐ→ such that

for all e,e′ ∈ E, e
IWÐ→ e′ if one of the following conditions holds:

• e
visÐ→ e′;

• e and e′ are two updates on the same element and e ≤ e′;
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• e′ is a query, and there is an update e′′ such that e
IWÐ→ e′′ and e′′

IWÐ→ e′.

The relation
IWÐ→ is acyclic because it is included in ≤, its growth and eventual delivery properties

are ensured by the fact that it contains
visÐ→. Moreover, no two updates for the same element are

concurrent according to
IWÐ→ and the last updates are also the last for the ≤ relation, consequently

H is strong eventually consistent for the Insert-wins set.

This result implies that an OR-set can always be replaced by an update consistent set, because
the guaranties it ensures are weaker than those of the update consistent set. It does not mean that
the OR-set is worthless. It can be seen as a cache consistent set [Goo91] that, in some cases may
have a better space complexity than update consistency.

6 Generic Construction of Strong Update Consistent Objects
In this section, we give a generic construction of strong update consistent objects in crash-prone
asynchronous message-passing systems. This construction is not the most efficient ever as it is
intended to work for any UQ-ADT object in order to prove the universality of update consistency.
For a specific object an ad hoc implementation on a specific system may be more suitable.

6.1 System Model
We consider a message-passing system composed of finite set of sequential processes that may fail
by halting. A faulty process simply stops operating. A process that does not crash during an
execution is correct. We make no assumption on the number of failures that can occur during
an execution. Processes communicate by exchanging messages using a communication network
complete and reliable. A message sent by a correct process to another correct process is eventually
received. The system is asynchronous; there is no bound on the relative speed of processes nor
on the message transfer delays. In such a situation a process cannot wait for the participation of
any a priori known number of processes as they can fail. Consequently, when an operation on
a replicated object is invoked locally at some process, it needs to be completed based solely on
the local knowledge of the process. We call this kind of systems wait-free asynchronous message-
passing system.

We model executions as histories made up of the sequences of events generated by the different
processes. As we focus on shared objects and their implementation, only two kinds of actions are
considered: the operations on shared objects, that are seen as events in the distributed history,
and message receptions.

6.2 A universal implementation
Now, we prove that strong update consistency is universal, in the sense that every UQ-ADT
has a strong update consistent implementation in a wait-free asynchronous system. Algorithm 3
presents an implementation of a generic UQ-ADT. The principle is to build a total order on the
updates on which all the participants agree, and then to rewrite the history a posteriori so that
every replica of the object eventually reaches the state corresponding to the common sequential
history. Any strategy to build the total order on the updates would work. In Algorithm 3, this
order is built from a Lamport’s clock [Lam78] that contains the happened-before precedence re-
lation. Process order is hence respected. A logical Lamport’s clock is a pre-total order as some
events may be associated with the same logical time. In order to have a total order, the events are
timestamped with a pair composed of the logical time and the id of the process that produced it
(process ids are assumed unique and totally ordered). The algorithm actions performed by a pro-
cess pi are atomic and totally ordered by an order ↦i. The union of these orders for all processes
is the program order ↦.
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Algorithm 3 a generic UQ-ADT (code for pi)

At the application level, a history is composed of update and query operations. In order to
allow only strong update consistent histories, Algorithm 3 proposes a procedure update() and a
function query(). A history H is allowed by the algorithm if update(u) is called each time a process
performs an update u, and query(qi) is called and returns qo when the event qi/qo appears in the
history. The code of Algorithm 3 is given for process pi. Each process pi manages its view clocki of
the logical clock and a list updatesi of all timestamped update events process pi is aware of. The list
updatesi contains triplets (cl, j,u) where u is an update event and (cl, j) the associated timestamp.
This list is sorted according to the timestamps of the updates: (cl, j) < (cl′, j′) if (cl < cl′) or (cl = cl′

and j < j′).
The algorithm timestamps all events (updates and queries). When an update is issued locally,

process pi informs all the other processes by reliably broadcasting a message to all other pro-
cesses (including itself). Hence, all processes will eventually be aware of all updates. When a
message(cl, j,u) is received, pi updates its clock and inserts the event to the list updatesi. When a
query is issued, the function query() replays locally the whole list of update events pi is aware of
starting from the initial state then it executes the query on the state it obtains.

Whenever an operation is issued, its is completed without waiting for any other process. This
corresponds to wait-free executions in shared memory distributed systems and implies fault-
tolerance.
Proposition 4 (Strong update consistency). All histories allowed by Algorithm 3 are strong update
consistent.

Proof. Let H = (U,Q,E,Λ,↦) be a distributed history allowed by Algorithm 3. Let e,e′ ∈
EH be two operations invoked by processes pi and pi′ , on the states (update,clock) and
(update′,clock′), respectively. We pose:

• e
visÐ→ e′ if e ∈UH and pi′ received the message sent during the execution of e before it starts

executing e′, or e ∈ QH and e ↦ e′. As the messages are received instantaneously by the

sender,
visÐ→ contains ↦. It is growing because the set of messages received by a process is

growing with time.

• e ≤ e′ if c < c′ or c = c′ and i < i′. This lexical order is total because two operations on the

same process have a different clock. Moreover it contains
visÐ→ because when pi′ received the
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Algorithm 4 the shared memory (code for pi)

message sent by e, it executed line 9 and when it executed e′, it executed line 5, so c′ ≥ c+1.
Moreover, the history of e contains at most c×n+i events, where n is the number of processes,
so it is finite.

Let q ∈ QH and Eq = {u ∈UH ∶ u visÐ→ q}. Lines 15 to 18 build an explicit sequential execution, that is
in lin(H≤Eq∪{q}) by definition of ≤ and in L(O) by definition of O.

6.3 Complexity
Algorithm 3 is very efficient in terms of network communication. A unique message is broadcast
for each update and each message only contains the information to identify the update and a
timestamp composed of two integer values, that only grow logarithmically with the number of
processes and the number of operations. Moreover, this algorithm is wait-free and its execution
does not depend on the latency of the network.

This algorithm re-executes all past updates each time a new query is issued. In an effective im-
plementation, a process can keep intermediate states. These intermediate states are re-computed
only if very late message arrive. The algorithm does not look space efficient also as the whole
history must be kept in order to rebuild a sequential history. Because data space is cheap and fast
nowadays, compared to bandwidth, many applications can afford this complexity and would
keep this information anyway. For example, banks keep track of all the operations made on an
account for years for legal reasons. In databases systems, it is usual to record all the events in log
files. Moreover, asynchrony is used as a convenient abstraction for systems in which transmission
delays are actually bounded, but the bound is too large to be used in practice. This means that
after some time old messages can be garbage collected.

The proposed algorithm is a theoretical work whose goal is to prove that any update-query
object has a strong update consistent implementation. This genericity prevents an effective im-
plementation that may take benefit from the nature and the specificity of the actual object. The
best example of this are pure CRDTs like the counter and the grow-only set. If all the update oper-
ations commute in the sequential specification, all linearizations would lead to the same state so a
naive implementation, that applies the updates on a replica as soon as the notification is received,
achieves update consistency. In [KBL93], Karsenty and Beaudouin-Lafon propose an algorithm
to implement objects such that each update operation u contains an undo u−1 such that for all s,
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T(T(s,u),u−1) = s. This algorithm is very close to ours as it builds the convergent state from a lin-
earization of the updates stored by each replica. They use the undo operations to position newly
know n updates at their correct place, which saves computation time. As it is a very frequent
example in distributed systems, we now focus on the shared memory object.

Algorithm 4 shows an update consistent implementation of the shared memory object. A
shared memory offers a set X of registers that contain values taken from a set V . The query oper-
ation read(x), where x ∈ X , returns the last value v ∈V written by the update operation write(x,v),
or the initial value v0 ∈V if x was never written. Algorithm 4 orders the updates exactly like Al-
gorithm 3. As the old values can never be read again, it is not necessary to store them forever, so
the algorithm only keeps in memory the last known value of each register and its timestamp in a
local memory memi, implemented with an associative array. When a process receives a notifica-
tion for a write, it updates its local state if the value is newer that the current one, and the read
operations just return the current value. This implementation only needs constant computation
time for both the reads and the writes, and the complexity in memory only grows logarithmically
with time and the number of participants.

7 Conclusion

This work was motivated by the increasing popularity of geographically distributed systems.
We have presented two contributions that make it possible to formally define and reason about
consistency conditions in large-scale systems. The first contribution defines a mixed approach in
which the operations invoked by nearby processes obey stronger consistency requirements than
operations invoked by remote ones. The second consists of a new consistency criterion, update
consistency, that is stronger than eventual consistency and weaker than sequential consistency.
Update consistency formalizes the intuitive notions of sequential specification for an abstract data
type and distributed history.
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