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Abstract Noisy optimization is the optimization of objective functions corrupted
by noise. A portfolio of solvers is a set of solvers equipped with an algorithm
selection tool for distributing the computational power among them. Portfolios
are widely and successfully used in combinatorial optimization.

In this work, we study portfolios of noisy optimization solvers. We obtain math-
ematically proved performance (in the sense that the portfolio performs nearly as
well as the best of its solvers) by an ad hoc portfolio algorithm dedicated to noisy
optimization. A somehow surprising result is that it is better to compare solvers
with some lag, i.e., propose the current recommendation of best solver based on
their performance earlier in the run. An additional finding is a principled method
for distributing the computational power among solvers in the portfolio.

Keywords Black-Box Noisy Optimization · Algorithm Selection · Simple Regret

1 Introduction

Given an objective function, also termed fitness function, from a domain D ∈ Rd
to R, numerical optimization or simply optimization is the research of points, also
termed individuals or search points, with approximately optimum (e.g. minimum)
objective function values.

Noisy optimization is the optimization of objective functions corrupted by
noise. Black-box noisy optimization is the noisy counterpart of black-box optimiza-
tion, i.e., functions for which no knowledge about the internal processes involved
in the objective function can be exploited.

Algorithm Selection (AS) consists in choosing, in a portfolio of solvers, the one
which is approximately the most efficient on the problem at hand. AS can mitigate
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the difficulties for choosing a priori the best solver among a portfolio of solvers.
This means that AS leads to an adaptive version of the algorithms. In some cases,
AS outperforms all individual solvers by combining the good properties of each of
them, with information sharing or with chaining, as discussed later. It can also be
used for the sake of parallelization or parameter tuning, or for mitigating the im-
pact of bad luck in randomized solvers. In this paper, we apply AS to the black-box
noisy optimization problem. This paper extends [12] with respect to (i) showing
that the lag is necessary; (ii) extending experimental results; (iii) improving the
convergence rates thanks to an unfair distribution of the computational budget.

1.1 Noisy optimization

Noisy optimization is a key component of machine learning, from supervised learn-
ing to unsupervised or reinforcement learning; it is also relevant in streaming appli-
cations. The black-box setting is crucial in reinforcement learning where gradients
are difficult and expensive to get; direct policy search [40] usually boils down to
(i) choosing a representation and (ii) applying black-box noisy optimization. Some
works focus on noise models in which the noise has variance close to zero around
the optimum [23]; others consider actuator noise, i.e., when the fitness values are
those at search points corrupted by noise [9], as shown by Eq. 2. There are also
cases in which the landscape is assumed to be rugged, and the optimization algo-
rithm should act as a low pass filter, in order to get rid of local variations [30].
The most usual model of noise is however the case of noise in which the variance
does not vanish around the optimum and the goal is to find a good search point in
terms of expected fitness value [18,13] and this is the case we will consider here.

Zero-order methods, including evolution strategies [8] and derivative-free op-
timization [14] are natural solutions in the black-box setting; as they do not use
gradients, they are not affected in such a setting. However, the noise has an im-
pact even on such methods [3,34], possibly mitigated by increasing the population
size or averaging multiple evaluations of each search point. Using surrogate models
[24] reduces the impact of noise by sharing information over the domain. Surrogate
models are also a step towards higher order methods; even in black-box scenarios:
a Hessian can be approximated thanks to observed fitness values and statistical
learning of a surrogate model.

It is known [18,35] that stochastic gradient by finite differences (finite differ-
ences at each iteration or by averaging over multiple iterations) can provide tight
convergence rates (see tightness in [13]) in the case of an additive noise with con-
stant variance. Fabian, in [17], has also tested the use of second order information
(Hessian) approximated by finite differences.

In this paper, our portfolio will be made of the following algorithms: (i) an
evolution strategy; (ii) a first-order method using gradients estimated by finite
differences; (iii) a second-order method using a Hessian matrix also approximated
by finite differences. We present these methods in more details in Appendix A.
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1.2 Algorithm selection

Combinatorial optimization is probably the most classical application domain for
AS [27]. However, machine learning is also a classical test case [41]; in this case,
AS is sometimes referred to as meta-learning [1].

No free lunch. [44] claims that it is not possible to do better, on average (uniform
average) on all optimization problems from a given finite domain to a given finite
codomain. This implies that no AS can outperform existing algorithms on average
on this uniform probability distribution of problems. Nonetheless, reality is very
different from a uniform average of optimization problems, and AS does improve
performance in many cases.

Chaining and information sharing. Algorithm chaining [10] means switching from
one solver to another during the AS run. More generally, a hybrid algorithm is a
combination of existing algorithms by any means [42]. This is an extreme case of
sharing. Sharing consists in sending information from some solvers to other solvers;
they communicate in order to improve the overall performance.

Static portfolios & parameter tuning. A portfolio of solvers is usually static, i.e.,
combines a finite number of given solvers. SATzilla is probably the most well known
portfolio method, combining several SAT-solvers [46]. Samulowitz and Memisevic
have pointed out in [33] the importance of having “orthogonal” solvers in the
portfolio, so that the set of solvers is not too large, but approximates as far as
possible the set of all feasible solvers. AS and parameter tuning are combined in
[45]; parameter tuning can be viewed as an AS over a large but structured space of
solvers. We refer to [27] and references therein for more information on parameter
tuning and its relation to AS; this is beyond the scope of this paper.

Fair or unfair distribution of computation budgets. In [31], different strategies are
compared for distributing the computation time over different solvers. The first
approach consists in running all solvers during a finite time, then selecting the best
performing one, and then keeping it for all the remaining time. Another approach
consists in running all solvers with the same time budget independently of their
performance on the problem at hand. Surprisingly enough, they conclude that
uniformly distributing the budget is a good and robust strategy. The situation
changes when a training set is available, and when we assume that the training
set is relevant for the future problems to be optimized; [25], using a training set
of problems for comparing solvers, proposes to use 90% of the time allocated to
the best performing solver, the other 10% being equally distributed among other
solvers. In [19,20], it is proposed to use 50% of the time budget for the best solver,
25% for the second best, and so on. Some AS algorithms [20,2] do not need a
separate training phase, and perform entirely online solver selection; a weakness
of this approach is that it is only possible when a large enough budget is avail-
able, so that the training phase has a minor cost. A portfolio algorithm, namely
Noisy Optimization Portfolio Algorithm (NOPA), designed for noisy optimization
solvers, and which distributes uniformly the computational power among them,
is proposed in [12]. We extend it to INOPA (Improved NOPA), which is allowed
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to distribute the budget in an unfair manner. It is proved that INOPA reaches
the same convergence rate as the best solver, within a small (converging to 1)
multiplicative factor on the number of evaluations, when there is a unique optimal
solver - thanks to a principled distribution of the budget into (i) running all the
solvers; (ii) comparing their results; (iii) running the best performing one. The
approach is anytime, in the sense that the computational budget does not have to
be known in advance.

Parallelism. We refer to [22] for more on parallel portfolio algorithms (though not
in the noisy optimization case). Portfolios can naturally benefit from parallelism;
however, the situation is different in the noisy case, which is highly parallel by
nature (as noise is reduced by averaging multiple resamplings1).

Best solver first. [31] point out the need for a good ordering of solvers, even if it has
been decided to distribute nearly uniformly the time budget among them: this im-
proves the anytime behavior. For example, they propose, within a given scheduling
with same time budget for each optimizer, to use first the best performing solver.
We will adapt this idea to our context; this leads to INOPA, improved version of
NOPA.

Bandit literature. During the last decade, a wide literature on bandits [28,6,11]
has proposed many tools for distributing the computational power over stochastic
options to be tested. The application to our context is however far from being
straightforward. In spite of some adaptations to other contexts (time varying as
in [26] or adversarial [21,7]), and maybe due to strong differences such as the very
non-stationary nature of bandit problems involved in optimization portfolios, these
methods did not, for the moment, really find their way to AS. Another approach
consists in writing this bandit algorithm as a meta-optimization problem; [38]
applies the differential evolution algorithm [39] to some non-stationary bandit
problem, which outperforms the classical bandit algorithm on an AS task.

The main contributions of this paper can be summarized as follows. First, we
prove positive results for a portfolio algorithm, termed NOPA, for AS in noisy
optimization. Second, we design a new AS, namely INOPA, which (i) gives the
priority to the best solvers when distributing the computational power; (ii) ap-
proximately reaches the same performance as the best solver; (iii) possibly shares
information between the different solvers. We then prove the requirement of select-
ing the solver that was apparently the best some time before the current iteration -
a phenomenon that we term the lag. Finally, we provide some experimental results.

1.3 Outline of this paper

Section 2 describes the algorithms under consideration and provides theoretical
results. Section 3 is dedicated to experimental results. Section 4 concludes.

1 “Resamplings” means that the stochastic objective function, also known as fitness function,
is evaluated several times at the same search point. This mitigates the effects of noise.
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2 Algorithms and analysis

Section 2.1 introduces some notations. Section 2.2 provides some background and
criteria. Section 2.3 describes two portfolio algorithms, one with fair distribution
of budget among solvers and one with unfair distribution of budget. Section 2.4
then provides theoretical guarantees.

2.1 Notations

In this paper, N∗ = {1, 2, 3, . . . }, “a.s.” stands for “almost surely”, i.e., with prob-
ability 1, and “s.t.” stands for “such that”. Appendix B is a summary of notations.
If X is a random variable, then (X(1), X(2), . . . ) denotes a sample of independent
identically distributed random variables, copies of X. o(.), O(.), Θ(.) are the stan-
dard Landau notations. N denotes a standard Gaussian distribution, in dimension
given by the context.

Let f : D → R be a noisy function. f is a random process, and equivalently
it can be viewed as a mapping (x, ω) 7→ f(x, ω) where x ∈ D and ω is a random
variable independently sampled at each call to f . The user can only choose x. For
short, we will use the notation f(x). The reader should keep in mind that this
function is stochastic. Ês [f(x)] denotes the empirical evaluation of E [f(x)] over

s ∈ N∗ resamplings, i.e., Ês [f(x)] = 1
s

∑s
j=1 (f(x))(j).

2.2 Definitions and Criteria

A black-box noisy optimization solver, here referred to as a solver, is a program
which aims at finding the minimum x∗ of x 7→ Ef(x), thanks to multiple black-
box calls to the unknown function f . The expectation operator E shows that we
assume that the noise is additive and unbiased (Eq. 1); the “real”, noise-free, fitness
function is the expectation of the noisy fitness function. This is not necessarily the
case for e.g. actuator noise, as in Eq. 2:

f(x, ω) = f(x) + ω; (1)

f(x, ω) = f(x+ ω). (2)

The portfolio algorithm has the same goal, and can use M ∈ {2, 3, . . . } different
given solvers. A good AS tool should ensure that it is nearly as efficient as the
best of the individual solvers2, for any problem in some class of interest.

Simple regret criterion. In the black-box setting, let us define :

– xn the nth search point at which the objective function (also termed fitness
function) is evaluated;

– x̃n the point that the solver recommends as an approximation of the optimum
after having evaluated the objective function at x1, . . . , xn (i.e., after spending
n evaluations from the budget).

2 A solver is termed “individual solver” when it is not a portfolio. In this paper, unless
stated otherwise, a “solver” is an “individual solver”.



6

Some algorithms make no difference between xn and x̃n, but in the general case
of a noisy optimization setting the difference matters [16,18,35].

The Simple Regret (SR) for noisy optimization is expressed in terms of objec-
tive function values, as follows:

SRn = E
(
f(x̃n)− f(x∗)

)
. (3)

SRn is the simple regret after n evaluations; n is then the budget. The E operator
refers to the ω part, i.e., with complete notations,

SRn = Eω
(
f(x̃n, ω)− f(x∗, ω)

)
.

In many cases, it is known that the simple regret has a linear convergence in
a log-log scale [18,13,16]. Therefore we will consider this slope. The slope of the
simple regret is then defined as

s(SR) = lim
n→∞

log(SRn)

log(n)
, (4)

where the limit holds almost surely, since SRn is a random variable.
For example, the gradient method proposed in [18] (approximating the gra-

dient by finite differences) reaches a simple regret slope arbitrarily close to −1
on sufficiently smooth problems, for an additive centered noise, without assuming
variance decreasing to zero around the optimum.

Simple regret criterion for portfolio. For a portfolio algorithm in the black-box
setting, ∀i ∈ {1, . . . ,M}, x̃i,n denotes the point

– that the solver number i recommends as an approximation of the optimum;
– after this solver has spent n evaluations from the budget.

Similarly, the simple regret given by Equation 3 corresponding to solver number
i after n evaluations (i.e., after solver number i has spent n evaluations), is denoted
by SRi,n. For n ∈ N∗, i∗n denotes the solver chosen by the selection algorithm when
there are at most n evaluations per solver.3

Another important concept is the difference between the two kinds of terms
in the regret of the portfolio. We distinguish these two kinds of terms in the next
two definitions:

Definition 1 (Solvers’ regret) The solvers’ regret with index n, denoted by
SRSolversn , is the minimum simple regret among the solvers after at most n eval-
uations each, i.e., SRSolversn = min

i∈{1,...M}
SRi,n.

Definition 2 (Selection regret) The selection regret with index n, denoted
by SRSelectionn includes the additional regret due to mistakes in choosing
among these M solvers after at most n evaluations each, i.e., SRSelectionn =
E
(
f(x̃i∗n,n)− f(x∗)

)
.

Similarly, ∆i,n quantifies the regret for choosing solver i at iteration n.

3 This is not uniquely defined, as there might be several time steps at which the maximum
number of evaluations in a solver is n; however, the results in the rest of this paper are
independent of this subtlety.
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Definition 3 For any solver i ∈ {1, . . . ,M} and any number of evaluations n ∈
N∗, we denote by ∆i,n the quantity: ∆i,n = SRi,n − min

j∈{1,...,M}
SRj,n.

Finally, we consider a function that will be helpful for defining our portfolio
algorithms.

Definition 4 (lag function) A lag function lag : N∗ → N∗ is a non-decreasing
function such that for all n ∈ N∗, lag(n) ≤ n.

2.3 Portfolio algorithms

In this section, we present two AS methods. A first version, in Section 2.3.1, shares
the computational budget uniformly; a second version has an unfair sharing of
computation budget, in Section 2.3.2.

2.3.1 Simple Case : Uniform Portfolio NOPA

We present in Algorithm 1 a simple noisy optimization portfolio algorithm (NOPA)
which does not apply any sharing and distributes the computational budget equally
over the noisy optimization solvers.

Algorithm 1 Noisy Optimization Portfolio Algorithm (NOPA).

Require: noisy optimization solvers Solver1, Solver2, . . . , SolverM
Require: a lag function lag : N∗ 7→ N∗ . As in Definition 4
Require: a non-decreasing integer sequence r1, r2, . . . . Periodic comparisons
Require: a non-decreasing integer sequence s1, s2, . . . . Number of resamplings
1: n← 1 . Number of selections
2: m← 1 . NOPA’s iteration number
3: i∗ ← null . Index of recommended solver
4: x∗ ← null . Recommendation
5: while budget is not exhausted do
6: if m ≥ rn then
7: i∗ = arg min

i∈{1,...,M}
Êsn [f(x̃i,lag(rn))] . Algorithm selection

8: n← n+ 1
9: else

10: for i ∈ {1, . . . ,M} do
11: Apply one evaluation for Solveri
12: end for
13: m← m+ 1
14: end if
15: x∗ = x̃i∗,m . Update recommendation
16: end while

In this NOPA algorithm, we compare, at iteration rn, recommendations chosen
at iteration lag(rn), and this comparison is based on sn resamplings, where n is
the number of algorithm selection steps. We have designed the algorithm as follows:

– A stable choice of solver: The selection algorithm follows the recommenda-
tion of the same solver i∗ at all iterations in {rn, . . . , rn+1 − 1}. This choice is
based on comparisons between old recommendations (through the lag function
lag).
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– The chosen solver updates are taken into account. For iteration indices
m < p in {rn, . . . , rn+1 − 1}, the portfolio chooses the same solver i∗, but
does not necessarily recommends the same point because possibly the solver
changes its recommendation, i.e., possibly x̃i∗,m 6= x̃i∗,p.

Effect of the lag. Due to the lag(.) function, we compare the x̃i,lag(rn) (for i ∈
{1, . . . ,M}), and not the x̃i,rn . This is the key point of this algorithm. Comparing
the x̃i,lag(rn) is much cheaper than comparing the x̃i,rn , because the fitness values
are not yet that good at iteration lag(rn), so they can be compared faster -
i.e., with less evaluations - than recommendations at iteration rn. We will make
this more formal in Section 2.4, and see under which assumptions this lag has
more pros than cons, namely when algorithms have somehow sustained rates. In
addition, with lag, we can define INOPA, which saves up significant parts of the
computation time.

The first step for formalizing this is to understand the two different kinds of
evaluations in portfolio algorithms for noisy optimization. Contrarily to noise-free
settings, comparing recommendations requires a dedicated budget, which is far
from negligible. It follows that there are two kinds of evaluations:

– Portfolio budget (Algorithm 1, Lines 10-12): this corresponds to the M
evaluations per iteration, dedicated to running the M solvers (one evaluation
per solver and per iteration).

– Comparison budget (Algorithm 1, Line 7): this corresponds to the sn
evaluations per solver at the nth algorithm selection. This is a key difference
with deterministic optimization. In deterministic optimization, this budget is
zero as the exact fitness value is readily available.

We have M ·rn evaluations in the portfolio budget for the first rn iterations. We
will see below (Section 2.4) conditions under which the other costs (i.e. comparison
costs) can be made negligible, whilst preserving the same regret as the best of the
M solvers.

2.3.2 INOPA: Improved NOPA, with unequal budget

Algorithm 2 proposes a variant of NOPA, which distributes the budget in an unfair
manner. The solvers with good performance receive a greater budget. The algo-
rithm is designed so that it mimics the behavior of NOPA, but without spending
the evaluations which are useless for the moment, given the lag - i.e. we use the
fact that evaluations prior to the lagged index are useless except for the selected
algorithm.

2.4 Theoretical analysis

We here show

– a bound on the performance of NOPA (Section 2.4.2);
– a bound on the performance of INOPA (Section 2.4.3);
– that the lag term is necessary (Section 2.4.4).
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Algorithm 2 Improved Noisy Optimization Portfolio Algorithm (INOPA).

Require: noisy optimization solvers Solver1, Solver2, . . . , SolverM
Require: a lag function lag : N∗ 7→ N∗ . Refer to Definition 4
Require: a non-decreasing positive integer sequence r1, r2, . . . . Periodic comparisons
Require: a non-decreasing integer sequence s1, s2, . . . . Number of resamplings
1: n← 1 . Number of selections
2: m← 1 . NOPA’s iteration number
3: i∗ ← null . Index of recommended solver
4: x∗ ← null . Recommendation
5: while budget is not exhausted do
6: if m ≥ lag(rn) or i∗ = null then

7: i∗ = arg min
i∈{1,...,M}

Êsn [f(x̃i,lag(rn))] . Algorithm selection

8: m′ ← rn
9: while m′ < rn+1 do

10: Apply one evaluation to solver i∗

11: m′ ← m′ + 1
12: x∗ = x̃i∗,m′ . Update recommendation
13: end while
14: n← n+ 1
15: else
16: for i ∈ {1, . . . ,M}\i∗ do
17: Apply lag(rn)− lag(rn−1) evaluations for Solveri
18: end for
19: m← m+ 1
20: end if
21: end while

2.4.1 Preliminary

We define 2 extra properties which are central in the proof.

Definition 5 (P
(i)
as ((εn)n∈N∗)) For any solver i ∈ {1, . . . ,M}, for some positive

sequence (εn)n∈N∗ , we define P
(i)
as ((εn)n∈N∗):

P (i)
as ((εn)n∈N∗) : a.s. ∃n0, ∀n1 ≥ n0, ∆i,n1 < 2εn1 =⇒ ∀n2 ≥ n1, ∆i,n2 < 2εn2 .

Informally speaking, if P
(i)
as ((εn)n∈N∗) is true, then almost surely for a large

enough number of evaluations, the difference between the simple regret of solver
i ∈ {1, . . . ,M} and the optimal simple regret is either always at most 2εn or always
larger - there is no solver infinitely often alternatively at the top level and very
weak.

Definition 6 (Pas((εn)n∈N∗)) For some positive sequence (εn)n∈N∗ , we define
Pas((εn)n∈N∗) as follows:

∀i ∈ {1, . . . ,M} , P(i)
as ((εn)n∈N∗) holds.

Remark 1 In Definitions 5 and 6, we might choose slightly less restrictive defini-
tions, for which the inequalities only hold for integers n such that ∃i, lag(ri) =
n or ri = n.

Definitions above can be applied in a very general setting. The simple regret of
some noisy optimization solvers, for instance Fabian’s algorithm, is almost surely
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SRn ≤ (1 + o(1)) Cnα after n ∈ N∗ evaluations (C is a constant), for some constant
α > 0 arbitrarily close to 1. This result is proved in [18], with optimality proved
in [13]. For RSAES, introduced below, the proof is given in [4]. For noisy variants
of Newton’s algorithm, one can refer to [36,37,5].

We prove the following proposition for such a case; it will be convenient for
illustrating “abstract” general results to standard noisy optimization frameworks.

Proposition 1 Assume that each solver i ∈ {1, . . . ,M} has almost surely simple
regret (1 + o(1)) Cinαi after n ∈ N∗ evaluations.

We define C, α∗, C∗:

C =
1

3
min {|Ci − Cj | | 1 ≤ i, j ≤M ;Ci − Cj 6= 0} . (5)

α∗ = max
i∈{1,...,M}

αi. (6)

C∗ = min
i∈{1,...,M} s.t. αi=α∗

Ci. (7)

We also define the set of optimal solvers:

SetOptim = {i ∈ {1, . . . ,M}|αi = α∗}
and SubSetOptim = {i∗ ∈ SetOptim|Ci∗ = C∗} (8)

= {i ∈ {1, . . . ,M}|αi = α∗ and Ci = C∗}. (9)

With these notations, if almost surely, ∀i ∈ {1, . . . ,M}, the simple regret for
solver i after n ∈ N∗ evaluations is SRi,n = (1 + o(1)) Cinαi , then Pas((εn)n∈N∗) is
true with εn defined as follows:

εn =
C

nα∗
. (10)

Moreover, if i0 ∈ {1, . . . ,M} satisfies: (∃n0 ∈ N∗, ∀n ≥ n0, ∆i0,n ≤ 2εn),
then i0 ∈ SubSetOptim.

Informally speaking, this means that if the solver i0 is close, in terms of simple
regret, to an optimal solver (i.e., a solver matching α∗ and C∗ in Equations 6
and 7), then it also has an optimal slope (αi0 = α∗) and an optimal constant
(Ci0 = C∗).

Proof For any solver i ∈ {1, . . . ,M} and any solver i∗ ∈ SubSetOptim,

SRi,n − SRi∗,n = (1 + o(1))
Ci
nαi
− (1 + o(1))

C∗

nα∗
. (11)

By Equations 10 and 11,

SRi,n − SRi∗,n
εn

=
Ci
C
· nα

∗−αi · (1 + o(1))− C∗

C
· (1 + o(1)). (12)

– If i 6∈ SetOptim, i.e., αi < α∗, the first term in Equation 12 tends to∞, which
leads to

lim
αi<α∗,n→∞

SRi,n − SRi∗,n
εn

=∞.

So for all i 6∈ SetOptim, ∃n0 ∈ N∗ s.t. ∀n ≥ n0, ∆i,n = SRi,n −
min

j∈{1,...,M}
SRj,n > 2εn and, therefore, P

(i)
as ((εn)n∈N∗) is true.
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– If i ∈ SetOptim, i.e., αi = α∗, Equation 12 becomes

SRi,n − SRi∗,n
εn

=
Ci − C∗

C
+
Ci
C
o(1)− C∗

C
o(1)

and therefore

lim
n→∞

SRi,n − SRi∗,n
εn

=
Ci − C∗

C
.

– If i ∈ SubSetOptim, i.e., Ci = C∗, lim
n→∞

SRi,n−SRi∗,n
εn

= 0. Therefore,

P
(i)
as ((εn)n∈N∗) is true.

– if i /∈ SubSetOptim, lim
n→∞

SRi,n−SRi∗,n
εn

≥ 3 by definition of C (Equation

5). Therefore, P
(i)
as ((εn)n∈N∗) is true.

So for all i ∈ {1, . . . ,M}, P
(i)
as ((εn)n∈N∗) is true, hence Pas((εn)n∈N∗) holds.

Moreover, it shows that ∃n0 ∈ N∗, ∀n ≥ n0, SRSolversn = min
j∈{1,...,M}

SRj,n =

SRj∗,n where j∗ ∈ SubSetOptim.
ut

2.4.2 The log(M)-shift for NOPA

We can now enunciate the first main theorem, stating that there is, with fair
sharing of the budget as in NOPA, a log(M)-shift, i.e., on a log-log scale (x-axis
equal to the number of evaluations and y-axis equal to the log of the simple regret),
the regret of the portfolio is just shifted by log(M) on the x-axis.

Theorem 1 (Regret of NOPA: the log(M) shift) Let (rn)n∈N∗ and (sn)n∈N∗

be two non-decreasing integer sequences. Assume that:

– ∀x ∈ D, V ar f(x) ≤ 1;
– for some positive sequence (εn)n∈N∗ , Pas((εn)n∈N∗) (Definition 6) is true.

Then, there exists n0 such that:

∀n ≥ n0, SR
Selection
rn < SRSolverrn + 2εrn (13)

with probability at least 1− M

snε2lag(rn)

after en = rn ·M ·

(
1 +

n∑
i=1

si
rn

)
evaluations.

Moreover, if (sn), lag(n), (rn) and (εn) satisfy
∑∞
j=1

1
sjε

2
lag(rj )

< ∞, then,

almost surely, there exists n0 such that:

∀n ≥ n0, SR
Selection
rn < SRSolverrn + 2εrn (14)

after en = rn ·M ·

(
1 +

n∑
i=1

si
rn

)
evaluations.

Remark 2 Please notice that Equation 13 holds with a given probability whereas
Equation 14 holds almost surely. The almost sure convergence in the assumption
is proved for some noisy optimization algorithms [18].
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Proof First, the total number of evaluations, up to the construction of x̃i∗rn ,rn at

iteration rn, is en = M
(
rn +

∑n
i=1 si

)
; at this point, each solver has spent rn

evaluations.
Step 1: Proof of Equation 13.
By Chebyshev’s inequality, for a given i ∈ {1, . . . ,M},

P(|E
[
f(x̃i,lag(rn))

]
−Êsn

[
f(x̃i,lag(rn))

]
| > εlag(rn)) <

V ar f
(
x̃i,lag(rn)

)
snε2lag(rn)

≤ 1

snε2lag(rn)
.

By union bound,

P(∃i ∈ {1, . . . ,M}; |E
[
f(x̃i,lag(rn))

]
−Êsn

[
f(x̃i,lag(rn))

]
| > εlag(rn)) <

M

snε2lag(rn)
.

With notation i∗ = i∗rn = arg min
i∈{1,...,M}

Êsn
[
f(x̃i,lag(rn))

]
, it follows that, with

probability 1− M
snε

2
lag(rn)

:

E
[
f(x̃i∗,lag(rn))

]
< Êsn

[
f(x̃i∗,lag(rn))

]
+ εlag(rn);

E
[
f(x̃i∗,lag(rn))

]
< Êsn

[
f(x̃j,lag(rn))

]
+ εlag(rn), ∀j ∈ {1, . . . ,M};

E
[
f(x̃i∗,lag(rn))

]
< E

[
f(x̃j,lag(rn))

]
+ 2εlag(rn), ∀j ∈ {1, . . . ,M};

E
[
f(x̃i∗,lag(rn))

]
− E

[
f(x∗)

]
< min
j∈{1,...,M}

SRj,lag(rn) + 2εlag(rn);

So, with probability at least 1− M
snε

2
lag(rn)

,

∆i∗,lag(rn) < 2εlag(rn). (15)

Using Pas((εn)n∈N∗), Equation 15 yields ∆i∗,rn < 2εrn for lag(rn) large enough,
which is the expected result.

Step 2: Proof of Equation 14.
We denote by En the event “∆i∗,rn ≥ 2εrn” (equivalent to SRSelectionrn ≥

SRSolverrn + 2εrn). By Equation 13, there exists n0 ∈ N∗ such that, ∀n ≥ n0,
P(En) ≤ M

snε
2
lag(rn)

.

Therefore

∞∑
j=1

P(Ej) ≤
n0−1∑
j=1

P(Ej) +M
∞∑
j=n0

1

sjε2lag(rj)
<∞.

According to Borel-Cantelli lemma, almost surely, for n large enough,

SRSelectionrn < SRSolverrn + 2εrn

and the number of evaluations is still en = rn ·M ·
(

1 +
∑n
i=1

si
rn

)
. ut

We now use Proposition 1 to apply Theorem 1 on a classical case with almost
sure convergence.
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Application 1 (log(M) shift) Assume that for any solver i ∈ {1, . . . ,M}, the
simple regret after n ∈ N∗ evaluations is SRi,n = (1 + o(1)) Cinαi . We define εn =
C
nα∗

(where C and α∗ are defined as in Equations 5 and 6). Assume that ∀x ∈ D,
V ar f(x) ≤ 1 and that (sn), (lag(n)) and (rn) satisfy:

∑∞
j=1

1

sjε2lag(rj)
<∞

and
∑n
i=1 si = o(rn).

Then, almost surely,

i) for n large enough, SRSelectionrn < SRSolverrn + 2εrn after en = rn · M ·(
1 +

∑n
i=1

si
rn

)
function evaluations;

ii) for n large enough, SRSelectionrn ≤ max
i∈SubSetOptim

SRi,rn after en = rn · M ·(
1 +

∑n
i=1

si
rn

)
function evaluations;

iii) the slope of the selection regret verifies lim
n→∞

log(SRSelectionrn
)

log(en)
= −α∗.

SRSelectionrn corresponds to the simple regret at iteration rn of the portfolio,

which corresponds to en = rn ·M ·
(

1 +
∑n
i=1

si
rn

)
evaluations in the portfolio -

hence the comment “after en function evaluations”.

Proof By Property 1 and Theorem 1, i) holds.

By Equation 15, and Property 1, SRSelectionrn = SRi,rn , with i ∈ SubSetOptim
and ii) follows. We obtain:

a.s. log(SRSelectionrn ) = log(SRi,rn), where i ∈ SubSetOptim.

By the definition of SubSetOptim (Equation 9):

lim
n→∞

log(SRSelectionrn )

log(en)
= lim
n→∞

log(SRi∗,rn)

log(M) + log(rn) + log
(

1 +
∑n
i=1

si
rn

)
= lim
n→∞

log(SRi∗,rn)

log(rn)
= −α∗.

Hence iii) holds. ut

Example 1 The following parametrization matches the conditions in Application
1.

rn = dn3+r+r
′

e;
lag(n) = dlog(n)e;

sn = dn1+r
′

e, r > 0 and r
′
≥ 1, n ∈ N∗.
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2.4.3 The log(M ′)-shift for INOPA

We now show that INOPA, which distributes the budget in an unfair manner, can
have an improvement over NOPA. Instead of a factor M (number of solvers in the
portfolio), we get a factor M ′, number of approximately optimal solvers. This is
formalized in the following theorem:

Theorem 2 (log(M ′) shift) Let (rn)n∈N∗ and (sn)n∈N∗ two non-decreasing in-
teger sequences. Assume that:

– ∀x ∈ D, V ar f(x) ≤ 1;
– for some positive sequence (εn)n∈N∗ , Pas((εn)n∈N∗) (Definition 6) holds.

We define S = {i|∃n0 ∈ N∗,∀n ≥ n0,∆i,n < 2εn} and M ′ denotes the cardinality
of the set S, i.e., M ′ = |S|. Then, there exists n0 such that:

∀n ≥ n0, SR
Selection
rn < SRSolverrn + 2εrn (16)

with probability at least 1− M

snε2lag(rn)

after en = rn ·M ′ ·

(
1 +

M

M ′

n∑
i=1

si
rn

)
+ (M −M ′)lag(rn) evaluations.

Then, if (sn), (lag(n)), (rn) and (εn) satisfy
∑∞
j=1

1
sjε

2
lag(rj )

< ∞, lag(n) =

o(n) and
∑n
j=1 sj = o(rn), then, almost surely, there exists n0 such that:

∀n ≥ n0, SR
Selection
rn < SRSolverrn + 2εrn (17)

after en = rn ·M ′ · (1 + o(1)) evaluations.

Proof For a given number of comparisons n, the INOPA algorithm makes the same
comparisons and recommends the same value as the NOPA algorithm. Therefore
all the results in Theorem 1 still hold, hence Eqs. 16 and 17 hold - but we have to
prove the number en of evaluations.

As the algorithm chooses a solver which is not in S a finite number of times,
there exists n1 such that, for all n ≥ n1, the portfolio chooses a solver in S at the
nth comparison. We consider n0 ≥ n1 such that lag(n0) ≥ rn1 . For n ≥ n0 the
new number of evaluations after n comparisons is:

en ≤ M ′ · rn +M ·
n∑
i=1

si + (M −M ′)lag(rn)

= M ′ · rn ·

(
1 +

M

M ′

n∑
i=1

si
rn

+
M −M ′

M ′
lag(rn)

rn

)
= M ′ · rn · (1 + o (1)) .

ut

Using Proposition 1, we apply Theorem 2 above to the case of linearly conver-
gent optimization solvers (linear in a log-log scale, with x-axis logarithmic of the
number of evaluations and y-axis logarithmic of the simple regret).
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Application 2 (log(M ′)shift) Assume that ∀x ∈ D, V ar f(x) ≤ 1 and for any
solver i ∈ {1, . . . ,M}, the simple regret after n ∈ N∗ evaluations is SRi,n = (1 +
o(1)) Cinαi . We define εn = C

nα∗
with C and α∗ defined as in Eq. 5 and 6. If (sn)n∈N∗ ,

lag(n)n∈N∗ , (rn)n∈N∗ and (εn)n∈N∗ are chosen such that
∑∞
j=1

1
sjε

2
lag(rj )

< ∞,

lag(n) = o(n) and
∑n
j=1 sj = o(rn), then, almost surely, there exists n0 such

that:

i) ∀n ≥ n0, SRSelectionrn < SRSolverrn + 2εrn after en = M ′ · rn(1 + o(1)) evalua-
tions;

ii) ∀n ≥ n0, SRSelectionrn ≤ max
i∈SubSetOptim

SRi,rn after en = M ′ · rn(1 + o(1))

evaluations;

iii) the slope of the selection regret verifies lim
n→∞

log(SRSelectionrn
)

log(en)
= −α∗.

As usual, SRSelectionrn corresponds to the simple regret at iteration rn of the
portfolio, which corresponds to en = rn ·M ′ ·(1 + o(1)) evaluations in the portfolio
- hence the comment “after en function evaluations”.

Proof See proof of Application 1. ut

Example 2 (log(M’) shift) The parametrization of Example 1 also matches the
assumptions of Application 2.

2.4.4 The lag is necessary

In this section, we show that, if there is no lag (i.e., ∀n, lag(n) = n) whenever
there are only two solvers, and whenever these solvers have different slopes, the
portfolio algorithm might not have a satisfactory behavior, in the sense that, in
the example below, it will select infinitely often the worst solver - unless sn is so
large that the comparison budget is not small compared to the portfolio budget.

Example 3 (The lag is necessary) Let us consider the behavior of NOPA
without lag. We assume the following:

– no lag: ∀n ∈ N∗, lag(rn) = rn.
– the noise is a standard normal distribution N ;
– there are M = 2 solvers and the two solvers of the portfolio are such that,

almost surely, SRi,m = (1 + o(1)) Ci
mαi

after m ∈ N∗ evaluations, i ∈ {1, 2},
with α1 = 1− e and α2 = 1− 2e, where e ∈ [0, 0.5) is a constant.

– The comparison budget is moderate compared to the portfolio budget, in the
sense that

sn = O(rβn) (18)

with β ≤ 2− 4e.

Then, almost surely, the portfolio will select the wrong solver infinitely often.

Proof Let us assume the scenario above. Let us show that infinitely often, the
portfolio will choose the wrong solver. Consider Y1,n and Y2,n defined by

Yi,n =
1

sn

sn∑
`=1

f(x̃i,rn , w
(i,`)) = Eω[f(x̃i,rn , ω)] + Zi, i ∈ {1, 2},

where
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– The w(i,`) are independent Gaussian random variables,
– Zi = 1

sn

∑sn
`=1 w

(i,`),
– x̃i,rn is the search point recommended by solver i after rn evaluations,

i.e., Yi,n is the average of sn evaluations of the noisy fitness function at x̃i,rn .
We denote for all n ∈ N∗,

δn = Eω[f(x̃2,rn , ω)]− Eω[f(x̃1,rn , ω)] = SR2,rn − SR1,rn .

δn is a random variable, because the expectation operator operates on ω; the
random dependency in (x̃1,rn , x̃2,rn) remains.

v1,n = V ar Y1,n and v2,n = V ar Y2,n.

Definition 7 (MRn) Let MRn (misranking at iteration n) be the event “the
portfolio chooses the wrong solver at decision step n ∈ N∗”.

Remark 3 From the definitions of solvers 1 and 2, solver 1 is the best in terms
of simple regret. As a result, if n is big enough, a.s., we get SR1,rn < SR2,rn ,
i.e., Eω[f(x̃1,rn , ω)] < Eω[f(x̃2,rn , ω)]. Then it is straightforward that, if a.s.
Eω[f(x̃2,rn , ω)] + Z2 < Ew[f(x̃1,rn , ω)] + Z1, i.e., δn < Z1 − Z2, the portfolio
chooses solver 2 whereas solver 1 is the best: a.s. MRrn occurs.

Step 1: constructing independent events related to wrong solver
choices.

Let us define δ′n = 2(C2/r
1−2e
n − C1/r

1−e
n ). We have

δ′n = O

(
C2

r1−2e
n

)
(19)

Almost surely, δn = (1 + o(1)) C2

r1−2e
n
− (1 + o(1)) C1

r1−en
, for n sufficiently large,

δn < δ′n.
τn denotes the event: “Z1−Z2 > δ′n”. So, almost surely, for n sufficiently large,

the event MRn includes the event τn, i.e.

almost surely, for n sufficiently large, τn ⊂MRn. (20)

Step 2: Almost surely, τn occurs infinitely often.
The τn are independent, so we apply the converse of Borel-Cantelli lemma.

First, compute the probability of τn;

P (τn) = P
(√

v1,n + v2,nN > δ′n
)
,

= P

(
N >

δ′n√
v1,n + v2,n

)
By definition of v1,n and v2,n, ∃C > 0, s.t.

√
v1,n + v2,n = C√

sn
, so by Equation

18, ∃C̃ > 0, 1√
v1,n+v2,n

=
√
sn
C ≤ C̃rβ/2n .

By 19, ∃C′ > 0 s.t.
δ′n√

v1,n+v2,n
≤ C′ C2

r1−2e
n

C̃r
β/2
n , with β/2 = 1 − 2e. Hence

P

(
N >

δ′n√
v1,n+v2,n

)
≥ P (N > D), with D > 0.
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We get P (τn) = Ω(1), as the τn are independent, Borel-Cantelli’s lemma (con-
verse) implies that almost surely, τn occurs infinitely often.

Step 3: Concluding.
Step 2 has shown that almost surely, τn occurs infinitely often. Equation 20

implies that this is also true for MRn.
Therefore, infinitely often, the wrong solver is selected. ut

3 Experimental results

This section is organized as follows. Section 3.1 introduces another version of
algorithms, more adapted to some particular implementations of solvers. Section
3.2 describes the different solvers contained in the portfolios and some experimental
results. Section 3.3 describes the similar solvers contained in the portfolios and
some experimental results. In all tables, CT refers to the computation time and
NL refers to “no lag”. s as a unit refers to seconds.

3.1 Real world constraints & introducing sharing

The real world introduces constraints. Most solvers do not allow you to run one
single fitness evaluation at a time, so that it becomes difficult to have exactly
the same number of fitness evaluations per solver. We will here adapt Algorithm
1 for such a case; an additional change is the possible use of “Sharing” options
(i.e., sharing information between the different solvers). The proposed algorithm
is detailed in Algorithm 3.

This is an adapted version of NOPA for coarse grain, i.e., in case the solvers
can not be restricted to doing one fitness evaluation at a time. The adaptation of
INOPA is straightforward. We now present experiments with this adapted algo-
rithm.

3.2 Experiments with different solvers in the portfolio

In this paper, unless specified otherwise, a portfolio with lag means that ∀n ∈
N∗, lag(n) < n. For the portfolio without lag, at the nth algorithm selection, we
compare x̃i,rn instead of x̃i,lag(rn). This means that we choose the identity as a
lag function lag, i.e., ∀n ∈ N∗, lag(n) = n.

For our experiments below, we use four noisy optimization solvers and portfo-
lios of these solvers with and without information sharing:

– Solver 1: A self-adaptive (µ,λ) evolution strategy with resampling as explained
in Algorithm 4, with parametrization λ = 10d, µ = 5d, K = 10, ζ = 2 (in
dimension d). This solver will be termed RSAES (resampling self-adaptive
evolution strategy).

– Solver 2: Fabian’s solver, as detailed in Algorithm 5, with parametrization
γ = 0.1, a = 1, c = 100. This variant will be termed Fabian1.

– Solver 3: Another Fabian’s solver with parametrization γ = 0.49, a = 1, c = 2.
This variant will be termed Fabian2.
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Algorithm 3 Adapted version of NOPA in real world constraints.
Require: noisy optimization solvers Solver1, Solver2, . . . , SolverM
Require: a lag function lag : N∗ 7→ N∗ . Refer to Definition 4
Require: a non-decreasing integer sequence r1, r2, . . . . Periodic comparisons
Require: a non-decreasing integer sequence s1, s2, . . . . Number of resamplings
Require: a boolean sharing
1: n← 1 . Number of selections
2: i∗ ← null . Index of recommended solver
3: x∗ ← null . Recommendation
4: R← 0M . Vector of number of evaluations
5: while budget is not exhausted do
6: if min

i∈{1,...,M}
Ri ≥ rn then

7: i∗ = arg min
i∈{1,...,M}

Êsn [f(x̃i,lag(rn))] . Algorithm selection

8: x∗ = x̃i∗,Ri∗ . Update recommendation
9: if sharing then

10: All solvers receive x∗ as next iterate
11: end if
12: n← n+ 1
13: else
14: for i ∈ {1, . . . ,M} do
15: while Ri < rn do
16: Apply one iteration for Solveri, increase Ri by the number of evals. spent
17: end while
18: end for
19: end if
20: end while
21: x∗ = x̃i∗,Ri∗ . Update recommendation

– Solver 4: A version of Newton’s solver adapted for black-box noisy optimiza-
tion (gradients and Hessians are approximated on samplings of the objective
function), as detailed in Algorithm 6, with parametrization B = 1, β = 2,
A = 100, α = 4. For short this solver will be termed Newton.

– NOPA NL: NOPA of solvers 1-4 without lag. Functions are rn = dn4.2e,
lag(n) = n, sn = dn2.2e at nth algorithm selection.

– NOPA: NOPA of solvers 1-4. Functions are rn = dn4.2e, lag(n) = dn1/4.2e,
sn = dn2.2e at nth algorithm selection.

– NOPA+S.: NOPA of solvers 1-4, with information sharing enabled. Same func-
tions.

– INOPA: INOPA of solvers 1-4. Same functions.
– INOPA+S.: INOPA of solvers 1-4, with information sharing enabled. Same

functions.

Roughly speaking, Fabian’s algorithm is aimed at dealing with z = 0 [18]. RSAES
is designed for multimodal and/or parallel optimization; it is also competitive in
the unimodal setting when z > 0 [32,5]. Newton’s solver is excellent when there
is very little noise [5]. Consistently with Equation 4, we evaluate the slope of the
linear convergence in log-log scale by the logarithm of the average simple regret
divided by the logarithm of the number of evaluations.
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Table 1 Experiments on f(x) = ‖x‖2 + ‖x‖zN in dimension 2 with z = 0, 1, 2. Numbers in
this table are slopes (Eq. 4). We see that the portfolio successfully keeps the best of each world
(i.e. INOPA has nearly the same slope as the best of the solvers). Results are averaged over
50 runs. “s” as a unit refers to “seconds”. Optimal means the optimum is reached for at least
one run; the number of times the optimum was reached (over the 50 runs) is given between
parentheses. The standard deviation is shown after ±. Table 2 presents the same results in
dimension 15. “NL” refers to “no lag” cases, i.e., ∀n ∈ N∗, lag(n) = n.

Solver/Portfolio
Obtained slope for d = 2, z = 0

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.391 ± .009 −.391 ± .009 −.396 ± .010 −.381 ± .012 −.394 ± .012
Fabian1 −1.188 ± .012−1.188 ± .011−1.217 ± .010−1.241 ± .013−1.265 ± .011
Fabian2 −.172 ± .011 −.161 ± .009 −.178 ± .011 −.212 ± .015 −.226 ± .012
Newton −.206 ± .009 −.206 ± .009 −.212 ± .010 −.237 ± .011 −.239 ± .011

NOPA NL −.999 ± .047 −.870 ± .061 −.682 ± .064 −.748 ± .066 −.662 ± .067
NOPA+S. NL −.210 ± .012 −.230 ± .011 −.243 ± .013 −.260 ± .013 −.255 ± .015

NOPA −.897 ± .054 −.946 ± .049 −.835 ± .059 −.777 ± .064 −.932 ± .058
NOPA+S. −.264 ± .013 −.298 ± .015 −.268 ± .011 −.304 ± .018 −.303 ± .016
INOPA −.829 ± .069 −.950 ± .062 −.948 ± .055 −.913 ± .058 −.904 ± .055

INOPA+S. −.703 ± .058 −.938 ± .056 −.844 ± .055 −.789 ± .055 −.776 ± .055

Solver/Portfolio
Obtained slope for d = 2, z = 1

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.526 ± .013 −.530 ± .016 −.507 ± .012 −.507 ± .017 −.522 ± .014
Fabian1 −1.247 ± .015 −1.225 ± .009 −1.252 ± .010 −1.276 ± .011 −1.314 ± .013
Fabian2 −1.785 ± .009 −1.755 ± .011 −1.782 ± .015 −1.777 ± .011 −1.738 ± .010
Newton −2.649 ± .010−2.605 ± .008−2.600 ± .011−2.547 ± .011 −2.517 ± .010

NOPA NL −1.624 ± .011 −1.600 ± .011 −1.593 ± .016 −1.554 ± .013 −1.533 ± .014
NOPA+S. NL −1.225 ± .013 −1.228 ± .013 −1.281 ± .014 −1.298 ± .015 −1.323 ± .017

NOPA −1.925 ± .081 −1.954 ± .076 −1.661 ± .070 −1.805 ± .066 −1.694 ± .062
NOPA+S. −1.491 ± .077 −1.624 ± .080 −1.693 ± .072 −1.632 ± .068 −1.537 ± .061
INOPA −2.271 ± .062 −2.330 ± .061 −2.478 ± .033 −2.506 ± .047 −2.599 ± .024

INOPA+S. −2.013 ± .070 −1.927 ± .074 −1.987 ± .074 −2.120 ± .081 −1.856 ± .078

Solver/Portfolio
Obtained slope for d = 2, z = 2

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.500 ± .013 −.491 ± .011 −.484 ± .011 −.526 ± .018 −.537 ± .015
Fabian1 −1.233 ± .010 −1.246 ± .013 −1.258 ± .011 −1.299 ± .014 −1.310 ± .013
Fabian2 −3.173 ± .010 −3.175 ± .009 −3.141 ± .008 −3.120 ± .013 −3.073 ± .011
Newton −4.146 ± .004 −4.349 ± .008 −4.514 ± .004 −4.743 ± .012 −4.973 ± .011

NOPA NL −2.911 ± .009 −2.871 ± .010 −2.796 ± .011 −2.770 ± .012 −2.717 ± .014
NOPA+S. NL −2.919 ± .011 −2.818 ± .050 −2.785 ± .047 −2.684 ± .056 −2.762 ± .016

NOPA −4.343 ± .006 −4.603 ± .013 −4.772 ± .013 Optimal (1) −5.103 ± .011
NOPA+S. −4.305 ± .041 −4.573 ± .011 −4.431 ± .091 −4.910 ± .048 −5.020 ± .059
INOPA Optimal (1) Optimal (2) −4.698 ± .004 −4.435 ± .007 −4.408 ± 0

INOPA+S. Optimal (1) −3.302 ± .116 Optimal (2) −4.409 ± .008 Optimal (35)

3.2.1 Experiments in unimodal case

The experiments presented in this section have been performed on

f(x) = ‖x‖2 + ‖x‖zN (21)

with N a Gaussian standard noise. z = 2 is the so-called multiplicative noise case,
z = 0 is the additive noise case, z = 1 is intermediate. The results in dimension 2
and dimension 15 are shown in Table 1 and 2.

We see on these experiments that:

– For z = 2 the noise-handling version of Newton’s algorithm, Newton, performs
best among the individual solvers.

– For z = 1 the noise-handling version of Newton’s algorithm, Newton, performs
best in dimension 2 and the second variant of Fabian’s algorithm, Fabian2,
performs best in dimension 15.
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Table 2 Experiments on f(x) = ‖x‖2 + ‖x‖zN in dimension 15 with z = 0, 1, 2. Numbers
in this table are slopes (Eq. 4). We see that the portfolio successfully keeps the best of each
world (INOPA has nearly the same slope as the best). Results are averaged over 50 runs. “s”
as a unit refers to “seconds”. Optimal means the optimum is reached for at least one run; the
number of times the optimum was reached (over the 50 runs) is given between parentheses. The
standard deviation is shown after ±. “NL” refers to “no lag” cases, i.e., ∀n ∈ N∗, lag(n) = n.

Solver/Portfolio
Obtained slope for d = 15, z = 0

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES .093 ± .002 .107 ± .002 .114 ± .002 .128 ± .002 .136 ± .003
Fabian1 −.825 ± .003 −.826 ± .003 −.838 ± .003 −.834 ± .004 −.835 ± .003
Fabian2 .096 ± .003 .108 ± .003 .108 ± .003 .114 ± .003 .125 ± .003
Newton −.055 ± .002 −.062 ± .003 −.070 ± .003 −.069 ± .003 −.071 ± .003

NOPA NL −.512 ± .046 −.393 ± .049 −.377 ± .048 −.425 ± .049 −.380 ± .046
NOPA+S. NL .026 ± .008 −.026 ± .021 −.082 ± .025 −.237 ± .033 −.410 ± .028

NOPA −.757 ± .003 −.750 ± .003 −.747 ± .003 −.734 ± .013 −.705 ± .018
NOPA+S. .039 ± .007 .019 ± .013 .016 ± .019 .005 ± .024 −.079 ± .029
INOPA −.762 ± .024 −.768 ± .024 −.822 ± .003 −.821 ± .003 −.826 ± .003

INOPA+S. −.484 ± .033 −.508 ± .035 −.575 ± .038 −.603 ± .036 −.499 ± .037

Solver/Portfolio
Obtained slope for d = 15, z = 1

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES .094 ± .002 .102 ± .002 .118 ± .003 .128 ± .002 .137 ± .003
Fabian1 −.991 ± .003 −1.004 ± .003 −1.011 ± .003 −1.020 ± .003 −1.032 ± .003
Fabian2 −1.399 ± .003−1.376 ± .004 −1.339 ± .003 −1.313 ± .003 −1.274 ± .004
Newton −.793 ± .099 −.787 ± .095 −.959 ± .092 −.837 ± .086 −.875 ± .078

NOPA NL −1.226 ± .003 −1.167 ± .012 −.978 ± .013 −.949 ± .008 −.943 ± .005
NOPA+S. NL −.771 ± .058 −.869 ± .065 −.839 ± .068 −.860 ± .060 −.756 ± .052

NOPA −.980 ± .018 −.962 ± .013 −.937 ± .005 −.941 ± .005 −.943 ± .004
NOPA+S. −1.012 ± .020 −1.029 ± .025 −1.019 ± .021 −1.002 ± .014 −.951 ± .010
INOPA −1.114 ± .016 −1.268 ± .026 −1.359 ± .027 −1.393 ± .018 −1.482 ± .026

INOPA+S. −1.194 ± .030 −1.250 ± .038 −1.556 ± .030−1.441 ± .041 −1.399 ± .051

Solver/Portfolio
Obtained slope for d = 15, z = 2

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES .094 ± .003 .102 ± .002 .113 ± .003 .125 ± .003 .146 ± .002
Fabian1 −.991 ± .003 −1.000 ± .003 −1.016 ± .003 −1.019 ± .003 −1.037 ± .004
Fabian2 −2.595 ± .003 −2.546 ± .003 −2.481 ± .003 −2.413 ± .003 −2.337 ± .004
Newton −2.911 ± .279 −2.763 ± .291 −2.503 ± .285 −2.420 ± .265 −2.614 ± .240

NOPA NL −2.257 ± .002 −2.184 ± .003 −2.106 ± .003 −2.000 ± .003 −1.891 ± .003
NOPA+S. NL −1.220 ± .117 −1.690 ± .134 −2.181 ± .175 −2.131 ± .185 −2.307 ± .157

NOPA −2.956 ± .121 −2.664 ± .107 −2.515 ± .095 −2.466 ± .090 −2.025 ± .050
NOPA+S. −3.996 ± .029−3.796 ± .003−3.567 ± .004 −3.294 ± .003 −2.947 ± .026
INOPA −3.005 ± .106 −3.157 ± .123 −3.319 ± .135 −3.528 ± .144−3.751 ± .136

INOPA+S. −3.090 ± .003 −2.942 ± .003 −2.791 ± .004 −2.673 ± .002 −2.574 ± .003

– For z = 0 the first variant of Fabian’s algorithm, Fabian1, performs best
(consistently with [18]).

– The portfolio algorithm successfully reaches almost the same slope as the best
of its solvers and sometimes outperforms all of them.

– Portfolio with lag performs better than without lag.
– In the case of small noise, NOPA with information sharing, termed NOPA+S.,

performs better than without information sharing, NOPA, in dimension 15.
– Results clearly show the superiority of INOPA over NOPA.

Incidentally, the poor behavior of RSAES on such a smooth case is not a surprise.
Other experiments in Section 3.2.2 show that in multimodal cases, RSAES is by
far the most efficient solver among solvers above.

3.2.2 Experiments in a multimodal setting

Experiments have been performed on a Cartpole control problem with neural
network controller. The controller is a feed-forward neural network with one hidden
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Table 3 Slope of simple regret for control of the “Cartpole” problem using a Neural Network
policy with different numbers of neurons. This test case is multimodal. These results are
averaged over 50 runs. “s” as a unit refers to “seconds”. The standard deviation is shown after
± and shows the statistical significance of the results. Values close to 0 correspond to cases with
no convergence to the optimum, i.e., a slope zero means that the log-log curve is horizontal.
The test case is the one from [43,15]. Consistently with these references, the optimal fitness is
zero.

Solver/Portfolio
Obtained slope with 2 neurons

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.503 ± .008 −.503 ± .008 −.483 ± .007−.469 ± .006−.465 ± .003
Fabian1 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0
Fabian2 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0
Newton .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0

NOPA NL −.442 ± .014 −.469 ± .010 −.465 ± .006 −.452 ± .005 −.433 ± .006
NOPA+S. NL −.399 ± .020 −.465 ± .009 −.434 ± .015 −.461 ± .007 −.462 ± .005

NOPA −.480 ± .014 −.465 ± .009 −.466 ± .008 −.430 ± .013 −.431 ± .009
NOPA+S. −.461 ± .017 −.436 ± .020 −.475 ± .011 −.431 ± .015 −.415 ± .015
INOPA −.501 ± .009 −.468 ± .009 −.458 ± .007 −.445 ± .006 −.424 ± .006

INOPA+S. −.524 ± .011−.522 ± .007−.490 ± .006−.469 ± .006−.459 ± .006

Solver/Portfolio
Obtained slope with 4 neurons

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.517 ± .009−.503 ± .006 −.481 ± .006 −.458 ± .007 −.452 ± .004
Fabian1 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0
Fabian2 .002 ± 0 −.007 ± .010 −.016 ± .013 −.006 ± .008 −.005 ± .007
Newton .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0

NOPA NL −.485 ± .010 −.465 ± .011 −.461 ± .007 −.460 ± .004 −.440 ± .004
NOPA+S. NL −.474 ± .010 −.487 ± .008 −.490 ± .007−.474 ± .006−.463 ± .004

NOPA −.491 ± .009 −.477 ± .006 −.459 ± .007 −.434 ± .006 −.423 ± .006
NOPA+S. −.505 ± .010 −.504 ± .009−.491 ± .007−.470 ± .006 −.452 ± .006
INOPA −.481 ± .012 −.480 ± .007 −.429 ± .010 −.423 ± .008 −.408 ± .005

INOPA+S. −.506 ± .009−.506 ± .008−.479 ± .007 −.466 ± .006 −.439 ± .005

Solver/Portfolio
Obtained slope with 6 neurons

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.496 ± .008−.508 ± .008−.479 ± .007 −.462 ± .004 −.439 ± .005
Fabian1 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0
Fabian2 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0
Newton .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0

NOPA NL −.483 ± .008 −.477 ± .009 −.464 ± .005 −.447 ± .005 −.432 ± .005
NOPA+S. NL −.489 ± .011 −.496 ± .007 −.488 ± .005−.469 ± .005−.464 ± .005

NOPA −.492 ± .021 −.498 ± .007 −.477 ± .012 −.464 ± .011 −.456 ± .004
NOPA+S. −.430 ± .026 −.446 ± .020 −.452 ± .014 −.442 ± .016 −.417 ± .014
INOPA −.501 ± .010 −.485 ± .010 −.487 ± .006 −.463 ± .006 −.447 ± .003

INOPA+S. −.517 ± .009−.501 ± .010−.503 ± .006−.468 ± .005−.467 ± .003

Solver/Portfolio
Obtained slope with 8 neurons

CT = 10s CT = 20s CT = 40s CT = 80s CT = 160s
RSAES −.493 ± .009 −.475 ± .006 −.449 ± .006 −.436 ± .007 −.420 ± .005
Fabian1 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0
Fabian2 .002 ± 0 .002 ± 0 .002 ± 0 −.005 ± .007 .002 ± 0
Newton .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0 .002 ± 0

NOPA NL −.464 ± .010 −.468 ± .007 −.431 ± .008 −.429 ± .006 −.419 ± .006
NOPA+S. NL −.463 ± .008 −.480 ± .009 −.485 ± .008 −.466 ± .006 −.453 ± .005

NOPA −.483 ± .011 −.485 ± .009 −.475 ± .006 −.465 ± .005 −.436 ± .005
NOPA+S. −.510 ± .009−.498 ± .008−.508 ± .006−.482 ± .005−.454 ± .006
INOPA −.488 ± .010 −.463 ± .009 −.455 ± .007 −.422 ± .007 −.426 ± .006

INOPA+S. −.523 ± .008−.492 ± .009 −.476 ± .007 −.459 ± .007−.460 ± .004

layer of neurons. We use the same solvers as in Section 3.2.1. The results are shown
in Table 3.

We see on these experiments that:

– RSAES is the most efficient individual solver.
– The portfolio algorithm successfully reaches almost the same slope as the best

of its solvers.
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– Sometimes, the portfolio outperforms the best of its solvers.
– Results clearly show the superiority of INOPA over NOPA.

3.3 The lag: experiments with different variants of Fabian’s algorithm

In this section, we check if the version with lag disabled (i.e., ∀n ∈ N∗, lag(n) = n)
can compete with the version with lag enabled (i.e., ∀n ∈ N∗, lag(n) < n). In
previous experiments this was the case, we here focus on a case in which solvers
are close to each other and check if in such a case the lag is beneficial.

Fabian’s algorithm [18] is a gradient descent algorithm using finite differences
for approximating gradients. an is the step in updates, i.e., the current estimate is
updated by adding − an∇f where ∇f is the approximate gradient. ∇f is approxi-
mated by averaging multiple redundant estimates, each of them by finite differences
of size Θ(c/nγ). Therefore, Fabian’s algorithm has 3 parameters, termed a, c and
γ. In the case of approximately quadratic functions with additive noise, Fabian’s
algorithm can obtain a good s(SR) with small γ > 0. However, a and c have an
important non-asymptotic effect and the tuning of these a and c parameters is
challenging. A portfolio of variants of Fabian’s algorithm can help to overcome the
tedious parameter tuning.

For these experiments, we consider the same noisy function as in Section 3.2.1.
We use 5 noisy optimization solvers which are variants of Fabian’s algorithm, as
detailed in Algorithm 5, and portfolio of these solvers with and without lag:

– Solver 1: Fabian1 as used in Section 3.2.
– Solver 2: Fabian’s solver with parametrization γ = 0.1, a = 5, c = 100.
– Solver 3: Fabian’s solver with parametrization γ = 0.1, a = 1, c = 200.
– Solver 4: Fabian’s solver with parametrization γ = 0.1, a = 1, c = 1.
– Solver 5: Fabian’s solver with parametrization γ = 0.1, a = 1, c = 10.
– NOPA NL: Portfolio of solvers 1-5 without lag. Functions are rn = dn4.2e,

lag(n) = n, sn = dn2.2e at nth algorithm selection.
– NOPA: NOPA of solvers 1-5. Functions are rn = dn4.2e, lag(n) = dn1/4.2e,
sn = dn2.2e at nth algorithm selection.

– NOPA+S.: NOPA of solvers 1-5, with information sharing enabled. Same func-
tions.

– INOPA: INOPA of solvers 1-5. Same functions.
– INOPA+S.: INOPA of solvers 1-5, with information sharing enabled. Same

functions.

Experiments have been performed in dimension 2 and dimension 15. These 5 vari-
ants of Fabian’s algorithm have asymptotically similar performance. Table 4 com-
pares the portfolio above without lag, NOPA and INOPA.

We see on these experiments that:

– The lag is usually beneficial, though this is not always the case.
– Again, INOPA clearly outperforms NOPA.

3.4 Discussion of experimental results

In short, experiments
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Table 4 Experiments on f(x) = ‖x‖2 + ‖x‖zN in dimension 2 and dimension 15 with
z = 0, 1, 2. Results are mean of 1000 runs. Solvers are various parametrizations of Fabian’s
algorithm (see text). “s” as a unit refers to “seconds”. The standard deviation is shown after
± and shows the statistical significance of the results. We use smaller time settings - this is
because here the objective function has a negligible computation time.

Portfolio
obtained slope for d = 2

CT = 0.05s CT = 0.1s CT = 0.2s CT = 0.4s CT = 0.8s
z = 0

NOPA NL −1.157 ± .009 −1.223 ± .010 −1.146 ± .009 −1.109 ± .009 −1.043 ± .009
NOPA+S. NL −1.030 ± .009 −1.002 ± .011 −.807 ± .010 −.839 ± .009 −.774 ± .007

NOPA −1.255 ± .009 −1.203 ± .009 −1.156 ± .008 −1.145 ± .007 −1.152 ± .007
NOPA+S. −1.030 ± .009 −1.044 ± .008 −.995 ± .009 −.963 ± .008 −.926 ± .007
INOPA −1.289 ± .010 −1.247 ± .008 −1.201 ± .008−1.188 ± 0.008−1.153 ± 0.007

INOPA+S. −1.246 ± .010 −1.266 ± .008 −1.182 ± .010 −1.135 ± 0.010 −1.113 ± 0.009
z = 1

NOPA NL −1.529 ± .005 −1.471 ± .005 −1.455 ± .004 −1.414 ± .004 −1.381 ± .004
NOPA+S. NL −1.436 ± .006 −1.401 ± .006 −1.287 ± .006 −1.225 ± .005 −1.129 ± .005

NOPA −1.543 ± .005 −1.490 ± .004 −1.456 ± .004 −1.416 ± .003 −1.377 ± .003
NOPA+S. −1.469 ± .005 −1.462 ± .005 −1.377 ± .005 −1.339 ± .005 −1.301 ± .004
INOPA −1.656 ± .004−1.578 ± .005−1.531 ± .004 −1.497 ± .005 −1.443 ± .004

INOPA+S. −1.638 ± .005 −1.568 ± .005 −1.503 ± .005 −1.474 ± .005 −1.425 ± .005
z = 2

NOPA NL −1.528 ± .004 −1.505 ± .005 −1.440 ± .004 −1.394 ± .004 −1.375 ± .003
NOPA+S. NL −1.456 ± .005 −1.393 ± .006 −1.303 ± .005 −1.250 ± .005 −1.168 ± .005

NOPA −1.540 ± .005 −1.529 ± .004 −1.439 ± .004 −1.422 ± .004 −1.384 ± .003
NOPA+S. −1.473 ± .006 −1.450 ± .005 −1.371 ± .004 −1.339 ± .004 −1.303 ± .004
INOPA −1.681 ± .005−1.607 ± .004−1.530 ± .005 −1.497 ± .004 −1.439 ± .005

INOPA+S. −1.578 ± .006 −1.570 ± .006 −1.517 ± .005 −1.465 ± .005 −1.434 ± 0.005

Portfolio
obtained slope for d = 15

CT = 0.05s CT = 0.1s CT = 0.2s CT = 0.4s CT = 0.8s
z = 0

NOPA NL −.673 ± .001 −.688 ± .001 −.699 ± .001 −.761 ± .002 −.779 ± .002
NOPA+S. NL −.664 ± .001 −.684 ± .001 −.703 ± .001 −.716 ± .001 −.750 ± .001

NOPA −.700 ± .006 −.609 ± .006 −.667 ± .004 −.681 ± .005 −.694 ± .004
NOPA+S. −.591 ± .006 −.515 ± .006 −.514 ± .005 −.519 ± .004 −.527 ± .004
INOPA −.839 ± .001 −.839 ± .001 −.841 ± .001 −.840 ± .001 −.839 ± .001

INOPA+S. −.839 ± .001 −.839 ± .001 −.841 ± .001 −.839 ± .001 −.841 ± .001
z = 1

NOPA NL −1.004 ± .001 −.991 ± .001 −.980 ± .001 −.978 ± .001 −1.062 ± .001
NOPA+S. NL −1.000 ± .001 −.985 ± .001 −.980 ± .001 −.990 ± .001 −1.066 ± .001

NOPA −1.154 ± .001 −1.140 ± .001 −1.117 ± .001 −1.100 ± .001 −1.086 ± .001
NOPA+S. −1.160 ± .001 −1.133 ± .001 −1.109 ± .001 −1.084 ± .001 −1.065 ± .001
INOPA −1.231 ± .001 −1.249 ± .001−1.238 ± .001 −1.218 ± .001 −1.200 ± .001

INOPA+S. −1.242 ± .001 −1.198 ± .003 −1.169 ± .003 −1.151 ± .002 −1.131 ± .003
z = 2

NOPA NL −.999 ± .001 −.995 ± .001 −.981 ± .001 −.980 ± .001 −1.065 ± .001
NOPA+S. NL −.999 ± .001 −.979 ± .001 −.973 ± .001 −.987 ± .001 −1.064 ± .001

NOPA −1.174 ± .001 −1.135 ± .001 −1.119 ± .001 −1.101 ± .001 −1.083 ± .001
NOPA+S. −1.152 ± .002 −1.130 ± .001 −1.103 ± .001 −1.080 ± .001 −1.061 ± .001
INOPA −1.234 ± .001−1.251 ± .001−1.237 ± .001 −1.219 ± .001 −1.197 ± .001

INOPA+S. −1.085 ± .001 −1.085 ± .001 −1.083 ± .001 −1.083 ± .001 −1.085 ± .001

– validate the use of portfolio (almost as good as the best solver, and sometimes
better thanks to its inherent mitigation of “bad luck runs”); we incidentally
provide, with INOPA applied to several independent copies of a same solver,
a principled tool for restarts for noisy optimization;

– validate the improvement provided by unfair budget, as shown by the improve-
ment of INOPA vs NOPA (when no sharing is applied, i.e. in the context in
which our mathematical results are proved) - more precisely, we get either very
similar results (in Table 3 and for z = 0 or z = 2 in Table 1, INOPA and NOPA
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have essentially the same behavior), or a consistent improvement of INOPA vs
NOPA (z = 1 in Table 1 and Tables 2, 4);

– are less conclusive in terms of comparison “with lag / without lag”, though on
average lag is seemingly beneficial.

4 Conclusion

We have seen that noisy optimization provides a very natural framework for port-
folio methods. Different noisy optimization algorithms have extremely different
convergence rates (different slopes) on different test cases, depending on the noise
level, on the multimodalities, on the dimension (see e.g. Tables 1 and 4, where
depending on z the best solver is a variant of Fabian or Newton’s algorithm; and
Table 3, where RSAES is the best); see also [29] for experiments on additional
multimodal test cases. We proposed two versions of such portfolios, NOPA and
INOPA, the latter using an unfair distribution of the budget. Both have theoreti-
cally the same slope as the best of their solvers, with better constants for INOPA
(in particular, no shift, if SubSetOptim (see Eq. 8) has cardinal 1).

We show mathematically an asymptotic log(M) shift when using M solvers,
when working on a classical log-log scale (classical in noisy optimization); see
Section 2.4.2. Contrarily to noise-free optimization (where a log(M) shift would
be a trivial result), such a shift is not so easily obtained in noisy optimization.
Importantly, it is necessary (Section 2.4.4), for getting the log(M) shift, that:

– the AS algorithm compares old recommendations (and selects a solver from
this point of view);

– the portfolio recommends the current recommendation of this selected solver.

Additionally, we improve the bound to a log(M ′) shift, where M ′ is the number of
optimal solvers, using an unfair distribution of the computational budget (Section
2.4.3). In particular, the shift is asymptotically negligible when the optimal solver
is unique.

A careful choice of portfolio parameters (function lag(·), specifying the lag;
rn, specifying the intervals rn+1 − rn between two comparisons of solvers; sn,
specifying the number of resamplings of recommendations for selecting the best)
leads to such properties; we provide principled tools for choosing these parameters.
Sufficient conditions are given in Theorem 1, with examples thereafter.

Experiments show (i) the efficiency of portfolios for noisy optimization, as
solvers have very different performances for different test cases and NOPA has
performance close to the best or even better when the random initialization has a
big impact; (ii) the clear and stable improvement provided by INOPA, thanks to
an unfair budget distribution; (iii) that the lag is usually beneficial, though this is
not always the case. Importantly, without lag, INOPA could not be defined.

In noisy frameworks, we point out that portfolios might make sense even when
optimizers are not orthogonal. Even with identical solvers, or closely related opti-
mizers, the portfolio can mitigate the effect of unlucky random contributions. This
is somehow related to restarts (i.e. multiple runs with random initializations). See
Table 4 for cases with very close solvers, and [29] with identical solvers.

Sharing information in portfolios of noisy optimization algorithms is not so
easy. Our empirical results are mitigated; but we only tested very simple tools for
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sharing - just sharing the current best point. A further work consists in identifying
better relevant information for sharing; maybe the estimate of the asymptotic
fitness value of a solver is the most natural information for sharing; if a fitness
value A is already found and a solver claims that it will never do better than A,
then we can safely stop its run and save up computational power.
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A Appendix: Noisy optimization algorithms

We present briefly several noisy optimization algorithms. Algorithm 4 is a classical Self
Adaptive-(µ,λ)-Evolution Strategy, with noise handled by resamplings. Algorithm 5 is a
stochastic gradient method, with gradient estimated by finite differences; it is known to con-
verge with simple regret O(1/n) on smooth enough functions corrupted by additive noise [18,
35]. Algorithm 6 extends Fabian’s algorithm by adding second-order information, by approxi-
mating the Hessian [17].

Algorithm 4 Self-adaptive Evolution Strategy with resamplings. N denotes some
independent standard Gaussian random variable and c = mod(a, b) for b > 0 means
∃k ∈ Z, (a− c) = bk and 0 ≤ c < b.

Require: dimension d ∈ N∗
Require: population size λ ∈ N∗ and number of parents µ ∈ N∗ with λ ≥ µ
Require: K > 0 . parameter used to compute resampling number
Require: ζ ≥ 0 . parameter used to compute resampling number
Require: an initial parent x1,i ∈ Rd and an initial σ1,i = 1, i ∈ {1, . . . , µ}
1: n← 1
2: x̃← x1,1 . recommendation
3: while (true) do
4: Generate λ individuals ij , j ∈ {1, . . . , λ}, independently using . offspring

σj = σn,mod(j−1,µ)+1 × exp

(
N
2d

)
and ij = xn,mod(j−1,µ)+1 + σjN

5: Evaluate each of them dKnζe times and average their fitness values
6: Define j1, . . . , jλ so that . ranking

ÊdKnζe[f(ij1 )] ≤ ÊdKnζe[f(ij2 )] · · · ≤ ÊdKnζe[f(ijλ )]

where Êm denotes the average over m resamplings
7: Compute xn+1,k and σn+1,k using . update

σn+1,k = σjk and xn+1,k = ijk , k ∈ {1, . . . , µ}

8: x̃ = ij1 . update recommendation
9: n← n+ 1

10: end while
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Algorithm 5 Fabian’s stochastic gradient algorithm with finite differences.
Fabian, in [18], proposes various rules for the parametrization; in the present pa-
per, we use the following parameters. s is as in Remark 5.2 in [18], i.e., s is the
minimal even number ≥ 1

2γ − 1. The scales ui are ui = 1
i ,∀i ∈ {1, . . . ,

s
2}; this

generalizes the choice in Example 3.3 in [18]. The wi are computed as given in
Lemma 3.1 in [18]. ei is the ith vector of the standard orthonormal basis of Rd.

Require: dimension d ∈ N∗
Require: 1

2
> γ > 0, a > 0, c > 0, even number of samples per axis s

Require: scales 1 ≥ u1 > · · · > u s
2
> 0, weights w1 > · · · > w s

2
summing to 1

Require: an initial x1 ∈ Rd
1: n← 1
2: x̃← x1 . recommendation
3: while (true) do
4: Compute σn = c/nγ . step-size
5: Evaluate the gradient g at xn by finite differences, averaging over s samples per axis:
∀i ∈ {1, . . . , d},∀j ∈ {1, . . . , s

2
} . gradient estimation

x
(i,j)+
n = xn + ujσnei and x

(i,j)−
n = xn − ujσnei

gi =
1

2σn

s/2∑
j=1

wj

(
f(x

(i,j)+
n )− f(x

(i,j)−
n )

)
6: Apply xn+1 = xn − a

n
g . next search point

7: x̃← xn+1 . update recommendation
8: n← n+ 1
9: end while

B Summary of notations

Notations are as follows:

General notations:

Eω = expectation with respect to random variable ω.

ÊkX = average over k independent realizations of random variable X.

Notation for solvers:

xn = search point used by the solver for the nth evaluation.

x̃n = recommendation given by the solver after

the nth evaluation.

SRn = E (f(x̃n)− f(x∗)) . (simple regret)

Notation for AS algorithms:

i∗ = index of the solver chosen by the AS algorithm.

x̃i,n = recommendation given by the solver i after

the nth evaluation.

SRi,n = E (f(x̃i,n)− f(x∗)) .

M = number of solvers in portfolio.

∆i,n = SRi,n − min
j∈{1,...,M}

SRj,n.

SRSolversn = min
i∈{1,...M}

SRi,n.

SRSelectionn = E
(
f(x̃i∗,n)− f(x∗)

)
.
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Algorithm 6 An adaptation of Newton’s algorithm for noisy objective functions,
with gradient and Hessian approximated by finite differences and reevaluations.
The recommendations are the xn’s. ei is the ith vector of the standard orthonormal
basis of Rd.
Require: dimension d ∈ N∗
Require: A > 0, B > 0, α > 0, β > 0
Require: an initial x1 ∈ Rd
1: n← 1
2: x̃← x1 . recommendation
3: ĥ← identity matrix
4: while (true) do
5: Compute σn = A/nα . step-size
6: for i = 1 to d do
7: Evaluate gi by finite differences at xn + σnei and xn − σnei, averaging each evalu-

ation over dBnβe resamplings.
8: end for
9: for i = 1 to d do

10: Evaluate ĥi,i by finite differences at xn + σnei, xn and xn − σnei, averaging each

evaluation over dBnβe resamplings
11: for j = 1 to d, j 6= i do
12: Evaluate ĥi,j by finite differences thanks to evaluations at each of xn ± σnei ±

σnej , averaging over dBnβ/10e resamplings
13: end for
14: end for
15: δ ← solution of ĥδ = −g . possible next search point
16: if ‖δ‖ > 1

2
σn then

17: δ = 1
2
σn

δ
‖δ‖ . trust region style

18: end if
19: Apply xn+1 = xn + δ
20: x̃← xn+1 . update recommendation
21: n← n+ 1
22: end while


