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Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of solvers is a set of solvers equipped with an algorithm selection tool for distributing the computational power among them. Portfolios are widely and successfully used in combinatorial optimization.

In this work, we study portfolios of noisy optimization solvers. We obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its solvers) by an ad hoc portfolio algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag, i.e., propose the current recommendation of best solver based on their performance earlier in the run. An additional finding is a principled method for distributing the computational power among solvers in the portfolio.

Introduction

Given an objective function, also termed fitness function, from a domain D ∈ R d to R, numerical optimization or simply optimization is the research of points, also termed individuals or search points, with approximately optimum (e.g. minimum) objective function values.

Noisy optimization is the optimization of objective functions corrupted by noise. Black-box noisy optimization is the noisy counterpart of black-box optimization, i.e., functions for which no knowledge about the internal processes involved in the objective function can be exploited.

Algorithm Selection (AS) consists in choosing, in a portfolio of solvers, the one which is approximately the most efficient on the problem at hand. AS can mitigate the difficulties for choosing a priori the best solver among a portfolio of solvers. This means that AS leads to an adaptive version of the algorithms. In some cases, AS outperforms all individual solvers by combining the good properties of each of them, with information sharing or with chaining, as discussed later. It can also be used for the sake of parallelization or parameter tuning, or for mitigating the impact of bad luck in randomized solvers. In this paper, we apply AS to the black-box noisy optimization problem. This paper extends [START_REF] Cauwet | Algorithm Portfolios for Noisy Optimization: Compare Solvers Early[END_REF] with respect to (i) showing that the lag is necessary; (ii) extending experimental results; (iii) improving the convergence rates thanks to an unfair distribution of the computational budget.

Noisy optimization

Noisy optimization is a key component of machine learning, from supervised learning to unsupervised or reinforcement learning; it is also relevant in streaming applications. The black-box setting is crucial in reinforcement learning where gradients are difficult and expensive to get; direct policy search [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] usually boils down to (i) choosing a representation and (ii) applying black-box noisy optimization. Some works focus on noise models in which the noise has variance close to zero around the optimum [START_REF] Jebalia | Log linear convergence and divergence of the scaleinvariant (1+1)-ES in noisy environments[END_REF]; others consider actuator noise, i.e., when the fitness values are those at search points corrupted by noise [START_REF] Beyer | Actuator noise in recombinant evolution strategies on general quadratic fitness models[END_REF], as shown by Eq. 2. There are also cases in which the landscape is assumed to be rugged, and the optimization algorithm should act as a low pass filter, in order to get rid of local variations [START_REF] Prügel-Bennett | Benefits of a population: Five mechanisms that advantage populationbased algorithms[END_REF]. The most usual model of noise is however the case of noise in which the variance does not vanish around the optimum and the goal is to find a good search point in terms of expected fitness value [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF][START_REF] Chen | Lower rate of convergence for locating the maximum of a function[END_REF] and this is the case we will consider here.

Zero-order methods, including evolution strategies [START_REF] Beyer | The Theory of Evolutions Strategies[END_REF] and derivative-free optimization [START_REF] Conn | Recent progress in unconstrained nonlinear optimization without derivatives[END_REF] are natural solutions in the black-box setting; as they do not use gradients, they are not affected in such a setting. However, the noise has an impact even on such methods [START_REF] Arnold | A general noise model and its effects on evolution strategy performance[END_REF][START_REF] Sendhoff | The influence of stochastic quality functions on evolutionary search[END_REF], possibly mitigated by increasing the population size or averaging multiple evaluations of each search point. Using surrogate models [START_REF] Jin | Evolutionary optimization in uncertain environments. a survey[END_REF] reduces the impact of noise by sharing information over the domain. Surrogate models are also a step towards higher order methods; even in black-box scenarios: a Hessian can be approximated thanks to observed fitness values and statistical learning of a surrogate model.

It is known [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF][START_REF] Shamir | On the complexity of bandit linear optimization[END_REF] that stochastic gradient by finite differences (finite differences at each iteration or by averaging over multiple iterations) can provide tight convergence rates (see tightness in [START_REF] Chen | Lower rate of convergence for locating the maximum of a function[END_REF]) in the case of an additive noise with constant variance. Fabian, in [START_REF] Fabian | Stochastic approximation[END_REF], has also tested the use of second order information (Hessian) approximated by finite differences.

In this paper, our portfolio will be made of the following algorithms: (i) an evolution strategy; (ii) a first-order method using gradients estimated by finite differences; (iii) a second-order method using a Hessian matrix also approximated by finite differences. We present these methods in more details in Appendix A.

Algorithm selection

Combinatorial optimization is probably the most classical application domain for AS [START_REF] Kotthoff | Algorithm selection for combinatorial search problems: A survey[END_REF]. However, machine learning is also a classical test case [START_REF] Utgoff | Perceptron trees: A case study in hybrid concept representations[END_REF]; in this case, AS is sometimes referred to as meta-learning [START_REF] Aha | Generalizing from case studies: A case study[END_REF].

No free lunch. [START_REF] Wolpert | No free lunch theorems for optimization[END_REF] claims that it is not possible to do better, on average (uniform average) on all optimization problems from a given finite domain to a given finite codomain. This implies that no AS can outperform existing algorithms on average on this uniform probability distribution of problems. Nonetheless, reality is very different from a uniform average of optimization problems, and AS does improve performance in many cases.

Chaining and information sharing. Algorithm chaining [START_REF] Borrett | Towards a formal framework for comparing constraint satisfaction problem formulations[END_REF] means switching from one solver to another during the AS run. More generally, a hybrid algorithm is a combination of existing algorithms by any means [START_REF] Vassilevska | Confronting hardness using a hybrid approach[END_REF]. This is an extreme case of sharing. Sharing consists in sending information from some solvers to other solvers; they communicate in order to improve the overall performance.

Static portfolios & parameter tuning.

A portfolio of solvers is usually static, i.e., combines a finite number of given solvers. SATzilla is probably the most well known portfolio method, combining several SAT-solvers [START_REF] Xu | SATzilla: Portfolio-based algorithm selection for SAT[END_REF]. Samulowitz and Memisevic have pointed out in [START_REF] Samulowitz | Learning to solve qbf[END_REF] the importance of having "orthogonal" solvers in the portfolio, so that the set of solvers is not too large, but approximates as far as possible the set of all feasible solvers. AS and parameter tuning are combined in [START_REF] Xu | Hydra-mip: automated algorithm configuration and selection for mixed integer programming[END_REF]; parameter tuning can be viewed as an AS over a large but structured space of solvers. We refer to [START_REF] Kotthoff | Algorithm selection for combinatorial search problems: A survey[END_REF] and references therein for more information on parameter tuning and its relation to AS; this is beyond the scope of this paper.

Fair or unfair distribution of computation budgets. In [START_REF] Pulina | A self-adaptive multi-engine solver for quantified boolean formulas[END_REF], different strategies are compared for distributing the computation time over different solvers. The first approach consists in running all solvers during a finite time, then selecting the best performing one, and then keeping it for all the remaining time. Another approach consists in running all solvers with the same time budget independently of their performance on the problem at hand. Surprisingly enough, they conclude that uniformly distributing the budget is a good and robust strategy. The situation changes when a training set is available, and when we assume that the training set is relevant for the future problems to be optimized; [START_REF] Kadioglu | Algorithm selection and scheduling[END_REF], using a training set of problems for comparing solvers, proposes to use 90% of the time allocated to the best performing solver, the other 10% being equally distributed among other solvers. In [START_REF] Gagliolo | A neural network model for inter-problem adaptive online time allocation[END_REF][START_REF] Gagliolo | Learning dynamic algorithm portfolios[END_REF], it is proposed to use 50% of the time budget for the best solver, 25% for the second best, and so on. Some AS algorithms [START_REF] Gagliolo | Learning dynamic algorithm portfolios[END_REF][START_REF] Armstrong | Dynamic algorithm selection using reinforcement learning[END_REF] do not need a separate training phase, and perform entirely online solver selection; a weakness of this approach is that it is only possible when a large enough budget is available, so that the training phase has a minor cost. A portfolio algorithm, namely Noisy Optimization Portfolio Algorithm (NOPA), designed for noisy optimization solvers, and which distributes uniformly the computational power among them, is proposed in [START_REF] Cauwet | Algorithm Portfolios for Noisy Optimization: Compare Solvers Early[END_REF]. We extend it to INOPA (Improved NOPA), which is allowed to distribute the budget in an unfair manner. It is proved that INOPA reaches the same convergence rate as the best solver, within a small (converging to 1) multiplicative factor on the number of evaluations, when there is a unique optimal solver -thanks to a principled distribution of the budget into (i) running all the solvers; (ii) comparing their results; (iii) running the best performing one. The approach is anytime, in the sense that the computational budget does not have to be known in advance.

Parallelism. We refer to [START_REF] Hamadi | Combinatorial Search: From Algorithms to Systems[END_REF] for more on parallel portfolio algorithms (though not in the noisy optimization case). Portfolios can naturally benefit from parallelism; however, the situation is different in the noisy case, which is highly parallel by nature (as noise is reduced by averaging multiple resamplings1 ).

Best solver first. [START_REF] Pulina | A self-adaptive multi-engine solver for quantified boolean formulas[END_REF] point out the need for a good ordering of solvers, even if it has been decided to distribute nearly uniformly the time budget among them: this improves the anytime behavior. For example, they propose, within a given scheduling with same time budget for each optimizer, to use first the best performing solver. We will adapt this idea to our context; this leads to INOPA, improved version of NOPA.

Bandit literature. During the last decade, a wide literature on bandits [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF][START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF][START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF] has proposed many tools for distributing the computational power over stochastic options to be tested. The application to our context is however far from being straightforward. In spite of some adaptations to other contexts (time varying as in [START_REF] Kocsis | Discounted-UCB[END_REF] or adversarial [START_REF] Grigoriadis | A sublinear-time randomized approximation algorithm for matrix games[END_REF][START_REF] Auer | Gambling in a rigged casino: the adversarial multi-armed bandit problem[END_REF]), and maybe due to strong differences such as the very non-stationary nature of bandit problems involved in optimization portfolios, these methods did not, for the moment, really find their way to AS. Another approach consists in writing this bandit algorithm as a meta-optimization problem; [START_REF] St-Pierre | Differential Evolution Algorithm Applied to Non-Stationary Bandit Problem[END_REF] applies the differential evolution algorithm [START_REF] Storn | Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[END_REF] to some non-stationary bandit problem, which outperforms the classical bandit algorithm on an AS task.

The main contributions of this paper can be summarized as follows. First, we prove positive results for a portfolio algorithm, termed NOPA, for AS in noisy optimization. Second, we design a new AS, namely INOPA, which (i) gives the priority to the best solvers when distributing the computational power; (ii) approximately reaches the same performance as the best solver; (iii) possibly shares information between the different solvers. We then prove the requirement of selecting the solver that was apparently the best some time before the current iterationa phenomenon that we term the lag. Finally, we provide some experimental results.

Outline of this paper

Section 2 describes the algorithms under consideration and provides theoretical results. Section 3 is dedicated to experimental results. Section 4 concludes.

Algorithms and analysis

Section 2.1 introduces some notations. Section 2.2 provides some background and criteria. Section 2.3 describes two portfolio algorithms, one with fair distribution of budget among solvers and one with unfair distribution of budget. Section 2.4 then provides theoretical guarantees.

Notations

In this paper, N * = {1, 2, 3, . . . }, "a.s." stands for "almost surely", i.e., with probability 1, and "s.t." stands for "such that". Appendix B is a summary of notations. If X is a random variable, then (X (1) , X (2) , . . . ) denotes a sample of independent identically distributed random variables, copies of X. o(.), O(.), Θ(.) are the standard Landau notations. N denotes a standard Gaussian distribution, in dimension given by the context.

Let f : D → R be a noisy function. f is a random process, and equivalently it can be viewed as a mapping (x, ω) → f (x, ω) where x ∈ D and ω is a random variable independently sampled at each call to f . The user can only choose x. For short, we will use the notation f (x). The reader should keep in mind that this function is stochastic. Ês [f (x)] denotes the empirical evaluation of

E [f (x)] over s ∈ N * resamplings, i.e., Ês [f (x)] = 1 s s j=1 (f (x)) (j) .

Definitions and Criteria

A black-box noisy optimization solver, here referred to as a solver, is a program which aims at finding the minimum x * of x → Ef (x), thanks to multiple blackbox calls to the unknown function f . The expectation operator E shows that we assume that the noise is additive and unbiased (Eq. 1); the "real", noise-free, fitness function is the expectation of the noisy fitness function. This is not necessarily the case for e.g. actuator noise, as in Eq. 2:

f (x, ω) = f (x) + ω;
(1)

f (x, ω) = f (x + ω). (2) 
The portfolio algorithm has the same goal, and can use M ∈ {2, 3, . . . } different given solvers. A good AS tool should ensure that it is nearly as efficient as the best of the individual solvers2 , for any problem in some class of interest.

Simple regret criterion. In the black-box setting, let us define :

x n the n th search point at which the objective function (also termed fitness function) is evaluated; xn the point that the solver recommends as an approximation of the optimum after having evaluated the objective function at x 1 , . . . , x n (i.e., after spending n evaluations from the budget).

Some algorithms make no difference between x n and xn , but in the general case of a noisy optimization setting the difference matters [START_REF] Coulom | Clop: Confident local optimization for noisy black-box parameter tuning[END_REF][START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF][START_REF] Shamir | On the complexity of bandit linear optimization[END_REF]. The Simple Regret (SR) for noisy optimization is expressed in terms of objective function values, as follows:

SR n = E f (x n ) -f (x * ) . ( 3 
)
SR n is the simple regret after n evaluations; n is then the budget. The E operator refers to the ω part, i.e., with complete notations,

SR n = E ω f (x n , ω) -f (x * , ω) .
In many cases, it is known that the simple regret has a linear convergence in a log-log scale [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF][START_REF] Chen | Lower rate of convergence for locating the maximum of a function[END_REF][START_REF] Coulom | Clop: Confident local optimization for noisy black-box parameter tuning[END_REF]. Therefore we will consider this slope. The slope of the simple regret is then defined as

s(SR) = lim n→∞ log(SR n ) log(n) , (4) 
where the limit holds almost surely, since SR n is a random variable. For example, the gradient method proposed in [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF] (approximating the gradient by finite differences) reaches a simple regret slope arbitrarily close to -1 on sufficiently smooth problems, for an additive centered noise, without assuming variance decreasing to zero around the optimum.

Simple regret criterion for portfolio. For a portfolio algorithm in the black-box setting, ∀i ∈ {1, . . . , M }, xi,n denotes the point that the solver number i recommends as an approximation of the optimum; after this solver has spent n evaluations from the budget.

Similarly, the simple regret given by Equation 3 corresponding to solver number i after n evaluations (i.e., after solver number i has spent n evaluations), is denoted by SR i,n . For n ∈ N * , i * n denotes the solver chosen by the selection algorithm when there are at most n evaluations per solver. 3Another important concept is the difference between the two kinds of terms in the regret of the portfolio. We distinguish these two kinds of terms in the next two definitions: 

= E f (x i * n ,n ) -f (x * ) .
Similarly, ∆ i,n quantifies the regret for choosing solver i at iteration n. Definition 3 For any solver i ∈ {1, . . . , M } and any number of evaluations n ∈ N * , we denote by ∆ i,n the quantity:

∆ i,n = SR i,n - min j∈{1,...,M } SR j,n .
Finally, we consider a function that will be helpful for defining our portfolio algorithms.

Definition 4 (lag function) A lag function lag : N * → N * is a non-decreasing function such that for all n ∈ N * , lag(n) ≤ n.

Portfolio algorithms

In this section, we present two AS methods. A first version, in Section 2.3.1, shares the computational budget uniformly; a second version has an unfair sharing of computation budget, in Section 2.3.2.

Simple Case : Uniform Portfolio NOPA

We present in Algorithm 1 a simple noisy optimization portfolio algorithm (NOPA) which does not apply any sharing and distributes the computational budget equally over the noisy optimization solvers. In this NOPA algorithm, we compare, at iteration r n , recommendations chosen at iteration lag(r n ), and this comparison is based on s n resamplings, where n is the number of algorithm selection steps. We have designed the algorithm as follows:

-A stable choice of solver: The selection algorithm follows the recommendation of the same solver i * at all iterations in {r n , . . . , r n+1 -1}. This choice is based on comparisons between old recommendations (through the lag function lag).

-The chosen solver updates are taken into account. For iteration indices m < p in {r n , . . . , r n+1 -1}, the portfolio chooses the same solver i * , but does not necessarily recommends the same point because possibly the solver changes its recommendation, i.e., possibly xi * ,m = xi * ,p .

Effect of the lag. Due to the lag(.) function, we compare the xi,lag(r n ) (for i ∈ {1, . . . , M }), and not the xi,r n . This is the key point of this algorithm. Comparing the xi,lag(r n ) is much cheaper than comparing the xi,r n , because the fitness values

are not yet that good at iteration lag(r n ), so they can be compared fasteri.e., with less evaluations -than recommendations at iteration r n . We will make this more formal in Section 2.4, and see under which assumptions this lag has more pros than cons, namely when algorithms have somehow sustained rates. In addition, with lag, we can define INOPA, which saves up significant parts of the computation time.

The first step for formalizing this is to understand the two different kinds of evaluations in portfolio algorithms for noisy optimization. Contrarily to noise-free settings, comparing recommendations requires a dedicated budget, which is far from negligible. It follows that there are two kinds of evaluations:

-Portfolio budget (Algorithm 1, Lines 10-12): this corresponds to the M evaluations per iteration, dedicated to running the M solvers (one evaluation per solver and per iteration). -Comparison budget (Algorithm 1, Line 7): this corresponds to the s n evaluations per solver at the n th algorithm selection. This is a key difference with deterministic optimization. In deterministic optimization, this budget is zero as the exact fitness value is readily available.

We have M •r n evaluations in the portfolio budget for the first r n iterations. We will see below (Section 2.4) conditions under which the other costs (i.e. comparison costs) can be made negligible, whilst preserving the same regret as the best of the M solvers.

INOPA: Improved NOPA, with unequal budget

Algorithm 2 proposes a variant of NOPA, which distributes the budget in an unfair manner. The solvers with good performance receive a greater budget. The algorithm is designed so that it mimics the behavior of NOPA, but without spending the evaluations which are useless for the moment, given the lag -i.e. we use the fact that evaluations prior to the lagged index are useless except for the selected algorithm.

Theoretical analysis

We here show a bound on the performance of NOPA (Section 2.4.2); a bound on the performance of INOPA (Section 2.4.3); that the lag term is necessary (Section 2.4.4).

Algorithm 2 Improved Noisy Optimization Portfolio Algorithm (INOPA).

Require: noisy optimization solvers Solver 1 , Solver 

Preliminary

We define 2 extra properties which are central in the proof.

Definition 5 (P (i)

as (( n ) n∈N * )) For any solver i ∈ {1, . . . , M }, for some positive sequence ( n ) n∈N * , we define P (i) as (( n ) n∈N * ):

P (i) as (( n ) n∈N * ) : a.s. ∃n 0 , ∀n 1 ≥ n 0 , ∆ i,n 1 < 2 n 1 =⇒ ∀n 2 ≥ n 1 , ∆ i,n 2 < 2 n 2 .
Informally speaking, if

P (i)
as (( n ) n∈N * ) is true, then almost surely for a large enough number of evaluations, the difference between the simple regret of solver i ∈ {1, . . . , M } and the optimal simple regret is either always at most 2 n or always larger -there is no solver infinitely often alternatively at the top level and very weak.

Definition 6 (P as (( n ) n∈N * )) For some positive sequence ( n ) n∈N * , we define P as (( n ) n∈N * ) as follows:

∀i ∈ {1, . . . , M } , P (i) as (( n ) n∈N * ) holds.

Remark 1 In Definitions 5 and 6, we might choose slightly less restrictive definitions, for which the inequalities only hold for integers n such that ∃i, lag(r i ) = n or r i = n.

Definitions above can be applied in a very general setting. The simple regret of some noisy optimization solvers, for instance Fabian's algorithm, is almost surely

SR n ≤ (1 + o(1)) C
n α after n ∈ N * evaluations (C is a constant), for some constant α > 0 arbitrarily close to 1. This result is proved in [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF], with optimality proved in [START_REF] Chen | Lower rate of convergence for locating the maximum of a function[END_REF]. For RSAES, introduced below, the proof is given in [START_REF] Astete-Morales | Log-log Convergence for Noisy Optimization[END_REF]. For noisy variants of Newton's algorithm, one can refer to [START_REF] Spall | Adaptive stochastic approximation by the simultaneous perturbation method[END_REF][START_REF] Spall | Feedback and weighting mechanisms for improving jacobian estimates in the adaptive simultaneous perturbation algorithm[END_REF][START_REF] Astete-Morales | Simple and cumulative regret for continuous noisy optimization[END_REF].

We prove the following proposition for such a case; it will be convenient for illustrating "abstract" general results to standard noisy optimization frameworks.

Proposition 1 Assume that each solver i ∈ {1, . . . , M } has almost surely simple regret

(1 + o(1)) C i n α i after n ∈ N * evaluations. We define C, α * , C * : C = 1 3 min {|C i -C j | | 1 ≤ i, j ≤ M ; C i -C j = 0} . ( 5 
)
α * = max i∈{1,...,M } α i . (6) 
C * = min i∈{1,...,M } s.t. α i =α * C i . ( 7 
)
We also define the set of optimal solvers:

SetOptim = {i ∈ {1, . . . , M }|α i = α * } and SubSetOptim = {i * ∈ SetOptim|C i * = C * } (8) = {i ∈ {1, . . . , M }|α i = α * and C i = C * }. ( 9 
)
With these notations, if almost surely, ∀i ∈ {1, . . . , M }, the simple regret for solver i after n ∈ N * evaluations is

SR i,n = (1 + o(1)) C i n α i , then P as (( n ) n∈N * ) is true with n defined as follows: n = C n α * . (10) 
Moreover, if i 0 ∈ {1, . . . , M } satisfies:

(∃n 0 ∈ N * , ∀n ≥ n 0 , ∆ i 0 ,n ≤ 2 n ), then i 0 ∈ SubSetOptim.
Informally speaking, this means that if the solver i 0 is close, in terms of simple regret, to an optimal solver (i.e., a solver matching α * and C * in Equations 6 and 7), then it also has an optimal slope (α i 0 = α * ) and an optimal constant (C i 0 = C * ).

Proof For any solver i ∈ {1, . . . , M } and any solver i * ∈ SubSetOptim,

SR i,n -SR i * ,n = (1 + o(1)) C i n α i -(1 + o(1)) C * n α * . (11) 
By Equations 10 and 11,

SR i,n -SR i * ,n n = C i C • n α * -α i • (1 + o(1)) - C * C • (1 + o(1)). (12) 
-If i ∈ SetOptim, i.e., α i < α * , the first term in Equation 12 tends to ∞, which leads to lim

α i <α * ,n→∞ SR i,n -SR i * ,n n = ∞. So for all i ∈ SetOptim, ∃n 0 ∈ N * s.t. ∀n ≥ n 0 , ∆ i,n = SR i,n - min j∈{1,...,M }
SR j,n > 2 n and, therefore,

P (i) as (( n ) n∈N * ) is true.
-If i ∈ SetOptim, i.e., α i = α * , Equation 12becomes

SR i,n -SR i * ,n n = C i -C * C + C i C o(1) - C * C o(1)
and therefore

lim n→∞ SR i,n -SR i * ,n n = C i -C * C .
-

If i ∈ SubSetOptim, i.e., C i = C * , lim n→∞ SR i,n -SR i * ,n n = 0. Therefore, P (i) as (( n ) n∈N * ) is true. -if i / ∈ SubSetOptim, lim n→∞ SR i,n -SR i * ,n n
≥ 3 by definition of C (Equation 5). Therefore,

P (i) as (( n ) n∈N * ) is true. So for all i ∈ {1, . . . , M }, P (i) as (( n ) n∈N * ) is true, hence P as (( n ) n∈N * ) holds. Moreover, it shows that ∃n 0 ∈ N * , ∀n ≥ n 0 , SR Solvers n = min j∈{1,...,M } SR j,n = SR j *
,n where j * ∈ SubSetOptim.

The log(M )-shift for NOPA

We can now enunciate the first main theorem, stating that there is, with fair sharing of the budget as in NOPA, a log(M )-shift, i.e., on a log-log scale (x-axis equal to the number of evaluations and y-axis equal to the log of the simple regret), the regret of the portfolio is just shifted by log(M ) on the x-axis.

Theorem 1 (Regret of NOPA: the log(M ) shift) Let (r n ) n∈N * and (s n ) n∈N * be two non-decreasing integer sequences. Assume that:

-∀x ∈ D, V ar f (x) ≤ 1; -for some positive sequence ( n ) n∈N * , P as (( n ) n∈N * ) (Definition 6) is true.
Then, there exists n 0 such that:

∀n ≥ n 0 , SR Selection r n < SR Solver r n + 2 r n ( 13 
)
with probability at least 1 - M s n 2 lag(r n ) after e n = r n • M • 1 + n i=1 s i r n evaluations. Moreover, if (s n ), lag(n), (r n ) and ( n ) satisfy ∞ j=1 1 s j 2 lag(r j ) < ∞, then,
almost surely, there exists n 0 such that:

∀n ≥ n 0 , SR Selection r n < SR Solver r n + 2 r n ( 14 
)
after e n = r n • M • 1 + n i=1 s i r n evaluations.
Remark 2 Please notice that Equation 13 holds with a given probability whereas Equation 14 holds almost surely. The almost sure convergence in the assumption is proved for some noisy optimization algorithms [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF].

Proof First, the total number of evaluations, up to the construction of xi * rn ,r n at iteration r n , is e n = M r n + n i=1 s i ; at this point, each solver has spent r n evaluations.

Step 1: Proof of Equation 13. By Chebyshev's inequality, for a given i ∈ {1, . . . , M },

P(|E f (x i,lag(r n ) ) -Ês n f (x i,lag(r n ) ) | > lag(r n ) ) < V ar f xi,lag(r n ) s n 2 lag(r n ) ≤ 1 s n 2 lag(r n )
.

By union bound,

P(∃i ∈ {1, . . . , M }; |E f (x i,lag(r n ) ) -Ês n f (x i,lag(r n ) ) | > lag(r n ) ) < M s n 2 lag(r n ) . With notation i * = i * r n = arg min i∈{1,...,M } Ês n f (x i,lag(r n ) ) , it follows that, with probability 1 - M s n 2 lag(rn ) : E f (x i * ,lag(r n ) ) < Ês n f (x i * ,lag(r n ) ) + lag(r n ) ; E f (x i * ,lag(r n ) ) < Ês n f (x j,lag(r n ) ) + lag(r n ) , ∀j ∈ {1, . . . , M }; E f (x i * ,lag(r n ) ) < E f (x j,lag(r n ) ) + 2 lag(r n ) , ∀j ∈ {1, . . . , M }; E f (x i * ,lag(r n ) ) -E f (x * ) < min j∈{1,...,M } SR j,lag(r n ) + 2 lag(r n ) ;
So, with probability at least 1 -

M s n 2 lag(rn ) , ∆ i * ,lag(r n ) < 2 lag(r n ) . (15) 
Using P as (( n ) n∈N * ), Equation 15 yields ∆ i * ,r n < 2 r n for lag(r n ) large enough, which is the expected result.

Step 2: Proof of Equation 14.

We denote by E n the event "∆ i * ,r n ≥ 2 r n " (equivalent to SR Selection r n ≥ SR Solver r n + 2 r n ). By Equation 13, there exists n 0 ∈ N * such that, ∀n ≥ n 0 ,

P(E n ) ≤ M s n 2 lag(rn ) . Therefore ∞ j=1 P(E j ) ≤ n 0 -1 j=1 P(E j ) + M ∞ j=n 0 1 s j 2 lag(r j ) < ∞.
According to Borel-Cantelli lemma, almost surely, for n large enough,

SR Selection r n < SR Solver r n + 2 r n and the number of evaluations is still e n = r n • M • 1 + n i=1 s i r n .
We now use Proposition 1 to apply Theorem 1 on a classical case with almost sure convergence.

Application 1 (log(M ) shift) Assume that for any solver i ∈ {1, . . . , M }, the simple regret after n ∈ N * evaluations is SR i,n = (1 + o(1)) C i n α i . We define n = C n α * (where C and α * are defined as in Equations 5 and 6). Assume that ∀x ∈ D, V ar f (x) ≤ 1 and that (s n ), (lag(n)) and (r n ) satisfy: By the definition of SubSetOptim (Equation 9):

∞ j=1 1 s j 2 lag(r j ) < ∞ and n i=1 s i = o(r n ).
lim n→∞ log(SR Selection r n ) log(e n ) = lim n→∞ log(SR i * ,r n ) log(M ) + log(r n ) + log 1 + n i=1 s i r n = lim n→∞ log(SR i * ,r n ) log(r n ) = -α * .
Hence iii) holds.

Example 1

The following parametrization matches the conditions in Application 1.

r n = n 3+r+r ; lag(n) = log(n) ;
s n = n 1+r , r > 0 and r ≥ 1, n ∈ N * .

The log(M )-shift for INOPA

We now show that INOPA, which distributes the budget in an unfair manner, can have an improvement over NOPA. Instead of a factor M (number of solvers in the portfolio), we get a factor M , number of approximately optimal solvers. This is formalized in the following theorem:

Theorem 2 (log(M ) shift) Let (r n ) n∈N * and (s n ) n∈N * two non-decreasing integer sequences. Assume that:

-∀x ∈ D, V ar f (x) ≤ 1; for some positive sequence ( n ) n∈N * , P as (( n ) n∈N * ) (Definition 6) holds.

We define S = {i|∃n 0 ∈ N * , ∀n ≥ n 0 , ∆ i,n < 2 n } and M denotes the cardinality of the set S, i.e., M = |S|. Then, there exists n 0 such that:

∀n ≥ n 0 , SR Selection r n < SR Solver r n + 2 r n (16 
)

with probability at least 1 - M s n 2 lag(r n ) after e n = r n • M • 1 + M M n i=1 s i r n + (M -M )lag(r n ) evaluations. Then, if (s n ), (lag(n)), (r n ) and ( n ) satisfy ∞ j=1 1 s j 2 lag(r j ) < ∞, lag(n) = o(n) and n j=1 s j = o(r n )
, then, almost surely, there exists n 0 such that:

∀n ≥ n 0 , SR Selection r n < SR Solver r n + 2 r n ( 17 
)
after e n = r n • M • (1 + o(1)) evaluations.
Proof For a given number of comparisons n, the INOPA algorithm makes the same comparisons and recommends the same value as the NOPA algorithm. Therefore all the results in Theorem 1 still hold, hence Eqs. 16 and 17 hold -but we have to prove the number e n of evaluations.

As the algorithm chooses a solver which is not in S a finite number of times, there exists n 1 such that, for all n ≥ n 1 , the portfolio chooses a solver in S at the n th comparison. We consider n 0 ≥ n 1 such that lag(n 0 ) ≥ r n 1 . For n ≥ n 0 the new number of evaluations after n comparisons is:

e n ≤ M • r n + M • n i=1 s i + (M -M )lag(r n ) = M • r n • 1 + M M n i=1 s i r n + M -M M lag(r n ) r n = M • r n • (1 + o (1)) .
Using Proposition 1, we apply Theorem 2 above to the case of linearly convergent optimization solvers (linear in a log-log scale, with x-axis logarithmic of the number of evaluations and y-axis logarithmic of the simple regret).

Application 2 (log(M )shift) Assume that ∀x ∈ D, V ar f (x) ≤ 1 and for any solver i ∈ {1, . . . , M }, the simple regret after n ∈ N * evaluations is SR i,n = (1 + o(1)) C i n α i . We define n = C n α * with C and α * defined as in Eq. 5 and 6. If Example 2 (log(M') shift) The parametrization of Example 1 also matches the assumptions of Application 2.

(s n ) n∈N * , lag(n) n∈N * , (r n ) n∈N * and ( n ) n∈N * are chosen such that ∞ j=1 1 s j 2 lag(r j ) < ∞, lag(n) = o(n) and

The lag is necessary

In this section, we show that, if there is no lag (i.e., ∀n, lag(n) = n) whenever there are only two solvers, and whenever these solvers have different slopes, the portfolio algorithm might not have a satisfactory behavior, in the sense that, in the example below, it will select infinitely often the worst solver -unless s n is so large that the comparison budget is not small compared to the portfolio budget.

Example 3 (The lag is necessary) Let us consider the behavior of NOPA without lag. We assume the following:

no lag: ∀n ∈ N * , lag(r n ) = r n .

the noise is a standard normal distribution N ; there are M = 2 solvers and the two solvers of the portfolio are such that, almost surely, SR i,m = (1 + o(1)) C i m α i after m ∈ N * evaluations, i ∈ {1, 2}, with α 1 = 1 -e and α 2 = 1 -2e, where e ∈ [0, 0.5) is a constant.

-The comparison budget is moderate compared to the portfolio budget, in the sense that

s n = O(r β n ) ( 18 
)
with β ≤ 2 -4e.

Then, almost surely, the portfolio will select the wrong solver infinitely often.

Proof Let us assume the scenario above. Let us show that infinitely often, the portfolio will choose the wrong solver. Consider Y 1,n and Y 2,n defined by

Y i,n = 1 s n s n =1 f (x i,r n , w (i, ) ) = E ω [f (x i,r n , ω)] + Z i , i ∈ {1, 2},
where -The w (i, ) are independent Gaussian random variables, ) , xi,r n is the search point recommended by solver i after r n evaluations, i.e., Y i,n is the average of s n evaluations of the noisy fitness function at xi,r n .

-Z i = 1 s n s n =1 w (i,
We denote for all n ∈ N * ,

δ n = E ω [f (x 2,r n , ω)] -E ω [f (x 1,r n , ω)] = SR 2,r n -SR 1,r n .
δ n is a random variable, because the expectation operator operates on ω; the random dependency in (x 1,r n , x2,r n ) remains.

v 1,n = V ar Y 1,n and v 2,n = V ar Y 2,n .
Definition 7 (MR n ) Let MR n (misranking at iteration n) be the event "the portfolio chooses the wrong solver at decision step n ∈ N * ".

Remark 3 From the definitions of solvers 1 and 2, solver 1 is the best in terms of simple regret. As a result, if n is big enough, a.s., we get

SR 1,r n < SR 2,r n , i.e., E ω [f (x 1,r n , ω)] < E ω [f (x 2,r n , ω)]. Then it is straightforward that, if a.s. E ω [f (x 2,r n , ω)] + Z 2 < E w [f (x 1,r n , ω)] + Z 1 , i.e., δ n < Z 1 -Z 2 ,
the portfolio chooses solver 2 whereas solver 1 is the best: a.s. MR r n occurs.

Step 1: constructing independent events related to wrong solver choices.

Let us define

δ n = 2(C 2 /r 1-2e n -C 1 /r 1-e n
). We have

δ n = O C 2 r 1-2e n (19) Almost surely, δ n = (1 + o(1)) C 2 r 1-2e n -(1 + o(1)) C 1 r 1-e n
, for n sufficiently large, δ n < δ n .

τ n denotes the event: "Z 1 -Z 2 > δ n ". So, almost surely, for n sufficiently large, the event MR n includes the event τ n , i.e. almost surely, for n sufficiently large, τ n ⊂ MR n .

(20)

Step 2: Almost surely, τ n occurs infinitely often.

The τ n are independent, so we apply the converse of Borel-Cantelli lemma. First, compute the probability of τ n ;

P (τ n ) = P v 1,n + v 2,n N > δ n , = P N > δ n √ v 1,n + v 2,n By definition of v 1,n and v 2,n , ∃C > 0, s.t. √ v 1,n + v 2,n = C √ s n , so by Equation 18, ∃ C > 0, 1 √ v 1,n +v 2,n = √ s n C ≤ Cr β/2 n .
By 19, ∃C > 0 s.t.

δ n √ v 1,n +v 2,n ≤ C C 2 r 1-2e n Cr β/2 n , with β/2 = 1 -2e. Hence P N > δ n √ v 1,n +v 2,n ≥ P (N > D), with D > 0.
We get P (τ n ) = Ω(1), as the τ n are independent, Borel-Cantelli's lemma (converse) implies that almost surely, τ n occurs infinitely often.

Step 3: Concluding.

Step 2 has shown that almost surely, τ n occurs infinitely often. Equation 20 implies that this is also true for MR n .

Therefore, infinitely often, the wrong solver is selected.

Experimental results

This section is organized as follows. Section 3.1 introduces another version of algorithms, more adapted to some particular implementations of solvers. Section 3.2 describes the different solvers contained in the portfolios and some experimental results. Section 3.3 describes the similar solvers contained in the portfolios and some experimental results. In all tables, CT refers to the computation time and NL refers to "no lag". s as a unit refers to seconds.

Real world constraints & introducing sharing

The real world introduces constraints. Most solvers do not allow you to run one single fitness evaluation at a time, so that it becomes difficult to have exactly the same number of fitness evaluations per solver. We will here adapt Algorithm 1 for such a case; an additional change is the possible use of "Sharing" options (i.e., sharing information between the different solvers). The proposed algorithm is detailed in Algorithm 3. This is an adapted version of NOPA for coarse grain, i.e., in case the solvers can not be restricted to doing one fitness evaluation at a time. The adaptation of INOPA is straightforward. We now present experiments with this adapted algorithm.

Experiments with different solvers in the portfolio

In this paper, unless specified otherwise, a portfolio with lag means that ∀n ∈ N * , lag(n) < n. For the portfolio without lag, at the n th algorithm selection, we compare xi,r n instead of xi,lag(r n ) . This means that we choose the identity as a lag function lag, i.e., ∀n ∈ N * , lag(n) = n.

For our experiments below, we use four noisy optimization solvers and portfolios of these solvers with and without information sharing:

-Solver 1: A self-adaptive (µ,λ) evolution strategy with resampling as explained in Algorithm 4, with parametrization λ = 10d, µ = 5d, K = 10, ζ = 2 (in dimension d). This solver will be termed RSAES (resampling self-adaptive evolution strategy). -Solver 2: Fabian's solver, as detailed in Algorithm 5, with parametrization γ = 0.1, a = 1, c = 100. This variant will be termed F abian1. -Solver 3: Another Fabian's solver with parametrization γ = 0.49, a = 1, c = 2. This variant will be termed F abian2. Roughly speaking, Fabian's algorithm is aimed at dealing with z = 0 [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF]. RSAES is designed for multimodal and/or parallel optimization; it is also competitive in the unimodal setting when z > 0 [START_REF] Rolet | Adaptive Noisy Optimization[END_REF][START_REF] Astete-Morales | Simple and cumulative regret for continuous noisy optimization[END_REF]. Newton's solver is excellent when there is very little noise [START_REF] Astete-Morales | Simple and cumulative regret for continuous noisy optimization[END_REF]. Consistently with Equation 4, we evaluate the slope of the linear convergence in log-log scale by the logarithm of the average simple regret divided by the logarithm of the number of evaluations. 

Experiments in unimodal case

The experiments presented in this section have been performed on

f (x) = x 2 + x z N (21) 
with N a Gaussian standard noise. z = 2 is the so-called multiplicative noise case, z = 0 is the additive noise case, z = 1 is intermediate. The results in dimension 2 and dimension 15 are shown in Table 1 and2. We see on these experiments that:

-For z = 2 the noise-handling version of Newton's algorithm, N ewton, performs best among the individual solvers. -For z = 1 the noise-handling version of Newton's algorithm, N ewton, performs best in dimension 2 and the second variant of Fabian's algorithm, F abian2, performs best in dimension 15. -For z = 0 the first variant of Fabian's algorithm, F abian1, performs best (consistently with [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF]). -The portfolio algorithm successfully reaches almost the same slope as the best of its solvers and sometimes outperforms all of them. -Portfolio with lag performs better than without lag. -In the case of small noise, NOPA with information sharing, termed NOPA+S., performs better than without information sharing, NOPA, in dimension 15. -Results clearly show the superiority of INOPA over NOPA.

Incidentally, the poor behavior of RSAES on such a smooth case is not a surprise. Other experiments in Section 3.2.2 show that in multimodal cases, RSAES is by far the most efficient solver among solvers above.

Experiments in a multimodal setting

Experiments have been performed on a Cartpole control problem with neural network controller. The controller is a feed-forward neural network with one hidden Table 3 Slope of simple regret for control of the "Cartpole" problem using a Neural Network policy with different numbers of neurons. This test case is multimodal. These results are averaged over 50 runs. "s" as a unit refers to "seconds". The standard deviation is shown after ± and shows the statistical significance of the results. Values close to 0 correspond to cases with no convergence to the optimum, i.e., a slope zero means that the log-log curve is horizontal. The test case is the one from [START_REF] Weinstein | Bandit-based planning and learning in continuous-action markov decision processes[END_REF][START_REF] Couetoux | Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision Making Problems[END_REF]. Consistently with these references, the optimal fitness is zero. layer of neurons. We use the same solvers as in Section 3.2.1. The results are shown in Table 3.

Solver

We see on these experiments that:

-RSAES is the most efficient individual solver.

-The portfolio algorithm successfully reaches almost the same slope as the best of its solvers.

-Sometimes, the portfolio outperforms the best of its solvers.

-Results clearly show the superiority of INOPA over NOPA.

The lag: experiments with different variants of Fabian's algorithm

In this section, we check if the version with lag disabled (i.e., ∀n ∈ N * , lag(n) = n) can compete with the version with lag enabled (i.e., ∀n ∈ N * , lag(n) < n). In previous experiments this was the case, we here focus on a case in which solvers are close to each other and check if in such a case the lag is beneficial. Fabian's algorithm [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF] is a gradient descent algorithm using finite differences for approximating gradients. a n is the step in updates, i.e., the current estimate is updated by adding -a n ∇f where ∇f is the approximate gradient. ∇f is approximated by averaging multiple redundant estimates, each of them by finite differences of size Θ(c/n γ ). Therefore, Fabian's algorithm has 3 parameters, termed a, c and γ. In the case of approximately quadratic functions with additive noise, Fabian's algorithm can obtain a good s(SR) with small γ > 0. However, a and c have an important non-asymptotic effect and the tuning of these a and c parameters is challenging. A portfolio of variants of Fabian's algorithm can help to overcome the tedious parameter tuning.

For these experiments, we consider the same noisy function as in Section 3.2.1. We use 5 noisy optimization solvers which are variants of Fabian's algorithm, as detailed in Algorithm 5, and portfolio of these solvers with and without lag:

-Solver 1: F abian1 as used in Section 3. Experiments have been performed in dimension 2 and dimension 15. These 5 variants of Fabian's algorithm have asymptotically similar performance. Table 4 compares the portfolio above without lag, NOPA and INOPA. We see on these experiments that:

-The lag is usually beneficial, though this is not always the case.

-Again, INOPA clearly outperforms NOPA.

Discussion of experimental results

In short, experiments 2,4); are less conclusive in terms of comparison "with lag / without lag", though on average lag is seemingly beneficial.

Conclusion

We have seen that noisy optimization provides a very natural framework for portfolio methods. Different noisy optimization algorithms have extremely different convergence rates (different slopes) on different test cases, depending on the noise level, on the multimodalities, on the dimension (see e.g. Tables 1 and4, where depending on z the best solver is a variant of Fabian or Newton's algorithm; and Table 3, where RSAES is the best); see also [START_REF] Liu | Meta online learning: experiments on a unit commitment problem[END_REF] for experiments on additional multimodal test cases. We proposed two versions of such portfolios, NOPA and INOPA, the latter using an unfair distribution of the budget. Both have theoretically the same slope as the best of their solvers, with better constants for INOPA (in particular, no shift, if SubSetOptim (see Eq. 8) has cardinal 1). We show mathematically an asymptotic log(M ) shift when using M solvers, when working on a classical log-log scale (classical in noisy optimization); see Section 2.4.2. Contrarily to noise-free optimization (where a log(M ) shift would be a trivial result), such a shift is not so easily obtained in noisy optimization. Importantly, it is necessary (Section 2.4.4), for getting the log(M ) shift, that:

the AS algorithm compares old recommendations (and selects a solver from this point of view); the portfolio recommends the current recommendation of this selected solver.

Additionally, we improve the bound to a log(M ) shift, where M is the number of optimal solvers, using an unfair distribution of the computational budget (Section 2.4.3). In particular, the shift is asymptotically negligible when the optimal solver is unique.

A careful choice of portfolio parameters (function lag(•), specifying the lag; r n , specifying the intervals r n+1 -r n between two comparisons of solvers; s n , specifying the number of resamplings of recommendations for selecting the best) leads to such properties; we provide principled tools for choosing these parameters. Sufficient conditions are given in Theorem 1, with examples thereafter.

Experiments show (i) the efficiency of portfolios for noisy optimization, as solvers have very different performances for different test cases and NOPA has performance close to the best or even better when the random initialization has a big impact; (ii) the clear and stable improvement provided by INOPA, thanks to an unfair budget distribution; (iii) that the lag is usually beneficial, though this is not always the case. Importantly, without lag, INOPA could not be defined.

In noisy frameworks, we point out that portfolios might make sense even when optimizers are not orthogonal. Even with identical solvers, or closely related optimizers, the portfolio can mitigate the effect of unlucky random contributions. This is somehow related to restarts (i.e. multiple runs with random initializations). See Table 4 for cases with very close solvers, and [START_REF] Liu | Meta online learning: experiments on a unit commitment problem[END_REF] with identical solvers.

Sharing information in portfolios of noisy optimization algorithms is not so easy. Our empirical results are mitigated; but we only tested very simple tools for sharing -just sharing the current best point. A further work consists in identifying better relevant information for sharing; maybe the estimate of the asymptotic fitness value of a solver is the most natural information for sharing; if a fitness value A is already found and a solver claims that it will never do better than A, then we can safely stop its run and save up computational power.

A Appendix: Noisy optimization algorithms

We present briefly several noisy optimization algorithms. Algorithm 4 is a classical Self Adaptive-(µ,λ)-Evolution Strategy, with noise handled by resamplings. Algorithm 5 is a stochastic gradient method, with gradient estimated by finite differences; it is known to converge with simple regret O(1/n) on smooth enough functions corrupted by additive noise [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF][START_REF] Shamir | On the complexity of bandit linear optimization[END_REF]. Algorithm 6 extends Fabian's algorithm by adding second-order information, by approximating the Hessian [START_REF] Fabian | Stochastic approximation[END_REF]. Generate λ individuals i j , j ∈ {1, . . . , λ}, independently using offspring σ j = σ n,mod(j-1,µ)+1 × exp N 2d and i j = x n,mod(j-1,µ)+1 + σ j N

5:

Evaluate each of them Kn ζ times and average their fitness values 6:

Define j 1 , . . . , j λ so that ranking

Ê Kn ζ [f (i j 1 )] ≤ Ê Kn ζ [f (i j 2 )] • • • ≤ Ê Kn ζ [f (i j λ )]
where Êm denotes the average over m resamplings 7:

Compute x n+1,k and σ n+1,k using update σ n+1,k = σ j k and x n+1,k = i j k , k ∈ {1, . . . , µ}

8:

x = i j 1 update recommendation 9:

n ← n + 1 10: end while Algorithm 5 Fabian's stochastic gradient algorithm with finite differences. Fabian, in [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF], proposes various rules for the parametrization; in the present paper, we use the following parameters. s is as in Remark 5.2 in [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF], i.e., s is the minimal even number ≥ 1 2γ -1. The scales u i are u i = 1 i , ∀i ∈ {1, . . . , s 2 }; this generalizes the choice in Example 3.3 in [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF]. The w i are computed as given in Lemma 3.1 in [START_REF] Fabian | Stochastic Approximation of Minima with Improved Asymptotic Speed[END_REF]. e i is the i th vector of the standard orthonormal basis of R d .

Require: dimension d ∈ N * Require: 1 2 > γ > 0, a > 0, c > 0, even number of samples per axis s Require: Algorithm 6 An adaptation of Newton's algorithm for noisy objective functions, with gradient and Hessian approximated by finite differences and reevaluations. The recommendations are the x n 's. e i is the i th vector of the standard orthonormal basis of R d .

scales 1 ≥ u 1 > • • • > u s
Require: dimension d ∈ N * Require: A > 0, B > 0, α > 0, β > 0 Require: an initial x 1 ∈ R d 1: n ← 1 2: x ← x 1 recommendation 3: ĥ ← identity matrix 4: while (true) do 5:

Compute σn = A/n α step-size 6:

for i = 1 to d do 7:

Evaluate g i by finite differences at xn + σne i and xn -σne i , averaging each evaluation over Bn β resamplings. 8: end for 9:

for i = 1 to d do 10:

Evaluate ĥi,i by finite differences at xn + σne i , xn and xn -σne i , averaging each evaluation over Bn β resamplings 11:

for j = 1 to d, j = i do 12:

Evaluate ĥi,j by finite differences thanks to evaluations at each of xn ± σne i ± σne j , averaging over Bn β /10 resamplings 13:

end for 14:

end for 15:

δ ← solution of ĥδ = -g possible next search point 16:

if δ > 

  Then, almost surely, i) for n large enough, SR Selection r n < SR Solver r n + 2 r n after e n = r n • M • n large enough, SR Selection r n ≤ max i∈SubSetOptim SR i,r n after e n = r n • M • slope of the selection regret verifies lim n→∞ log(SR Selection rn ) log(e n ) = -α * . SR Selection r n corresponds to the simple regret at iteration r n of the portfolio, which corresponds to e n = r n • M • 1 + n i=1 s i r n evaluations in the portfoliohence the comment "after e n function evaluations". Proof By Property 1 and Theorem 1, i) holds. By Equation 15, and Property 1, SR Selection r n = SR i,r n , with i ∈ SubSetOptim and ii) follows. We obtain: a.s. log(SR Selection r n ) = log(SR i,r n ), where i ∈ SubSetOptim.

n

  j=1 s j = o(r n ), then, almost surely, there exists n 0 such that:i) ∀n ≥ n 0 , SR Selection r n < SR Solver r n + 2 r n after e n = M • r n (1 + o(1)) evaluations; ii) ∀n ≥ n 0 , SR Selection r n ≤ max i∈SubSetOptim SR i,r n after e n = M • r n (1 + o(1)) evaluations;iii) the slope of the selection regret verifies lim n→∞ log(SR Selection rn ) log(e n ) = -α * . As usual, SR Selection r n corresponds to the simple regret at iteration r n of the portfolio, which corresponds to e n = r n • M • (1 + o(1)) evaluations in the portfolio -hence the comment "after e n function evaluations". Proof See proof of Application 1.

-

  Solver 4: A version of Newton's solver adapted for black-box noisy optimization (gradients and Hessians are approximated on samplings of the objective function), as detailed in Algorithm 6, with parametrization B = 1, β = 2, A = 100, α = 4. For short this solver will be termed N ewton. -NOPA NL: NOPA of solvers 1-4 without lag. Functions are r n = n 4.2 , lag(n) = n, s n = n 2.2 at n th algorithm selection. -NOPA: NOPA of solvers 1-4. Functions are r n = n 4.2 , lag(n) = n 1/4.2 , s n = n 2.2 at n th algorithm selection. -NOPA+S.: NOPA of solvers 1-4, with information sharing enabled. Same functions. -INOPA: INOPA of solvers 1-4. Same functions. -INOPA+S.: INOPA of solvers 1-4, with information sharing enabled. Same functions.

2 .-

 2 Solver 2: Fabian's solver with parametrization γ = 0.1, a = 5, c = 100. -Solver 3: Fabian's solver with parametrization γ = 0.1, a = 1, c = 200. -Solver 4: Fabian's solver with parametrization γ = 0.1, a = 1, c = 1. -Solver 5: Fabian's solver with parametrization γ = 0.1, a = 1, c = 10. -NOPA NL: Portfolio of solvers 1-5 without lag. Functions are r n = n 4.2 , lag(n) = n, s n = n 2.2 at n th algorithm selection. -NOPA: NOPA of solvers 1-5. Functions are r n = n 4.2 , lag(n) = n 1/4.2 , s n = n 2.2 at n th algorithm selection. -NOPA+S.: NOPA of solvers 1-5, with information sharing enabled. Same functions. -INOPA: INOPA of solvers 1-5. Same functions. -INOPA+S.: INOPA of solvers 1-5, with information sharing enabled. Same functions.

Algorithm 4

 4 Self-adaptive Evolution Strategy with resamplings. N denotes some independent standard Gaussian random variable and c = mod(a, b) for b > 0 means ∃k ∈ Z, (a -c) = bk and 0 ≤ c < b. Require: dimension d ∈ N * Require: population size λ ∈ N * and number of parents µ ∈ N * with λ ≥ µ Require: K > 0 parameter used to compute resampling number Require: ζ ≥ 0 parameter used to compute resampling number Require: an initial parent x 1,i ∈ R d and an initial σ 1,i = 1, i ∈ {1, . . . , µ} 1: n ← 1 2: x ← x 1,1 recommendation 3: while (true) do 4:

2 > 0 2 summing to 1 6 :=

 20216 , weights w 1 > • • • > w s Require: an initial x 1 ∈ R d 1: n ← 1 2: x ← x 1 recommendation 3: while (true) do 4:Compute σn = c/n γ step-size 5:Evaluate the gradient g at xn by finite differences, averaging over s samples per axis: ∀i ∈ {1, . . . , d}, ∀j ∈ {1, . . . , s 2 } gradient estimationx (i,j)+ n = xn + u j σne i and x (i,j)n = xn -u j σne i g i = 1 2σn s/2 j=1 w j f (x (i,j)+ n ) -f (x (i,j)n ) Apply x n+1 = xn -a n gnext search point 7:x ← x n+1 update recommendation 8:n ← n + 1 9: end whileB Summary of notationsNotations are as follows:General notations: Eω = expectation with respect to random variable ω. Êk X = average over k independent realizations of random variable X.Notation for solvers:xn = search point used by the solver for the n th evaluation. xn = recommendation given by the solver after the n th evaluation.SRn = E (f (xn) -f (x * )) . (simple regret)Notation for AS algorithms:i * = index of the solver chosen by the AS algorithm.xi,n = recommendation given by the solver i after the n th evaluation.SR i,n = E (f (x i,n ) -f (x * )) .M = number of solvers in portfolio. ∆ i,n = SR i,n -min j∈{1,...,M } SR j,n . E f (x i * ,n ) -f (x * ) .

  Algorithm 1 Noisy Optimization Portfolio Algorithm (NOPA). : noisy optimization solvers Solver 1 , Solver 2 , . . . , Solver M Require: a lag function lag : N * → N * As in Definition 4 Require: a non-decreasing integer sequence r 1 , r 2 , . . . Periodic comparisons Require: a non-decreasing integer sequence s 1 , s 2 , . . .

	RequireNumber of resamplings
	1: n ← 1		Number of selections
	2: m ← 1		NOPA's iteration number
	3: i * ← null		Index of recommended solver
	4: x * ← null		Recommendation
	5: while budget is not exhausted do	
	6:	if m ≥ rn then		
	7:	i * = arg min	Êsn [f (x i,lag(rn) )]	Algorithm selection
		i∈{1,...,M }		
	8:	n ← n + 1		
	9:	else		
	10:	for i ∈ {1, . . . , M } do	
	11:	Apply one evaluation for Solver i	
	12:	end for		
	13:	m ← m + 1		
	14:	end if		
	15:	x * = xi * ,m		Update recommendation
	16: end while		

  2 , . . . , Solver M Require: a lag function lag : N * → N * Refer to Definition 4 Require: a non-decreasing positive integer sequence r 1 , r 2 , . . . Periodic comparisons Require: a non-decreasing integer sequence s 1 , s 2 , . . .

				Number of resamplings
	1: n ← 1		Number of selections
	2: m ← 1		NOPA's iteration number
	3: i * ← null		Index of recommended solver
	4: x * ← null		Recommendation
	5: while budget is not exhausted do	
	6:	if m ≥ lag(rn) or i * = null then	
	7:	i * = arg min	Êsn [f (x i,lag(rn) )]	Algorithm selection
		i∈{1,...,M }		
	8:	m ← rn		
	9:	while m < r n+1 do	
	10:	Apply one evaluation to solver i *	
	11:	m ← m + 1	
	12:	x * = xi * ,m		Update recommendation
	13:	end while		
	14:	n ← n + 1		
	15:	else		
	16:			
	18:	end for		
	19:	m ← m + 1		
	20:	end if		
	21: end while		

for i ∈ {1, . . . , M }\i * do 17:

Apply lag(rn)lag(r n-1 ) evaluations for Solver i

  Algorithm 3 Adapted version of NOPA in real world constraints. Require: a non-decreasing integer sequence r 1 , r 2 , . . . Periodic comparisons Require: a non-decreasing integer sequence s 1 , s 2 , . . .

					Number of resamplings
	Require: a boolean sharing
	1: n ← 1		Number of selections
	2: i * ← null		Index of recommended solver
	3: x * ← null		Recommendation
	4: R ← 0 M		Vector of number of evaluations
	5: while budget is not exhausted do
	6:	if	min i∈{1,...,M } R i ≥ rn then
	7:		i * = arg min	Êsn [f (x i,lag(rn) )]	Algorithm selection
			i∈{1,...,M }	
	8: 9:		x * = xi * ,R i * if sharing then	Update recommendation
	10:		All solvers receive x * as next iterate
	11:		end if	
	12:		n ← n + 1	
	13:	else	
	14:		for i ∈ {1, . . . , M } do
	15:		while R i < rn do
	16:		Apply one iteration for Solver i , increase R i by the number of evals. spent
	17:		end while	
	18:		end for	
	19:	end if	
	20: end while	
	21: x			

Require: noisy optimization solvers Solver 1 , Solver 2 , . . . , Solver M Require: a lag function lag : N * → N * Refer to Definition 4 * = xi * ,R i * Update recommendation

Table 1

 1 Experiments on f (x) = x 2 + x z N in dimension 2 with z = 0, 1, 2. Numbers in this table are slopes (Eq. 4). We see that the portfolio successfully keeps the best of each world (i.e. INOPA has nearly the same slope as the best of the solvers). Results are averaged over 50 runs. "s" as a unit refers to "seconds". Optimal means the optimum is reached for at least one run; the number of times the optimum was reached (over the 50 runs) is given between parentheses. The standard deviation is shown after ±. Table 2 presents the same results in dimension 15. "NL" refers to "no lag" cases, i.e., ∀n ∈ N * , lag(n) = n. .047 -.870 ± .061 -.682 ± .064 -.748 ± .066 -.662 ± .067 NOPA+S. NL -.210 ± .012 -.230 ± .011 -.243 ± .013 -.260 ± .013 -.255 ± .015 NOPA -.897 ± .054 -.946 ± .049 -.835 ± .059 -.777 ± .064 -.932 ± .058 NOPA+S. -.264 ± .013 -.298 ± .015 -.268 ± .011 -.304 ± .018 -.303 ± .016 INOPA -.829 ± .069 -.950 ± .062 -.948 ± .055 -.913 ± .058 -.904 ± .055 INOPA+S. -.703 ± .058 -.938 ± .056 -.844 ± .055 -.789 ± .055 -.776 ± .055 .011 -1.600 ± .011 -1.593 ± .016 -1.554 ± .013 -1.533 ± .014 NOPA+S. NL -1.225 ± .013 -1.228 ± .013 -1.281 ± .014 -1.298 ± .015 -1.323 ± .017 NOPA -1.925 ± .081 -1.954 ± .076 -1.661 ± .070 -1.805 ± .066 -1.694 ± .062 NOPA+S. -1.491 ± .077 -1.624 ± .080 -1.693 ± .072 -1.632 ± .068 -1.537 ± .061 INOPA -2.271 ± .062 -2.330 ± .061 -2.478 ± .033 -2.506 ± .047 -2.599 ± .024 INOPA+S. NOPA+S. NL -2.919 ± .011 -2.818 ± .050 -2.785 ± .047 -2.684 ± .056 -2.762 ± .016

	Solver/Portfolio	CT = 10s	Obtained slope for d = 2, z = 0 CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	-.391 ± .009 -.391 ± .009 -.396 ± .010 -.381 ± .012 -.394 ± .012
	F abian1	-1.188 ± .012-1.188 ± .011-1.217 ± .010-1.241 ± .013-1.265 ± .011
	F abian2	-.172 ± .011 -.161 ± .009 -.178 ± .011 -.212 ± .015 -.226 ± .012
	N ewton	-.206 ± .009 -.206 ± .009 -.212 ± .010 -.237 ± .011 -.239 ± .011
	NOPA NL -.999 ± Solver/Portfolio CT = 10s	Obtained slope for d = 2, z = 1 CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	-.526 ± .013 -.530 ± .016 -.507 ± .012 -.507 ± .017 -.522 ± .014
	F abian1	-1.247 ± .015 -1.225 ± .009 -1.252 ± .010 -1.276 ± .011 -1.314 ± .013
	F abian2	-1.785 ± .009 -1.755 ± .011 -1.782 ± .015 -1.777 ± .011 -1.738 ± .010
	N ewton	-2.649 ± .010-2.605 ± .008-2.600 ± .011-2.547 ± .011 -2.517 ± .010
	NOPA NL -1.624 ± Solver/Portfolio CT = 10s	Obtained slope for d = 2, z = 2 CT = 20s CT = 40s CT = 80s	CT = 160s

-2.013 ± .070 -1.927 ± .074 -1.987 ± .074 -2.120 ± .081 -1.856 ± .078 RSAES -.500 ± .013 -.491 ± .011 -.484 ± .011 -.526 ± .018 -.537 ± .015 F abian1 -1.233 ± .010 -1.246 ± .013 -1.258 ± .011 -1.299 ± .014 -1.310 ± .013 F abian2 -3.173 ± .010 -3.175 ± .009 -3.141 ± .008 -3.120 ± .013 -3.073 ± .011 N ewton -4.146 ± .004 -4.349 ± .008 -4.514 ± .004 -4.743 ± .012 -4.973 ± .011 NOPA NL -2.911 ± .009 -2.871 ± .010 -2.796 ± .011 -2.770 ± .012 -2.717 ± .014 NOPA -4.343 ± .006 -4.603 ± .013 -4.772 ± .013 Optimal (1) -5.103 ± .011 NOPA+S. -4.305 ± .041 -4.573 ± .011 -4.431 ± .091 -4.910 ± .048 -5.020 ± .059 INOPA Optimal (1) Optimal (2) -4.698 ± .004 -4.435 ± .007 -4.408 ± 0 INOPA+S. Optimal (1) -3.302 ± .116 Optimal (2) -4.409 ± .008 Optimal (35)

Table 2

 2 Experiments on f (x) = x 2 + x z N in dimension 15 with z = 0, 1, 2. Numbers in this table are slopes (Eq. 4). We see that the portfolio successfully keeps the best of each world (INOPA has nearly the same slope as the best). Results are averaged over 50 runs. "s" as a unit refers to "seconds". Optimal means the optimum is reached for at least one run; the number of times the optimum was reached (over the 50 runs) is given between parentheses. The standard deviation is shown after ±. "NL" refers to "no lag" cases, i.e., ∀n ∈ N * , lag(n) = n. .003-1.376 ± .004 -1.339 ± .003 -1.313 ± .003 -1.274 ± .004 N ewton -.793 ± .099 -.787 ± .095 -.959 ± .092 -.837 ± .086 -.875 ± .078 NOPA NL -1.226 ± .003 -1.167 ± .012 -.978 ± .013 -.949 ± .008 -.943 ± .005 NOPA+S. NL -.771 ± .058 -.869 ± .065 -.839 ± .068 -.860 ± .060 -.756 ± .052 NOPA -.980 ± .018 -.962 ± .013 -.937 ± .005 -.941 ± .005 -.943 ± .004 NOPA+S. -1.012 ± .020 -1.029 ± .025 -1.019 ± .021 -1.002 ± .014 -.951 ± .010 INOPA -1.114 ± .016 -1.268 ± .026 -1.359 ± .027 -1.393 ± .018 -1.482 ± .026 INOPA+S. -1.194 ± .030 -1.250 ± .038 -1.556 ± .030-1.441 ± .041 -1.399 ± .051 NOPA+S. NL -1.220 ± .117 -1.690 ± .134 -2.181 ± .175 -2.131 ± .185 -2.307 ± .157 NOPA -2.956 ± .121 -2.664 ± .107 -2.515 ± .095 -2.466 ± .090 -2.025 ± .050 NOPA+S. -3.996 ± .029-3.796 ± .003-3.567 ± .004 -3.294 ± .003 -2.947 ± .026

	Solver/Portfolio	CT = 10s	Obtained slope for d = 15, z = 0 CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	.093 ± .002	.107 ± .002	.114 ± .002	.128 ± .002	.136 ± .003
	F abian1	-.825 ± .003 -.826 ± .003 -.838 ± .003 -.834 ± .004 -.835 ± .003
	F abian2	.096 ± .003	.108 ± .003	.108 ± .003	.114 ± .003	.125 ± .003
	N ewton	-.055 ± .002 -.062 ± .003 -.070 ± .003 -.069 ± .003 -.071 ± .003
	NOPA NL	-.512 ± .046 -.393 ± .049 -.377 ± .048 -.425 ± .049 -.380 ± .046
	NOPA+S. NL .026 ± .008	-.026 ± .021 -.082 ± .025 -.237 ± .033 -.410 ± .028
	NOPA	-.757 ± .003 -.750 ± .003 -.747 ± .003 -.734 ± .013 -.705 ± .018
	NOPA+S.	.039 ± .007	.019 ± .013	.016 ± .019	.005 ± .024	-.079 ± .029
	INOPA	-.762 ± .024 -.768 ± .024 -.822 ± .003 -.821 ± .003 -.826 ± .003
	INOPA+S.	-.484 ± .033 -.508 ± .035 -.575 ± .038 -.603 ± .036 -.499 ± .037
	Solver/Portfolio	CT = 10s	Obtained slope for d = 15, z = 1 CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	.094 ± .002	.102 ± .002	.118 ± .003	.128 ± .002	.137 ± .003
	F abian1	-.991 ± .003 -1.004 ± .003 -1.011 ± .003 -1.020 ± .003 -1.032 ± .003
	F abian2 -1.399 ± Solver/Portfolio CT = 10s	Obtained slope for d = 15, z = 2 CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	.094 ± .003	.102 ± .002	.113 ± .003	.125 ± .003	.146 ± .002
	F abian1					

-.991 ± .003 -1.000 ± .003 -1.016 ± .003 -1.019 ± .003 -1.037 ± .004 F abian2 -2.595 ± .003 -2.546 ± .003 -2.481 ± .003 -2.413 ± .003 -2.337 ± .004 N ewton -2.911 ± .279 -2.763 ± .291 -2.503 ± .285 -2.420 ± .265 -2.614 ± .240 NOPA NL -2.257 ± .002 -2.184 ± .003 -2.106 ± .003 -2.000 ± .003 -1.891 ± .003 INOPA -3.005 ± .106 -3.157 ± .123 -3.319 ± .135 -3.528 ± .144-3.751 ± .136 INOPA+S. -3.090 ± .003 -2.942 ± .003 -2.791 ± .004 -2.673 ± .002 -2.574 ± .003

  .014 -.469 ± .010 -.465 ± .006 -.452 ± .005 -.433 ± .006 NOPA+S. NL -.399 ± .020 -.465 ± .009 -.434 ± .015 -.461 ± .007 -.462 ± .005 NOPA -.480 ± .014 -.465 ± .009 -.466 ± .008 -.430 ± .013 -.431 ± .009 NOPA+S. -.461 ± .017 -.436 ± .020 -.475 ± .011 -.431 ± .015 -.415 ± .015 INOPA -.501 ± .009 -.468 ± .009 -.458 ± .007 -.445 ± .006 -.424 ± .006 INOPA+S. -.524 ± .011-.522 ± .007-.490 ± .006-.469 ± .006 -.459 ± .006 .010 -.465 ± .011 -.461 ± .007 -.460 ± .004 -.440 ± .004 NOPA+S. NL -.474 ± .010 -.487 ± .008 -.490 ± .007 -.474 ± .006-.463 ± .004 NOPA -.491 ± .009 -.477 ± .006 -.459 ± .007 -.434 ± .006 -.423 ± .006 NOPA+S. -.505 ± .010 -.504 ± .009 -.491 ± .007 -.470 ± .006 -.452 ± .006 INOPA -.481 ± .012 -.480 ± .007 -.429 ± .010 -.423 ± .008 -.408 ± .005 INOPA+S. -.506 ± .009 -.506 ± .008 -.479 ± .007 -.466 ± .006 -.439 ± .005 .008 -.477 ± .009 -.464 ± .005 -.447 ± .005 -.432 ± .005 NOPA+S. NL -.489 ± .011 -.496 ± .007 -.488 ± .005 -.469 ± .005 -.464 ± .005 .010 -.468 ± .007 -.431 ± .008 -.429 ± .006 -.419 ± .006 NOPA+S. NL -.463 ± .008 -.480 ± .009 -.485 ± .008 -.466 ± .006 -.453 ± .005 NOPA -.483 ± .011 -.485 ± .009 -.475 ± .006 -.465 ± .005 -.436 ± .005 NOPA+S. -.510 ± .009 -.498 ± .008-.508 ± .006-.482 ± .005 -.454 ± .006 INOPA -.488 ± .010 -.463 ± .009 -.455 ± .007 -.422 ± .007 -.426 ± .006 INOPA+S. -.523 ± .008 -.492 ± .009 -.476 ± .007 -.459 ± .007 -.460 ± .004

	/Portfolio	CT = 10s	Obtained slope with 2 neurons CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	-.503 ± .008 -.503 ± .008 -.483 ± .007 -.469 ± .006-.465 ± .003
	F abian1	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	F abian2	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	N ewton	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	NOPA NL -.442 ± Solver/Portfolio CT = 10s	Obtained slope with 4 neurons CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	-.517 ± .009 -.503 ± .006 -.481 ± .006 -.458 ± .007 -.452 ± .004
	F abian1	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	F abian2	.002 ± 0	-.007 ± .010 -.016 ± .013 -.006 ± .008 -.005 ± .007
	N ewton	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	NOPA NL -.485 ± Solver/Portfolio CT = 10s	Obtained slope with 6 neurons CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	-.496 ± .008 -.508 ± .008 -.479 ± .007 -.462 ± .004 -.439 ± .005
	F abian1	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	F abian2	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	N ewton	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	NOPA NL -.483 ± NOPA -.492 ± .021 -.498 ± .007 -.477 ± .012 -.464 ± .011 -.456 ± .004
	NOPA+S.	-.430 ± .026 -.446 ± .020 -.452 ± .014 -.442 ± .016 -.417 ± .014
	INOPA	-.501 ± .010 -.485 ± .010 -.487 ± .006 -.463 ± .006 -.447 ± .003
	INOPA+S. -.517 ± .009 -.501 ± .010 -.503 ± .006 -.468 ± .005 -.467 ± .003
	Solver/Portfolio	CT = 10s	Obtained slope with 8 neurons CT = 20s CT = 40s CT = 80s	CT = 160s
	RSAES	-.493 ± .009 -.475 ± .006 -.449 ± .006 -.436 ± .007 -.420 ± .005
	F abian1	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	F abian2	.002 ± 0	.002 ± 0	.002 ± 0	-.005 ± .007	.002 ± 0
	N ewton	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0	.002 ± 0
	NOPA NL	-.464 ±				

Table 4

 4 Experiments on f (x) = x 2 + x z N in dimension 2 and dimension 15 with z = 0, 1, 2. Results are mean of 1000 runs. Solvers are various parametrizations of Fabian's algorithm (see text). "s" as a unit refers to "seconds". The standard deviation is shown after ± and shows the statistical significance of the results. We use smaller time settings -this is because here the objective function has a negligible computation time. .005 -1.471 ± .005 -1.455 ± .004 -1.414 ± .004 -1.381 ± .004 NOPA+S. NL -1.436 ± .006 -1.401 ± .006 -1.287 ± .006 -1.225 ± .005 -1.129 ± .005 NOPA -1.543 ± .005 -1.490 ± .004 -1.456 ± .004 -1.416 ± .003 -1.377 ± .003 NOPA+S. -1.469 ± .005 -1.462 ± .005 -1.377 ± .005 -1.339 ± .005 -1.301 ± .004 INOPA -1.656 ± .004-1.578 ± .005-1.531 ± .004 -1.497 ± .005 -1.443 ± .004 INOPA+S. -1.638 ± .005 -1.568 ± .005 -1.503 ± .005 -1.474 ± .005 -1.425 ± .005 z = 2 NOPA NL -1.528 ± .004 -1.505 ± .005 -1.440 ± .004 -1.394 ± .004 -1.375 ± .003 NOPA+S. NL -1.456 ± .005 -1.393 ± .006 -1.303 ± .005 -1.250 ± .005 -1.168 ± .005 NOPA -1.540 ± .005 -1.529 ± .004 -1.439 ± .004 -1.422 ± .004 -1.384 ± .003 NOPA+S. -1.473 ± .006 -1.450 ± .005 -1.371 ± .004 -1.339 ± .004 -1.303 ± .004 INOPA -1.681 ± .005-1.607 ± .004-1.530 ± .005 -1.497 ± .004 -1.439 ± .005 INOPA+S. -1.578 ± .006 -1.570 ± .006 -1.517 ± .005 -1.465 ± .005 -1.434 ± 0.005 NOPA NL -.673 ± .001 -.688 ± .001 -.699 ± .001 -.761 ± .002 -.779 ± .002 NOPA+S. NL -.664 ± .001 -.684 ± .001 -.703 ± .001 -.716 ± .001 INOPA+S. -.839 ± .001 -.839 ± .001 -.841 ± .001 -.839 ± .001 -.841 ± .001 z = 1 NOPA NL -1.004 ± .001 -.991 ± .001 -.980 ± .001 -.978 ± .001 -1.062 ± .001 NOPA+S. NL -1.000 ± .001 -.985 ± .001 -.980 ± .001 -.990 ± .001 -1.066 ± .001 NOPA -1.154 ± .001 -1.140 ± .001 -1.117 ± .001 -1.100 ± .001 -1.086 ± .001 NOPA+S. -1.160 ± .001 -1.133 ± .001 -1.109 ± .001 -1.084 ± .001 -1.065 ± .001 INOPA -1.231 ± .001 -1.249 ± .001-1.238 ± .001 -1.218 ± .001 -1.200 ± .001 INOPA+S. -1.242 ± .001 -1.198 ± .003 -1.169 ± .003 -1.151 ± .002 -1.131 ± .003 z = 2 NOPA NL -.999 ± .001 -.995 ± .001 -.981 ± .001 -.980 ± .001 -1.065 ± .001 NOPA+S. NL -.999 ± .001 -.979 ± .001 -.973 ± .001 -.987 ± .001 -1.064 ± .001 NOPA -1.174 ± .001 -1.135 ± .001 -1.119 ± .001 -1.101 ± .001 -1.083 ± .001 NOPA+S. -1.152 ± .002 -1.130 ± .001 -1.103 ± .001 -1.080 ± .001 -1.061 ± .001 INOPA -1.234 ± .001-1.251 ± .001-1.237 ± .001 -1.219 ± .001 -1.197 ± .001 INOPA+S. -1.085 ± .001 -1.085 ± .001 -1.083 ± .001 -1.083 ± .001 -1.085 ± .001 validate the use of portfolio (almost as good as the best solver, and sometimes better thanks to its inherent mitigation of "bad luck runs"); we incidentally provide, with INOPA applied to several independent copies of a same solver, a principled tool for restarts for noisy optimization; validate the improvement provided by unfair budget, as shown by the improvement of INOPA vs NOPA (when no sharing is applied, i.e. in the context in which our mathematical results are proved) -more precisely, we get either very similar results (in Table 3 and for z = 0 or z = 2 in Table 1, INOPA and NOPA have essentially the same behavior), or a consistent improvement of INOPA vs NOPA (z = 1 in Table 1 and Tables

	Portfolio	CT = 0.05s	obtained slope for d = 2 CT = 0.1s CT = 0.2s CT = 0.4s	CT = 0.8s
			z = 0	
	NOPA NL -1.157 ± .009 -1.223 ± .010 -1.146 ± .009 -1.109 ± .009 -1.043 ± .009
	NOPA+S. NL -1.030 ± .009 -1.002 ± .011 -.807 ± .010 -.839 ± .009	-.774 ± .007
	NOPA	-1.255 ± .009 -1.203 ± .009 -1.156 ± .008 -1.145 ± .007 -1.152 ± .007
	NOPA+S. -1.030 ± .009 -1.044 ± .008 -.995 ± .009 -.963 ± .008	-.926 ± .007
	INOPA	-1.289 ± .010 -1.247 ± .008 -1.201 ± .008-1.188 ± 0.008-1.153 ± 0.007
	INOPA+S. -1.246 ± .010 -1.266 ± .008 -1.182 ± .010 -1.135 ± 0.010 -1.113 ± 0.009
			z = 1	
	NOPA NL -1.529 ± Portfolio CT = 0.05s	obtained slope for d = 15 CT = 0.1s CT = 0.2s CT = 0.4s	CT = 0.8s
			z = 0	

-.750 ± .001 NOPA -.700 ± .006 -.609 ± .006 -.667 ± .004 -.681 ± .005 -.694 ± .004 NOPA+S. -.591 ± .006 -.515 ± .006 -.514 ± .005 -.519 ± .004 -.527 ± .004 INOPA -.839 ± .001 -.839 ± .001 -.841 ± .001 -.840 ± .001 -.839 ± .001

"Resamplings" means that the stochastic objective function, also known as fitness function, is evaluated several times at the same search point. This mitigates the effects of noise.

A solver is termed "individual solver" when it is not a portfolio. In this paper, unless stated otherwise, a "solver" is an "individual solver".

This is not uniquely defined, as there might be several time steps at which the maximum number of evaluations in a solver is n; however, the results in the rest of this paper are independent of this subtlety.