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Based on a reinterpretation of Hamilton-Jacobi equation, a generalization of Madelung's hydrodynamic model of quantum mechanics is proposed, which is valid in the realm of special relativity and can be extended to study gravitational fields with quantum effects. We estimate that gravitational quantum effects will not be noticeable but for particles of very small mass at very high energy ≈ 1.223 × 10 19 G eV, for which the de Broglie wave-length is of the order of Planck's length. As an additional result, we show that there are elements to presume that, in fact, quantum mechanics is not a complete theory of motion.

Introduction

In classical analytical mechanics, the solution of the Hamilton-Jacobi equation appears as means to the end of finding a canonical transformation under which the corresponding Hamilton function is zero and, as a consequence, the new phase coordinates are constant. If H(q, p) and K(Q, P ) are the Hamilton functions of a mechanical system (for two systems of canonical coordinates) the equations of motion can be obtained from the conditions:

δ t f t0 p i dq i -Hdt = 0 or δ t f t0 -q i dp i -Hdt = 0. ( 1 
)
and

δ t f t0 P i dQ i -Kdt = 0 or δ t f t0 -Q i dP i -Kdt = 0. ( 2 
)
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There are thus four possibilities in regards to the relation among the differnetial forms that appear in those integrals: p i dq i -Hdt = P i dQ i -Kdt + dF 1 p i dq i -Hdt = -Q i dP i -Kdt + dF 2 -q i dp i -Hdt = P i dQ i -Kdt + dF 3 -q i dp i -Hdt = -Q i dP i -Kdt + dF 4 [START_REF] Madelung | Quantentheorie in hydrodynamischer form[END_REF] where F 1 , F 2 , F 3 and F 4 are known as generating functions of the first, second, third, and fourth kind, respectively.

For a generating function S(q i , P i , t), of the second kind

p i = ∂S ∂q i ; Q i = ∂S ∂P i and K = H + ∂S ∂t , (4) 
which suggests to look for a generating function satisfying the equation

∂S ∂t + H q i , ∂S ∂q i = 0; (5) 
Then K ≡ 0, because of the third of equatins (4), and the phase coordinates (Q i , P i ) are constants of motion, or integrals of the canonical equations.

A complete solution of (5) has the form S = S(q 1 , ..., q n , t, P 1 , ..., P n ).

From it, an implicit solution of the canonical equations can be obtained, in terms of 2 • n + 1 constants (Q i , P i , t 0 ), as follows from [START_REF] Landau | Quantum Mechanics-non-relativistic theory[END_REF].

In this paper we look at the Hamilton-Jacobi equation from the perspective of a hydrodynamic analogy to classical mechanics. We obtain some results which we consider as evidence that quantum mechanics does not reduce to classical mechanics in the limit h ≈ 0 but to a particular case of it, which we take as an indication that it is not a complete theory of motion.

Those results allow us to propose a generalization of classical quantum mechanics, that though it abandons the concept of a wave function, it includes quantum mechanics as a particular case. This extension can, in turn, be generalized to special relativity, providing an example of a possible way to understand the interaction of matter and radiation in a self-consistent fashion. We express conservation of mass-energy in terms of a stress-energy tensor and the formalism makes not use of wave functions, but of the mathematical apparatus of tensor calculus. Therefore, the formalism can be translated to the language of general relativity. However we do not pretend to have a self-consistent general field theory of matter, radiation, and gravitation because our results refer to a single kind of material particles.

Hydrodynamic analogy of classical mechanics

Let's consider a classical Hamiltonian system with n degrees of freedom. The equations of motion in the phase space (q i , p i ) are

qi = ∂H ∂p i ; ṗi = - ∂H ∂q i (6) 
Notice that in these equations the subindex can take any value in the set {1, • • • , n}. We prefer not to make that explicit in some of our equations to avoid unnecessary clutter. We focus our attention on a region R(0) of the configuration space q = (q 1 , ..., q n ) where a vector field p = p i (q 1 , • • • , q n ) is defined. In other words we are not referring to individual paths in the phase space, but to continuous families of paths, indexed by their coordinates at t = t 0 We assume this field to be continuous and differentiable as much as required to ensure the validity of our arguments.

As times passes and the phase points with the initial conditions (q, p(q)) at t = 0 move R = R(t) changes, as well as the field p = p(q, t) which is now a function of position in the configuration space and time. The Hamilton's function is thus a function of position in R(t) and time: H(q, p(q, t)).

The time derivative of p i along the phase trajectory that passes trough the point (q, p(t))-a convective derivative-is

Dp i Dt = ∂p i ∂t + j=n j=1 qj ∂p i ∂q j = ∂p i ∂t + j=n j=1 ∂H ∂p j ∂p i ∂q j .
Also, using [START_REF] Landau | The classical theory of fields[END_REF]:

Dp i Dt = - ∂H ∂q i + n j=1 ∂H ∂p j ∂p j ∂q i .
The reason to include the last term in the last equation is that, in [START_REF] Landau | The classical theory of fields[END_REF], all the phase variables are treated as independent whilst, in the case we are considering, the momenta are supposed to be functions of position in the configuration space and time. From the last two equations we get

∂p i ∂t + j=n j=1 ∂H ∂p j ∂p i ∂q j = - ∂H ∂q i + j=n j=1 ∂H ∂p j ∂p j ∂q i .
and by reordering the terms

∂p i ∂t + ∂H ∂q i = j=n j=1 ∂H ∂p j ∂p j ∂q i - ∂p i ∂q j . (7) 
If it happens that there is a function φ(q) such that at t = 0

p i (q) = ∂φ ∂q i , (8) 
the right side of (7) will be zero at t = 0; and this will not change as time passes, because of Helmholtz's Circulation Theorem [1, p. 180]. Therefore, if [START_REF] Chavoya | An explanation of spin based on classical mechanics and electrodynamics[END_REF] is true, [START_REF] Chavoya | An explanation of the quantum mechanics of particles[END_REF] can be simplified to

∂φ ∂t + H q i , ∂φ ∂q i = 0.
This equation is essentially [START_REF] Holland | The quantum theory of motion[END_REF], now presented as a particular case of [START_REF] Chavoya | An explanation of the quantum mechanics of particles[END_REF] 

p j qj -H = L,
where L is the Lagrange function, which in this scenario is a function of position in the configuration state and time. This identifies φ as the mechanical action S, but for a function of time, which is of no consequence for the determination of the momenta using [START_REF] Chavoya | An explanation of spin based on classical mechanics and electrodynamics[END_REF]. Howver, there is an essential difference: Dφ Dt is a convective derivative.

Classical particle acted by a conservative force

If the system is a single particle acted by an external conservative field, the Hamilton function, in Cartesian coordinates, assumes the well known form

H(r, p) = p 2 2m + V (r); (9) 
and ( 7) can be written as

∂p i ∂t + ∂ ∂x i p 2 2m + V = p j m ∂p j ∂x i - ∂p i ∂q j or ∂p ∂t + ∇ p 2 2m - p m × (∇ × p) = -∇V, (10) 
and

m ∂v ∂t + (v • ∇)v = -∇V. (11) 
(Notice the analogy to a perfect incompressible fluid, but for the condition ∇ • v = 0 that follows from the continuity equation.)

If ∇× p = 0 at t = 0 then. as aforementioned, there is a function S = S(r, t) such that p = ∇S and

∂S ∂t + (∇S) 2 2m + V (r) = 0. ( 12 
)
The last equation is a particular case of (10) and it poses no difficulty to imagine initial conditions p = p(r, 0), where ∇ × p = 0. It follows then thatin principio-for the solution of any problem of the sort we are studying, (10) must be considered as the fundamental law and any theory-or description of motion-that is based on (12) must be understood as applicable to particular cases and, subsequently, insufficiently general, or incomplete.

As we have stressed in a previous paper [START_REF] Chavoya | Logical refutation of the Einstein-Podolsky-Rosen argument[END_REF] we consider a theory complete if:

1. The representation used by the theory is complete and the corresponding interpretation is unambiguous;

2. the axioms are logically consistent;

3. the theory does not leave any sensitive question without a sensitive answer;

4. the theory is true.

Madelung substitution in quantum mechanics

In 1927, one year after E. Schrödinger published his paper reducing the problem of quantization to an eigenvalue problem, E. Madelung published a paper revealing an analogy between classical hydrodynamics and quantum mechanics [START_REF] Madelung | Quantentheorie in hydrodynamischer form[END_REF].

Madelung made the substitution

Ψ = √ ρe iφ (13)
in Schrödinger equation for a single particle

ih ∂Ψ ∂t = - h2 2m ∆Ψ + V Ψ. ( 14 
)
Because √ ρ can fail to be differentiable at points where ρ = 0, even if ρ is differentiable at those points, we will use Landau's substitution ([4, p. 52])

Ψ = Ae iφ , (15) 
where A and φ are real functions.

Working on the terms in (14) one by one, and considering the real and imaginary parts

hA ∂φ ∂t + h2 2m A(∇φ) 2 + AV - h 2 2m ∆A = 0,
and

∂A ∂t + h m ∇A∇φ + h 2m A∆φ = 0.
By making S = hφ, these equations can be rewritten as

∂S ∂t + (∇φ) 2 2m + V - h2 2m ∆A A = 0. ( 16 
)
and

∂ρ ∂t + 1 m ∇ • (ρ∇S) = 0. ( 17 
)
Equation ( 16) corresponds to (12) with an extra term in the potential energy

Q = - h2 2m ∆A A (18)
known as the quantum potential. This, altogether with the equation p = ∇S is at the foundation of the de Broglie-Bohm pilot wave theory according to which [5, p. 62]:

...

1. An individual physical system comprises a wave propagation in space and time together with a point particle which moves continuously under the guidance of the wave.

2. The wave is mathematically described by ψ(x, t), a solution to Schrödinger's wave equation. ... Equation (16 is also used to prove that quantum mechanics corresponds to classical mechanics in the limit h = 0 [4, p. 52].

In our view, whether quantum mechanics should lead to (12) or the more general equation (10) in the classical limit, is a sensitive question wanting a sensitive answer, as required by the principle of correspondence. In regards to this we have two possibilities to consider: I If quantum mechanics should lead to (10) in the classical limit, the representation used by quantum mechanics, the wave function, is not complete, in the sense that it cannot be used to describe all physical possibilities. Correspondingly, quantum mechanics as it is currently formulated is not a complete theory of motion.

II If quantum mechanics should lead to (12) in the classical limit, the fact that this requires ∇ × p = 0 requires an explanation which is not found in Quantum mechanics and, accordingly, quantum mechanics is not a complete theory.

We do not see any a priori reason to prefer (12) instead of (10) as the classical limit of quantum mechanics. Equation ( 5) is a mathematical contrivance to find solutions to the canonical equations of motion, while (10) has physical meaning. In addition, see our argument in section 4, in particular equations (33) and (34). For these reasons, we feel compelled to consider what seems to be the simplest generalization of the equations of quantum mechanics that is compatible with (10) in the classical limit:

∂p ∂t + ∇ p 2 2m + V - p m × (∇ × p) = ∇ h2 2m ∆A A , (19) 
∂A 2 ∂t + 1 m ∇ • A 2 p = 0, (20) 
Those equations were obtained by E. Madelung [START_REF] Madelung | Quantentheorie in hydrodynamischer form[END_REF], who then abandoned them because he noticed that they do not generalize to the case of many particles. However, we still have [START_REF] Chavoya | An explanation of the quantum mechanics of particles[END_REF] of which ( 5) is only a particular case. Therefore, our question makes sense for a system of two or more particles.

Equation ( 19) is singular at those points where A = 0. This singularity is removed by multiplication of both sides of it with

ρ = A 2 because ρ ∂ ∂x i ∆A A = - ∂A ∂x i ∂ 2 A ∂x 2 j + A ∂ 3 A ∂x 2 j ∂x i = ∂ ∂x j A ∂ 2 A ∂x i ∂x j - ∂A ∂x i ∂A ∂x j .
Equation (19) takes then the form

ρ ∂p ∂t + ∇ p 2 2m + V - p m × (∇ × p) = -∇ • T , (21) 
where

T ij = h2 2m ∂A ∂x i ∂A ∂x j -A ∂ 2 A ∂x i ∂x j .
Equation (21) simplifes to:

ρ ∂p ∂t + ρp m • ∇ p + ∇V = -∇ • T .
Using (20) we get:

∂ρp i ∂t + ∂Π ij ∂x j = 0, (22) 
Π ij = ρp i p j m + T ij + V δ ij , (23) 
T ij = h2 2m ∂A ∂x i ∂A ∂x j -A ∂ 2 A ∂x i ∂x j , (24) 
∂ρ ∂t + 1 m ∂ (ρp j ) ∂x j = 0, (25) 
and ρ = A 2 . ( 26 
)
Though those equations are nonlinear and certainly more complex than the equations of classical quantum mechanics they have an attractive feature: that they can be generalized to special relativity without too much effort or mathematical complications.

Those equations have solutions where ∇ × p = 0 which can be obtained by solving Schrödinger equation's, but equations (22-26) are more general, because as already established, all solutions of Schrödinger's equation correspond to a case where ∇ × p = 0 in the classical limit, as follows from the relation p = ∇S, which is the foundation of the de Broglie-Bohm theory. As a consequence, the operational formalism of classical quantum mechanics, which is a linear theory, does not apply to this more general case.

In the context of the de Broglie-Bohm theory, the assumption that p = ∇S has been challenged by Einstein, considering a very simple example of a particle in a one-dimensional box where

V (x) = 0 if 0 < x < a ∞ if x ≤ 0 or x ≥ a
In this case the wave functions of the stationary states are

ψ n (x, t) = 2 a sin (k n x) e -iEnt/h , k n = nπ/a.
The nodes of the wave function ψ n (x, t) divide the interval (0, a) into n subintervals I j = ((n -1) • a/n, j • a/n). If we take A = ψ n (x, t we have to conclude that S n (x, t) = -E n t if x ∈ I j and j is odd E n t if x ∈ I j and j is even As a consequence ∂S ∂x = 0 and ẋ = 0 if x ∈ I j , meaning that a particle in a stationary state, in particular a particle in the base state, is simply at rest at some point in the interval (0, a). Similar remarks apply to the stationary states of a hydrogen atom, because those wave functions can be chosen real. In our view, this difficulty can be avoided by admitting that the term -∇ h2 2m ∆A A does not represent the gradient of a potential energy, but the gradient of an internal pressure, in the same way as, when we study the aerodynamics of a perfect gas, we make a distinction between the kinetic energy of the internal motion of an element of fluid, and the kinetic energy of its motion as a whole. However then we have to solve the problem that this term is singular at points where A = 0, which we have already addressed with the introduction of the stress tensor. Those arguments, in our opinion, strongly speak in favor of a hydrodynamic interpretation instead of the de Broglie-Bohm pilot wave theory.

Relativistic particle in an external electromagnetic field

The equations of motion of a relativistic charged particle in an external electromagnetic field can be obtained from the Lagrange function [6, pp. 45-46]

L = -mc 2 1 - v 2 c 2 + q c A • v -qA 0 , (27) 
where (A 0 , A) is the four-potential. The linear momentum is

p = ∂L ∂v = mv 1 -v 2 c 2 + q c A ( 28 
)
and the energy:

E = mc 2 1 -v 2 c 2 + qA 0 ( 29 
)
From those expressions we see that

E -qA 0 c 2 -p - q c A 2 = m 2 c 2 ,
and, in consequence

H = c p - q c A 2 + m 2 c 2 + qA 0 ( 30 
)
Considering again p = p(r), if p = ∇φ, we get

∂φ ∂t + c ∇φ - q c A 2 + m 2 c 2 + qA 0 = 0. ( 31 
)
In four dimensional notation this equation can be writen as:

- ∂φ ∂x a - q c A a - ∂φ ∂x a - q c A a = m 2 c 2 , ( 32 
)
which is consistent with the formula

p a = mcµ a = - ∂φ ∂x a - q c A a = E -qA 0 c , ∇φ - q c A = E -qA 0 c , p - q c A
(33) for the field of kinetic linear four-momentum. Therefore, in this particular case, the vorticity of the kinetic four-momentum (the four-velocity) is not zero, but proportional to Faraday's tensor:

∂p a ∂x b - ∂p b ∂x a = - q c F ab . (34) 
In particular, the curl of the three-dimensional kinetic momentum is not zero, but proportional to the magnetic field.

In general, [START_REF] Chavoya | An explanation of the quantum mechanics of particles[END_REF] takes the form:

∂p ∂t + c∇ p - q c A 2 + m 2 c 2 + q∇A 0 = c p -q c A p -q c A 2 + m 2 c 2 × (∇ × p) .
(35) It is not difficult to prove that the field of velocities is given by

v = c p -q c A p -q c A 2 + m 2 c 2 . ( 36 
)
By use of this in (35) we get

∂p ∂t + c∇ p - q c A 2 + m 2 c 2 + q∇A 0 = v × (∇ × p) .
Then, after a few transformations equation ( 35) is written as

∂p -q c A ∂t + c∇ p - q c A 2 + m 2 c 2 -v × ∇ × p - q c A = qE + q c v × H, (37) where 
E = -∇A 0 - 1 c ∂A ∂t and H = ∇ × A.
Equation (37) can be further simplified to:

∂ p -q c A ∂t + (v • ∇) p - q c A = qE + q c v × H. (38) 
Considering the components of the four-velocity field:

µ a =   1 1 -v 2 c 2 , v/c c 1 -v 2 c 2  
we can see that (38) is equivalent to the spatial part of the covariant equation

mcµ b ∂µ a ∂x b = q c F ab µ b (39) 
where

F ab = ∂A b ∂x a - ∂A a ∂x b , (40) 
is Faraday's tensor. By replacing (24) with

∂ ρµ b ∂x b = 0 (41) 
and making

ρ = α 2 , (42) 
τ ab Q = h2 2mc ∂α ∂x a ∂α ∂x b - ∂ 2 α x a x b , (43) 
we get

mcρµ b ∂µ a ∂x b = q c ρµ b F ab - ∂τ ab Q ∂x b . (44) 
In the classical limit of low speeds and macroscopic objects, equations (41-44) reduce to the equations of classical mechanics for this kind of problem. In the limit of low speeds and small masses they reduce to a set of equations including classical quantum mechanics as a special case, but more general, because they are not subject to condition (34).

Using equation ( 41), (44) can be written as

∂ ∂x b mcρµ a µ b + τ ab Q = q c ρµ b F ab . ( 45 
)
In this equation we see that

j b = qρµ b
appears as a current density, which suggests us to consider Maxwell equations [6, p. 67 eq. (26.5) & p. 74 eq. (30.2)]:

∂F ab ∂x c + ∂F bc ∂x a + ∂F ca ∂x b = 0, (46) 
and

∂F ab ∂x b = - 4π c j a (47) 
Using (47) the right side of (45) can be written as

j b c F ab = - 1 4π F ab ∂F bc ∂x c . Then - 1 4π F ab ∂F bc ∂x c = - 1 4π ∂ ∂x c F bc F ab -F bc ∂F ab ∂x c . (48) 
Using ( 46)

-F bc ∂F ab ∂x c = F bc ∂F bc ∂x a + ∂F ca ∂x b = 1 2 ∂ ∂x c δ a c F de F de + F bc ∂F ca ∂x b = 1 2 ∂ ∂x c δ a c F de F de + F bc ∂F ab ∂x c
(The last equality is obtained by interchanging the indexes b and c and using the fact that Faraday's tensor is antisymmetric.) Accordingly:

-F bc ∂F ab ∂x c = 1 4 ∂ ∂x c δ a c F de F de .
Equation ( 48) can be written as

- 1 4π F ab ∂F bc ∂x c = - 1 4π ∂ ∂x b -F ac F b c + 1 4 δ ab F cd F cd = - ∂τ ab E ∂x b
where

τ ab E = 1 4π -F ac F b c + 1 4 δ ab F cd F cd (49) 
is the stress-energy tensor of the electromagnetic field [6, p.81 eq. 33.1].

Discussion

To summarize we include here a whole set of equations of a covariant hydrodynamic reformulation of quantum electrodynamics, or a possible self-consistent description of the interaction of matter and radiation:

∂ρµ a ∂x a = 0, (50) 
(Expressing conservation of electric charge.)

ρ = α 2 , (51) 
τ ab Q = h2 2mc ∂α ∂x a ∂α ∂x b - ∂ 2 α x a x b , (52) 
∂F ab ∂x c + ∂F bc ∂x a + ∂F ca ∂x b = 0, (53) 
(First pair of Maxwell equations.)

∂F ab ∂x b = - 4π c qρµ a (54) 
(Second pair of Maxwell equations.)

τ ab E = 1 4π -F ac F b c + 1 4 δ ab F cd F cd (55) ∂ ∂x b mcρµ a µ b + τ ab Q + τ ab E = 0. (56) 
(Expressing conservation of mass energy.)

Thought the concept a wave function is not mentioned here, nor probabilities, this won't be a causal theory, because the electrical current density, as well as the stress-energy tensor, depend on the density ρ. As we have stressed in the conclusions of [START_REF] Chavoya | An explanation of the quantum mechanics of particles[END_REF], the normalization condition that is imposed on the density ρ(x, t) in classical quantum mechanics implies to consider non overlapping regions of space as mutually exclusive events in the sense of the classical theory of probabilities. This means that a particle cannot be found inside two non overlapping regions of space at the same time, or simultaneously. The concept of simultaneity has been challenged by the special theory of relativity, based on the negative result of the Michelson-Morley experiment and other facts and, as a consequence, by Einstein's theory of gravitation. Accordingly, though massenergy and electric charge are conserved, the number of particles might not be conserved.

Also, a conspicuous feature of those equations is that spin does not play any role in them. This might appear as a strong reason to reject our ideas. However, as we have explained in a previous paper, there are also good reasons to believe that spin is not a fundamental property of matter [START_REF] Chavoya | An explanation of spin based on classical mechanics and electrodynamics[END_REF].

Finally, those equations and, in particular, the stress tensor in (56) can be used to describe in a self-consistent manner the interaction of matter, radiation, and gravitational field, including quantum effects. Of course, those equations refer to a single kind of particle, which means that they are, at most, one step towards a general field theory of matter, radiation, and gravitation.

By substitution into Einstein equation [6, p. 278] (our constant -8πG/c 3 is different because of the way we have defined the stress-energy tensor.) Thus, our hypotheses predict that quantum effects in the gravitational field will not be noticeable but for particles of very small mass (because of the presence of the factor λ C ) at very high energies for which α changes in distances of the order of Planck's length, as follows from the presence of the factor which is almost independent of the mass for microscopic particles. From this we draw the conclusion that quantum effects on the space-time metric are not to be expected but at very high energies, much higher than the energy that can be achieved in any existing accelerator.

As it has been mentioned in the introduction, we do not claim to have a complete theory of matter, radiation, and gravitation, because those equations refer to particles of a single kind.

3 .

 3 The path of the motion is obtained as the solution of the equation ẋ = (1/m) ∇S| x=x(t)

R ab - 1 2 g ab R = - 8πG c 3 c 3 τ

 33 mcρµ a µ b + τ E ab + τ Q ab Apart from the usual sources of the gravitational field, we have the term-8πG c 3 τ Q ab = -Q ab = -4πλ C l 2 P ∂α ∂x a ∂α ∂x b -α ∂ 2 α ∂x a ∂x b -Γ c ab ∂α ∂x c(57)where λ C = h mc is Compton's wave length andl p = hG c 3 is Planck's length.(58)

e p 2 P c 2 + m 2 c 4 = 1 e hc 5 G + m 2 c 4 ≈

 2254 Heuristically, the second condition requires the de Broglie wave-length to be of the order of Planck's length. The corresponding momentum isp P = h l pand the energy (Planck's Energy), is:E eV (m) = 1 1.221 × 10 19 G eV