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ABSTRACT
Reducing the clearances between rotating and fixed parts

is an important factor in increasing the performances of
turbomachines. The physical counterpart however is an
evolution in possible rotor-stator contacts capable of caus-
ing unstable dynamic behavior. A proper prediction of the
rotor-stator contact occurrences and associated induced phe-
nomena, has therefore become of a great interest for aero-
engine mechanical engineers. Most numerical simulations
involving rotor-stator contact can be divided into two types
of physical behavior. The first focuses on contact induced
blade/casing interactions, in only taking into account the
blades and casing flexibility. The second type of behavior
takes into account the shaft dynamic while neglecting blade
flexibility. Future designs of aircraft engines will however
raise the need to combine these two types of models. Since,
the structural components are more flexible, the dynamic
coupling between engine modules is increased. This paper
proposes a study based on a structure representative of the
whole aircraft engine, including the contacts that may arise
between the fan-blade tips and fan casing. We have intro-
duced a fully-coupled phenomenological model with flexible
blades, shaft and casing. Furthermore, this model includes
an elastic link between shaft and casing to simulate the fan
frame behavior. We begin by explaining the linear results,
which highlight the dynamic couplings between these vari-
ous model components. During a second step, this paper
presents the nonlinear results obtained by introducing a con-

∗Address all correspondence to this author.

tact law. These results demonstrate the influence of the
whole engine dynamic on contact-related behavior with spe-
cial focus on the system dynamic stability.

INTRODUCTION
Turbomachine performance depends to a great extent

on the clearance between rotating and fixed parts. Un-
fortunately, while a closer clearance improves efficiency, it
also increases the probability of generating blade tip-casing
contacts capable of leading to unstable dynamic behavior.
Consequently, in order to reduce clearances, aero-engine en-
gineers must ensure that the possible rotor-stator contacts
do not trigger damaging phenomena.

The study of turbomachine dynamics is commonly di-
vided into two distinct fields. On the one hand, bladed
assembly vibration takes into account the blades and disk
flexibility, while shaft vibration is neglected. On the other
hand, rotor dynamics focus on lateral and torsional vibra-
tions of the shaft in neglecting the blades and disk flexibility.
Most of the literature reviewed on blade tip-casing contact
is split between this two areas of study [1]:
- In the bladed assembly vibration category, some numeri-
cal and experimental investigations focus on the travelling
wave speed instability [2–4]. This phenomenon (also called
modal interaction) is related to the specific modal proper-
ties of axisymmetrical structures and may occur when the
mode shape geometry of the bladed disk and the casing
match and their travelling wave speeds coincide.
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- In rotor dynamics, the investigations focus on the behavior
of the flexible shaft. Most studies are found to use simpli-
fied models whereby the blade tip-casing contacts are in-
troduced using nonlinear springs. Such models typically
consider contacts between two cylindrical surfaces [5–8].

Besides tip clearance, another governing factor of jet
engine design is weight. Reducing the mass generally leads
to an increased flexibility and/or a greater ability to trans-
mit vibrations. Future designs of aircraft engines will thus
expose the need to extend the dynamics included in the
prediction models so as to consider the couplings between
engine components. In this context, a recent study [9] con-
ducted an analysis on an industrial Whole Engine Model
(WEM) including casing deformations and assuming rigid
blades.

The present work focuses on the contacts that may oc-
cur between the fan blade tips and the fan casing of a tur-
bofan jet engine. In the fan module, the blades are par-
ticularly slender and the shaft precession orbit may be sig-
nificant. The blades and shaft dynamics must therefore
be considered together. Sinha [10] and Lesaffre [11] devel-
oped flexible, bladed shaft models for this type of blade
tip-casing contact investigation. The present work follows
their approaches. The model developed in this paper has
been based on the described model [11] into which we have
introduced rigid-body displacements of the casing and a vis-
coelastic link between shaft and casing.

The first two sections of this paper will describe the
phenomenological model and contact formulation. Linear
results will then be presented to highlight the natural cou-
plings and effect of permanent contact on the various modal
properties. Lastly, transient analyses will investigate un-
stable scenarios involving two different modes, one of which
enables an atypical contact configuration. These analyses
will consider light intermittent contacts with rubbing.

MODEL DESCRIPTION
This section will describe the assumptions and the equa-

tions sequences used to develop the phenomenological model
considered in this study. The global model architecture is
diagrammed in Fig. 1; it consists of a flexible bladed rotor,
a suspended flexible casing and a viscoelastic link between
the shaft and the casing. To avoid time-dependent terms
resulting from the periodicity of the rotating structure, the
entire model has been developed in the rotating frame.

Flexible bladed rotor
The bladed rotor model used in the present paper has

been derived from the model built by Sinha [10]. It was
first developed in the rotating frame through use of an

FIGURE 1. MODEL COMPONENTS

energy-based method by Lesaffre [11] and then extended
to a dual shaft by Gruin [12]. The shaft is modeled by
a Euler-Bernoulli beam suspended by isotropic viscoelas-
tic bearings and connected to two rigid disks modeled by a
point mass and rotational inertia. A set of flexible blades
also modeled by Euler-Bernoulli beams, are clamped to the
representative fan disk (see Fig. 1).

The shaft beam has a hollow circular cross-section and
includes two displacements defined in the rotating frame:
the two orthogonal translations xs and ys in the cross-
section plane. The blade beams feature a constant rect-
angular cross-section and can deflect along their more flex-
ible direction: xb. The displacements are formulated with
Rayleigh-Ritz approximation functions that respects the ge-
ometric boundary conditions.

The shaft deformations are given by:

xs(z, t) = X0(t) +

mtot
∑

m=1

Xm(t)Wm(z)

ys(z, t) = Y0(t) +

mtot
∑

m=1

Ym(t)Wm(z)

Wm(z) =

(

z

Ls

)m

(1)

where z is the position along the shaft axis and Ls its length.
X0(t) and Y0(t) are the rigid-body translations of the shaft.
Wm(z) is the shape function chosen to approximate its mo-
tion and mtot the number of modes under consideration.
Since the shaft is supported by bearings, its shape function
has no geometric boundary conditions to verify. The cho-
sen shape function has been used in [12], it allows motion at
both ends of the shaft which is not possible with the shape
function used in [10] and [11].
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The blade deformation is given by:

xb(s, t)j =

ntot
∑

n=1

Xnj(t)Yn(s)

Yn(s) = sin(ans) + bns+ cns
2

an =
(2n− 1)π

2lb
; bn = −an; cn =

b2n
2

sin(bnlb)

(2)

where lb is the blade length and s the position along the
blade (s = 0 indicates the blade foot and s = lb is the blade
tip). ntot is the number of modes considered to represent
the jth blade deformation. Yn(s) is the shape function of
the blades; it respects the geometric boundary conditions:
Yn(0) = 0 and Y ′

n(0) = 0 (where prime denotes differentia-
tion versus space coordinates).

The bladed shaft energies are then developed as de-
scribed in [13] and the system of equations is obtained by
means of Lagrange equations. The bladed shaft model takes
into account the gyroscopic effect, spin softening and stress
stiffening of blades.

Suspended flexible casing
The system of equations governing the casing behavior

will first be developed in the inertial frame and then trans-
posed into the rotating frame. The casing model consists of
an elastic ring with radial and tangential deformations, as
in [11]. It also contains four rigid-body degrees of freedom
(dof) contributed by the casing suspension: two orthogonal
translations and rotations in the cross-section plane of the
shaft. The rigid-body dofs and deformation dofs of the cas-
ing are dissociated. This disconnection is related to both the
deformation definition (Eqn. (4)) and kinetic energy formu-
lation. Moreover, it stems from the orthogonality property
of trigonometric functions as well as a linearization of the
inertia effects.

We begin by developing the system of equations related
to the four rigid-body dofs of the casing. In the inertial
frame, this system comprises three 4x4 diagonal matrices:
mass matrix Mc, damping matrix Dc and stiffness matrix
Kc. This system is then transposed in the rotating frame
under the hypothesis of a constant rotation speed [14]. The
rotation-related matrices are defined as follows:

Gc = 2PT
c McṖc

Nc = P
T
c McP̈c

Cc = P
T
c DcṖc

(3)

Pc is the transition matrix used to project the inertial frame
dofs into the rotating frame. Gc is called the gyroscopic

matrix, Nc the spin softening matrix, and Cc the damping
circulation matrix.

The equations of motion related to rigid-body displace-
ments can now be established. Next, we focus on the cas-
ing deformations. The fan casing is modeled by an ax-
isymmetric elastic ring with radial and tangential deforma-
tions. These are expressed in considering the nodal diam-
eter modes of the axisymmetric structure. Each mode is
introduced by a pair of general coordinates (An, Bn). The
tangential displacement expression is:

w(θ, t) =
∑

nd≥2

An(t) cosndθ +Bn(t) sin ndθ (4)

Where θ is the angular position on the casing. nd is the
number of nodal diameters considered: nd ≥ 2 because the
nd = 0 mode shape is incompatible with the inextensible
property and nd = 1 is provided by the rigid-body dofs.

The inextensible property of the elastic ring implies
that the radial displacement can be expressed from the tan-
gential displacement:

u(θ, t) =
∂w(θ, t)

∂θ
(5)

The equations of kinetic energy, internal deformation
energy and dissipation function are defined in [15] :

Tc =
1

2

∫ 2π

0

ρcSc

(

u̇2(θ, t) + ẇ2(θ, t)
)

Rcdθ

Uc =
1

2

∫ 2π

0

EcIz

R4
c

(

∂2u(θ, t)

∂θ2
+

∂w(θ, t)

∂θ

)2

Rcdθ

Fc =
1

2

∫ 2π

0

ηcEcIz

R4
c

(

∂2u̇(θ, t)

∂θ2
+

∂ẇ(θ, t)

∂θ

)2

Rcdθ

(6)

where:

Ec the Young modulus of the casing,
Iz the second moment of area of the casing cross-section
along the z axis,
Rc the radius,
Sc the cross-sectional area,
ρc the density,
ηc the viscous damping coefficient.

Substituting Eqn. (4) and Eqn. (5) into Eqn. (6) and
applying Lagrange equation leads to the system of equations
related to the deformation dofs of the casing in the inertial
frame. The mass, damping and stiffness matrices are all
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block diagonal matrices, where the blocks related to the nd

nodal diameter are given by:

Mn =

[

mc

2 (1 + n2
d) 0

0 mc

2 (1 + n2
d)

]

Dn =

[

ccn
2
d(n

2
d − 1)2 0
0 ccn

2
d(n

2
d − 1)2

]

Kn =

[

kcn
2
d(n

2
d − 1)2 0
0 kcn

2
d(n

2
d − 1)2

]

where cc =
ηcEcIcπ

R3
c

and kc =
EcIcπ

R3
c

(7)

The transition matrix Pn between the inertial and ro-
tating frames depends on the nodal diameters under con-
sideration. The block relative to the nd nodal diameter is
given by:

Pn =

[

cos(ndΩt) − sin(ndΩt)
sin(ndΩt) cos(ndΩt)

]

(8)

Assuming a constant rotation speed, the transition from in-
ertial frame to rotating frame creates three rotation-related
matrices all of which are block diagonal with blocks related
to the nd nodal diameter, as given by:

Gn = 2PT
nMnṖn = Ω

[

0 −mcnd(n
2
d + 1)

mcnd(n
2
d + 1) 0

]

Nn = P
T
nMnP̈n = −Ω2n2

dMn

Cn = P
T
nDnṖn = Ω

[

0 −ccn
3
d(n

2
d − 1)2

ccn
3
d(n

2
d − 1)2 0

]

(9)

Elastic link between shaft and casing
Once the bladed shaft and casing have been modeled,

we can now insert a link to represent the first bearings and
fan-frame behavior.

To model this coupling, we introduce an isotropic vis-
coelastic link between the rigid-body dofs of the casing and
the displacements of the appropriate shaft cross-section (see
Fig. 1). This link offers the following translation and rota-
tion stiffness and damping properties: (k, kφ) and (c, cφ).

CONTACT FORMULATION
A simple contact model is considered herein. A gap

function has been developed to evaluate the blade-to-casing

FIGURE 2. SKETCH OF THE GAP DEFINITION

distance. Should a contact be detected, then opposing con-
tact and friction forces will be applied to the rotating and
fixed parts. The normal contact forces are proportional
to the penetration: the radial stiffness kr is introduced.
Tangential contact forces are obtained using Coulomb’s law
with friction coefficient µ.

In this section, we will begin by describing the gap func-
tion created to detect contact occurrences. Afterwards, the
contact force vector entered into the system of equations
will be presented.

Gap function
Contact occurrences are tracked by measuring the min-

imum distance between each blade tip point and the casing
inner surface. This gap function takes into account: the
disk and casing translations and rotations, blade flexure,
and casing radial deformation. To simplify the formulation,
we propose the following assumptions:
- Disk and casing rotations are assumed to be sufficiently
small so as to linearize their trigonometric functions.
- The influence of the casing tangential deformation is ne-
glected.
- The influence of global blade tip displacement on the angu-
lar position is also neglected: the normal casing deformation
introduced into the gap function is measured at the initial
blade tip position.

To obtain gap function gj , we first determine the posi-
tion of the jth blade tip in a frame attached to the casing:

B′
j =Pφxc

Pφyc



P
T
φyd

P
T
φxd

P
T
αj











0
lb + rd

0







+P
T
β







xb(lb, t)
0
0









+







xd(t)− xc(t)
yd(t)− yc(t)

−zc











(10)
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where:

rd: the fan-disk radius,
zc: the casing center of gravity position along the z

axis,
xd, yd: disk translations,
xc, yc: rigid-body casing translations,
xb(lb, t): blade deflection at its tip,
Pβ and Pαj

: blade positioning matrices,
Pφxd

and Pφyd
: disk rotation matrices,

Pφxc
and Pφyc

: rigid-body casing rotation matrices.

The transformation matrices P are given in the Appendix.
Once the blade tip position is known, the gap function

can be obtained as sketched in Fig.2:

gj = lb + rd + g0 + u(αj , t)−
√

B′
j(1)

2 +B′
j(2)

2 (11)

where g0 is the initial tip clearance, and u(αj , t) the normal
casing deformation.

Contact forces
If gj is negative, then contact is detected and the normal

and tangential contact reactions are introduced:

FNj = krgj and FTj = µFNj (12)

The relative speed between contact surfaces used to define
the friction force direction is assumed to be constant and
opposite to the sliding speed direction.

These reactions are then projected onto the general co-
ordinates in order to obtain the contact force vector in-
cluded in the system of equations:

F
j
nl







































































xc

yc
φxc

φyc

An

Bn

X0

Y0

Xm

Ym

Xnb







































































=







































































FTj cosαj + FNj sinαj

FTj sinαj − FNj cosαj

zc (FTj sinαj − FNj cosαj)
zc (−FTj cosαj + FNj sinαj)

−FTj cosndαj + ndFNj sinndαj

−FTj sinndαj − ndFNj cosndαj

−FTj cosαj − FNj sinαj

−FTj sinαj + FNj cosαj

(−FTj cosαj − FNj sinαj)Wm(zd)
(−FTj sinαj + FNj cosαj)Wm(zd)

−FTj cosβYnb
(Lb)







































































(13)

RESULTS AND DISCUSSION
The results obtained are presented in three sections.

First, a modal analysis of the model without contacts shows

FIGURE 3. CAMPBELL DIAGRAM (ROTATING FRAME)

FIGURE 4. A(1ND), A(0ND) and A(2ND) MODE SHAPES

AT 0 RPM

the natural couplings among the model components. Then,
a modal analysis will be carried out in considering one blade
in permanent frictionless contact. Lastly, transient analyses
will be performed to study two specific mode shapes. All
calculations are performed in the MATLAB environment.

Natural couplings
Performing a modal analysis without considering con-

tacts permits to detect the interactions that naturally exists
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within the model components. Because of its formulation,
the model presents indeed blade/shaft and shaft/casing cou-
plings that appear without necessitating contacts.

The Campbell diagram in Fig. 3 displays the evolution
of the first eigenfrequencies vs. shaft rotation speed. In the
rotating frame, downward sloping lines depict the forward
modes (precession motion in the same direction as shaft’s
own rotation), while upward sloping lines indicate backward
modes.

Because the model includes 10 flexible blades, the first
bending deformation of the blade corresponds to 10 modes
of the bladed disk arranged in Nodal Diameters (ND): from
0ND to 5ND. These bladed disk modes are indicated by the
letter A in Fig. 3. A closer look at this group of modes
is presented in Fig. 3 lower diagram and Fig. 4 displays
the A(0ND), A(1ND) and A(2ND) mode shapes. A(1ND)
mode shape displays a coupling between shaft and blades
deformation: a portion of the A(1ND) deformation energy
belongs indeed in the shaft and is transmitted to the casing
through the elastic link. Meanwhile, the other bladed disk
modes imply solely blades deformation.

A locus-veering (denoted L1 in Fig. 3) is also observed
between the C and A(1ND) forward modes: the eigenval-
ues are nearly about to cross, but instead they veer away
from one another and exchange mode shapes [16]. The
same qualitative observations were made by Gruin [12] and
Lesaffre [11]. Blade/shaft coupling is possible solely with
the 1ND bladed-disk modes; this finding pertains to shaft
cross-section kinematics. The shaft is modeled by a Euler-
Bernoulli beam and can only deflect into its cross-section
plane (i.e. torsional and longitudinal deformations are ne-
glected). The projection of bladed disk mode kinematics
at the disk center thus reveals that only a 1ND mode is
compatible with the shaft cross-section kinematics.

A global observation of the modes also indicates cou-
plings between blades, shaft and casing. The upper three
mode pairs in Fig. 3, as indicated by the lettersC, D and E,
are involved in two locus-veering L2 and L3. Furthermore,
even though the main deformation observed in their mode
shapes is shaft bending, these modes also involve 1ND blade
deformation and casing displacement.

The blades/shaft coupling described above is provided
by gyroscopic forces while the shaft/casing coupling is due
to the stiffness introduced to tie these two component dis-
placements together.

The only modes with no coupling are B modes: the
2ND casing modes that deform the casing into an elliptical
ring. This absence of coupling is consistent with the system
of equation built for the casing. Moreover, as explained in
regard to the blade/shaft coupling, the only modes capable
of coupling with shaft bending are 1ND modes. This com-
patibility criterion also applies to the casing/shaft coupling:

FIGURE 5. MODAL RESULTS CONSIDERING ONE

BLADE IN PERMANENT CONTACT (FRICTION AND

DAMPING EXCLUDED)

the only casing modes that can couple with shaft bending
modes are the rigid-body casing modes, i.e. its 1ND modes.

A single blade in permanent contact
To study the global effect of blade/casing contact on

modal properties, we have carried out an eigenvalue anal-
ysis in considering that one of the blades remains in per-
manent contact. To simplify the analysis, the results plot-
ted in Fig. 5 exclude viscous damping and friction. The
upper graph illustrates eigenfrequency evolution vs. rota-
tion speed, while the lower diagram tracks the evolution
of eigenvalues real parts yielding stability information: the
eigensolution is unstable as long as it displays a positive real
part [14].

The blade contact causes two kinds of instabilities. Di-
vergence is a form of instability at zero frequency; its ap-
pearance is indicated by the letters D in Fig.5. Secondly,
flutter instability appears at eigenvalue crossover; these are
indicated by the letter F in the same figure. These phe-
nomena are due to the asymmetric elastic and inertial cou-
plings related to the blade/casing contact and are described
in [17–19].

Intermittent contact simulations
The preceding results are consistent with the litera-

ture and underscore our model’s steady behavior. These
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FIGURE 6. INVESTIGATED MODE SHAPES

results however have been obtained under the restrictive as-
sumption of permanent contact, whereas other authors [2–4]
showed that blade/casing contact related phenomena often
involve intermittent contacts. In order to consider such
intermittent contacts, transient simulations have therefore
been run. The transient results presented herein were de-
rived by applying the explicit central differences algorithm,
as in [3, 4]. Unlike the previous results, friction is included
whenever contact occurs. Viscous damping is also intro-
duced in the casing, the suspensions, the shaft/casing link
and between each blade. Contact is triggered by consider-
ing imbalance at the bladed disk location (see Fig.1). The
imbalance force is applied over a 1 sec ramp and then main-
tained throughout the simulation. In the rotating frame,
imbalance creates a static force given by:

fb = mbebΩ
2

{

cos γb
sin γb

}

(14)

Where mb is the imbalance mass, eb the eccentricity and
γb its angular position in the rotating frame. fb is then
projected onto the general coordinates to be included in
the system of equations.

In rotor-stator contacts, friction usually induces back-
ward directed phenomena on the rotating parts. When flexi-
ble blades are introduced, friction forces trigger a backward
rotating wave deformation on the bladed disk [3]. When
shaft dynamics are considered, contacts generally occur on
the shaft deflection side and induce a backward preces-
sion [20].

The proposed model allows for atypical contact config-
uration and we have chosen to focus on two specific modes:
- Mode C concentrates most of its deformation energy in
the shaft and especially in the fan region. Its mode shape,
drawn in Fig. 6 (a), presents a regular contact configura-
tion: the minimum gap function values are found on the
side of shaft deflection.
- Mode D is also a shaft-bending mode. The main defor-
mations are localized in the turbine area. Its mode shape,

FIGURE 7. TRANSIENT RESULTS NEAR THE C MODE

CRITICAL SPEED: Ω ≈ 9

FIGURE 8. DEFORMED SHAPES: TRANSIENT RESULTS

NEAR THE C MODE CRITICAL SPEED: Ω ≈ 9

shown in Fig.6 (b), presents an inverted contact configura-
tion whereby the minimum gap function values are obtained
on the opposite side of shaft deflection.

The two transient simulations discussed in this paper
have been run at rotation speeds close to the critical speeds
of these modes: Ω ≈ 9 for C mode, and Ω ≈ 15 for D mode
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FIGURE 9. DEFORMED SHAPES: TRANSIENT RESULTS

NEAR THE D MODE CRITICAL SPEED: Ω ≈ 15

FIGURE 10. TRANSIENT RESULTS NEAR THE D MODE

CRITICAL SPEED: Ω ≈ 15

(see Fig. 3).

The transient simulation results for mode C are dis-
played in Fig. 7. The upper diagram plots the evolution of
normal contact forces at the blade tips. The lower table de-
scribes the deformed shape during the transient simulation:
This presentation starts by describing the various contact

configurations obtained during the simulation.
Next, the disk and casing center-of-gravity trajectories are
characterized. These trajectories are described in the rotat-
ing frame for the purpose of detecting the effect of contact
forces on displacements. During most of the simulations,
these trajectories are in fact mainly driven by the imbal-
ance forces. Hence, if they were to be observed in iner-
tial frame, the forward imbalance-related precessions would
counter the impact of contacts on the disk and casing dis-
placements. Moreover, this table presents the nodal diam-
eter analysis of displacements observed on the blades and
casing. The colored stripes illustrate the evolution in the
Discrete Fourier Transform (DFT) amplitude of the respec-
tive nodal diameters. Each one of these stripe results is
then normalized, and the color scale is presented in the
lower part of the figure. For the bladed disk, two nodal
diameter analyses have been conducted. The first analy-
sis applies a Fast Fourier Transform (FFT) algorithm to
the radial displacement of all 10 blade tips. In adopting
blade modeling assumptions, the radial displacement is ex-
clusively due to the disk translations and rotations. The
only possible deformation thus contains just one nodal di-
ameter (as explained above, this is the only deformation
compatible with the shaft cross-section kinematics). A sec-
ond analysis proceeds by applying an FFT algorithm to the
blade deflection measurements. In this case, the possible
nodal deformation extend from 0ND (i.e. the 10 blades de-
flect in the same direction as displayed in Fig. 4) to 5ND
(each consecutive blade deflects in a different direction).
Only the 1ND and 2ND stripes are displayed because the
other nodal diameter contributions are low. For the casing,
the nodal diameter analysis is carried out on the radial dis-
placements measured at various locations distributed over
its circumference. These radial displacements are correlated
with the casing’s own deformation, as well as with its rigid-
body translations and rotations. Only 1ND and 2ND de-
formations are observed: the 1ND deformation is solely due
to the rigid-body displacements, and the 2ND deformation
is related to the casing deformation (with the 2ND shape
being the only deformation included in the model). D mode
results are similarly presented in Fig. 10.

The two transient results presented in this paper dif-
fer, yet both follow the same scenario. First, the imbal-
ance forces causes a quasi-static deformation (in the rotat-
ing frame) until the deformations are sufficient to absorb
the initial clearance and contact occurs on two consecutive
blades. Contact forces excite the model components, and
the system vibrates with increasing amplitude, thus leading
to intermittent contacts. This scenario accelerates ampli-
tude increase until the simulation is stopped because the
deformations have become incompatible with the modeling
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assumptions.

The permanent contact phase on the C mode simu-
lation occurs from 0.98 to 1.07 sec. As expected by the
mode shape observation, contact occurs on the side of shaft
deflection, which mean that contact forces are creating a
backward precession of the disk and a forward precession of
the casing. The deformed shape at 1 sec is drawn in Fig.8
(a). The bladed disk reveals a 1ND deformation fixed in the
rotating frame. This synchronous 1ND shape results from:
1ND radial displacements due to disk motion, and 1ND
bending deformations of the blades. On the casing, a syn-
chronous 1ND co-rotating wave can be observed, whereas
the 2ND deformation is nearly absent.

The permanent contact phase on the D mode simu-
lation occurs from 0.94 to 1.16 sec. Unlike the C mode,
these contacts occur on the opposite side of shaft deflection.
Hence, contact forces cause a forward precession of the disk
and a backward precession of the casing. The qualitative
observations on the bladed disk and casing are identical
to those found in C mode observations. The deformation
shape at 1.16 sec is drawn in Fig. 9(a).

The deformed shapes obtained during the permanent
contact phase are similar to the respective forced responses
of the system subjected to an imbalance. These contacts
are indeed soft and the nonlinear forces are insufficient to
overcome the imbalance effect.

For the C mode simulation, the intermittent contacts
phase begins at 1.07 sec. The backward circular precession
of the disk center-of-gravity increases while the forward pre-
cession of the casing becomes irregular. On the bladed disk,
the nodal deformations that had been synchronous during
the permanent contact phase (i.e. fixed in the rotating
frame) now behave like rotating waves. The radial displace-
ments that were mainly driven by the shaft deformed-shape
due to imbalance now become influenced by the rising back-
ward precession due to contacts. The nodal deformation
due to blade flexure behave as counter-rotating waves with
an increasing amplitude. On the casing, the 1ND contri-
bution stemming from its rigid-body displacement for the
most part remain defined by the imbalance-related preces-
sion in the inertial frame. The 2ND co-rotating wave on
the casing increases substantially and becomes the main
contributor to radial casing displacements. This casing de-
formation caused by contact influences the blades, and the
2ND counter-rotating wave on the bladed disk increases to
match the casing shape. The deformed shape at 1.15 sec is
drawn in Fig. 8(b).

For the D mode simulation, the intermittent contact
phase begins at 1.16 sec. The forward precession of the
shaft becomes irregular and reverses to a backward mo-
tion. Meanwhile, the backward circular precession of the

casing rises. On the bladed disk and casing, the evolution
is qualitatively similar to the C mode results; however, the
2ND deformations do not overcome the 1ND deformation
as it is the case in the C mode simulation. The D mode
deformation shape at 1.16 sec is drawn in Fig. 9 (b).

In returning to the global observation, we can identify
the consecutive phenomena that led to an unstable system
for both analyses. The C and D modes are both whole en-
gine 1ND modes, as reflected by: shaft bending creating a
1ND-like displacement of the disk; shaft/blade coupling due
to the gyroscopic effect causing a 1ND deformation of the
blades; and the elastic link between shaft and casing lead-
ing to a 1ND-like displacement of the casing. The imbal-
ance forces thus naturally create a 1ND global interaction.
Moreover, the deformations due to imbalance absorb the
initial tip clearance, which leads to blade/casing contacts.
Contact forces increase the existing 1ND global interaction
while at the same time excite the 2ND casing mode, which
adds a 2ND interaction between the casing and the bladed
disk.

The disk and casing center-of-gravity trajectories illus-
trate the complexity of system motion. This complex be-
havior is correlated not only with the 1ND and 2ND combi-
nation, but also with the linked displacements of the shaft
and casing. The elastic link introduced between the casing
and shaft does actually prevent the respective trajectories
from extending in opposite directions.

CONCLUSION
This study has presented a phenomenological model

developed to investigate the set of phenomena induced by
blade-casing contacts occurring in the fan stage of an air-
craft engine. It has involved a flexible bladed shaft and flex-
ible casing. In addition to the blade-casing coupling due to
contacts, this model has included the natural blade-shaft
and shaft-casing couplings. Consequently, the considered
model, which contains fewer than 40 dofs, can still yield
complex mode shapes encompassing all the components.

Linear results first displayed the natural couplings and
the model’s consistent behavior under permanent contact.
Then, nonlinear transient simulations were run for the pur-
pose of investigating unstable scenarios related to blade-
casing contacts. We chose to focus on two specific modes,
one of which presented an inverted contact configuration.
Results showed the influence of each component dynamic
on the unstable scenarios. The main conclusion drawn from
both analyses was that a combination was generated with
one nodal diameter (1ND) interaction involving the whole
model and a 2ND interaction localized on the blades and
casing.
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Appendix A: Transformation matrices
This appendix presents the transformation matrices

used in Eqn. (10). Pαj
and Pβ define the position of the

blade tip on the disk: αj is the angular position along the
disk and β directs the blade bending. Pφxd

and Pφyd
intro-

duce the disk rotations while Pφxc
and Pφyc

introduce the
casing rotations. αj and β are constant angles while φxd

,
φyd

, φxc
and φyc

are time-dependent small angles related to
shaft bending or casing rigid-body rotations.

Pαj
=





cosαj sinαj 0
− sinαj cosαj 0

0 0 1



 ; Pβ =





cos β 0 − sin β
0 1 0

sin β 0 cos β





Pφxd
=





1 0 0
0 1 φxd

0 −φxd
1



 ; Pφyd
=





1 0 −φyd

0 1 0
φyd 0 1





Pφxc
=





1 0 0
0 1 φxc

0 −φxc 1



 ; Pφyc
=





1 0 −φyc

0 1 0
φyc 0 1





(15)
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