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Two-dimensional modeling of unilateral contact-induced shaft
precessional motions in bladed-disk/casing systems
Nicolas Salvat a, Alain Batailly b, Mathias Legrand a

Abstract
The present work targets shaft whirling motions induced by direct blade/casing unilateral contact occurrences in aircraft engine bladed-disk
assemblies. These contact events are favored by increasingly reduced blade-tip clearances and potentially lead to harmful interactions that may
threaten the engine structural integrity.
A simplified 2D in-plane finite element model representative of the engine fan stage is built, accounting for the flexibility of the shaft through two
linear springs attached to the disk center node and the structural coupling provided by the fan frame and the bearings, modeled by an array of linear
springs. A linear stability analysis of the reduced-order coupled system reveals two unstable zones in a selected rotational speed range, emanating
from the linearly predicted modal coincidence speeds.
Through a time-marching strategy, two asymmetric contact initiation mechanisms are investigated: (1) a prescribed casing distortion and (2) a
mass imbalance on the bladed-disk. It is shown how the 1-nodal diameter mode of the first modal family of the bladed-disk is dominant when a
modal interaction arises from the transient casing distortion and leads to divergent regimes. The presence of the frame/bearings coupling induces a
shift in the critical speeds detected, generally characterized by a backward traveling wave in the rotating frame and a forward traveling one in the
fixed frame. Further, when a mass imbalance is the excitation source, the suspension modes appear to have a major role and a stable limit cycle is
reached regardless of the coupling stiffness with much lower energy levels than in divergent regimes.
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1. Introduction
In the aeronautical and space industry, reliability and efficiency
stand as major concerns due to both economical and environmental
reasons. Among other challenges, to gain fuel consumption while
increasing power, lowering noise and gas emissions, increasing the
durability of components while decreasing weight, have attracted
considerable interest. Thus, various strategies have been adopted
in distinct fields, such as the use ultralight-weight materials (e.g. ti-
tanium alloys and composite materials) [1], planning cost-efficient
flight trajectories [2] as well as the development of multidisci-
plinary optimization algorithms [3], to name a few. In the specific
area of commercial aircraft propulsion, where thrust is often pro-
vided by a gas turbine as the one illustrated in Fig. 1, efficiency
enhancement [4] is achieved through flow-path and geometry op-
timization, or compression ratios and combustion temperatures
increase.

Fan flow

Core flow

1 2 3 4 5

Figure 1. Turbofan engine components: 1. fan; 2. Low Pressure (LP)
compressor; 3. High Pressure (HP) compressor; 4. combustion chamber;

5. HP and LP turbines

One of the most sensitive parameters to tune in compressor
and fan stages is the blade-tip clearance, defined as the effec-
tive distance between the rotating airfoil tips and the surrounding
stationary casing at nominal operating conditions. In fact, this
distance must be kept to a minimum to ensure high compression
ratios and engine performance [5]. As detailed in [6], potential
structural malfunctions may arise from, for instance, mass imbal-

ance or blade loss, impact with external objects, casing distortion
due to high thermal gradients, fluid excitations through bearings
or aerodynamic loads, among others. Due to the increasingly
tight operating clearances, these incidents generally lead to in-
volved shaft/bladed-disk/casing interactions induced by unilateral
and frictional contact occurrences between rotating and stationary
components. Such events that may threaten the engine structural
integrity are commonly referred to as structural rotor/stator inter-
actions [7, 8].

Zo

Yo Yo

Xo

rotor bearing

(a) Rotor/bearing [9]

bladed-disk

casing

(b) Bladed-disk/casing [10]

Figure 2. Systems subject to structural rotor/stator interactions

Within this industrial framework, two types of systems must
be distinguished depending on the contact interface involved in
the interaction:

1



Nomenclature

Matrices
ƒ, V eigenvalues, eigenvectors
‰c, ‰s constraint modes and static modes
B contact constraints matrix
K� frame/bearings coupling matrix
M, D, K mass, damping, and stiffness matrices

Vectors
Ouk cyclic coordinates of k-th nodal diameter
fcn, fext contact forces and external forces
q modal coordinates in time-invariant space
qcb Craig-Bampton modal participations
u modal coordinates
x; Px; Rx displacements, velocities, accelerations
xb; xi boundary and internal DoF
z state-space coordinates

Scalars

ı initial blade-tip clearance
� number of constraint modes
� coupling stiffness
� rotational speed
�cr
k

critical speed of k-th nodal diameter
!k eigenfrequency of k-th nodal diameter
k nodal diameter
K, T strain energy and kinetic energy
N number of sectors
t and �t time and time-step size
xo; yo center node DoF in rotating frame

Subscripts and Superscripts
.�/bd elements of .�/ associated to the bladed-disk
.�/c elements of .�/ associated to the casing
.�/c cosine component of double harmonics
.�/s sine component of double harmonics
Q.�/ elements of .�/ in reduced-order space

Rotor/bearing systems The rotor is modeled by a flexible shaft
and rigid disks, and supported by journal-bearings (Fig. 2(a)),
e.g. magnetic [11] or hydrodynamic [12] bearings, liquid or
gas annular seals [13], among others. Contacts shall occur
between shaft and the inner part of its supporting bearings due
to large lateral vibrations.

Bladed-disk/casing systems A rigid shaft and flexible blades are
commonly considered. Contacts take place between blade-tips
and surrounding casings (Fig. 2(b)). The blades distortion and
the casing wear are the main concerns [8, 14].

Generally speaking, three distinct phenomena arising from ro-
tor/stator interactions are discussed in the literature: (1) modal
coincidence [15], characterized by an exchange of energy between
modes of the rotor and the stator of matching nodal diameter
through intermittent contacts that may lead to catastrophic struc-
tural failures [16], (2) rubbing, refers to direct contact either be-
tween shaft and journal bearings [7] or blade-tips and surrounding
casing [17] depending on the system of interest and (3) whirl [9],
describes precessional orbits of the shaft leading to unstable vibra-
tory motions and is related to rubbing problems once the whirling
amplitude is larger than the initial rotor/bearing clearance [7]. The
rotor may undergo forward or backward whirl depending on the
whirling direction with respect to the shaft rotational speed.

A majority of the numerical investigations on whirl involve
flexible shafts with non-deformable cross-sections and the litera-
ture is rather scattered when considering whirling motions in fully
flexible bladed-disks/casing systems. One of the only available
studies [18] targets the transient response of a bladed Jeffcott ro-
tor system. Three response configurations are reported: (1) no
contact, (2) single blade contact and (3) multiple blades contact.
Backward whirling motions are observed, maximizing blade dis-
placements and stresses. A recent extension of this model was
developed in [19], proposing a novel explicit formulation of the
normal rubbing forces dependent on the system parameters such
as the rotational speed, the blade cross-section and disk diameter,
which was validated with experimental data from a test rig.

A fully flexible rotor is also developed in [20] using an ener-
getic approach in the rotating frame and considering frictionless
sliding contacts via a linear penalty method. The casing is modeled
as an elastic ring and the stability of the two coupled structures
is addressed through eigenvalue computations, showing different
divergent instabilities and mode couplings. Parent et al. [21] built
on this work, using a mass imbalance at the LP turbine as a source
of excitation and highlighted two different contact scenarios: the
regular case, where contact occurs in the same side than the shaft
displacement and results in backward whirling, and the inverted

case, where contact occurs in the opposite side than the shaft dis-
placements which leads to forward whirling. A novel kinematic
methodology for the calculation of the blade-to-casing distances
was incorporated in [22].

In the present study, attention is paid to the shaft/bladed-
disk/casing structural couplings and the emergence of whirling
motions in the fan stage of a two-spool commercial aircraft engine
(Fig. 1) induced by direct unilateral blade/casing contact occur-
rences. Two contact initiation mechanisms are investigated: (1)
an initially prescribed casing distortion and (2) a mass imbalance
on the bladed-disk. Based on previous work [23], the interac-
tions between these two flexible structures are studied by means
of a time-marching strategy similar to [10]. The corresponding
modeling assumptions—detailed in the following sections—are
summarized as:
Bladed-disk and casing: flexible 2D in-plane models composed

of beams.
Shaft flexibility: two linear springs.
Frame and bearings: array of linear springs.
Damping: modal damping with single damping coefficient.
Neglected structural terms: centrifugal, spin softening and gy-

roscopic effects.
Rotational velocity: constant in counter-clockwise direction.
Solution method: explicit time-marching.
Unilateral contact enforcement: Lagrange multipliers method.
Frictional contact forces: linear Coulomb law in sliding.

First, the structural 2D in-plane models of the engine stage
and the coupling methodology are presented. In a second section,
some of the modal properties of the bladed-disk/casing system
are explored, highlighting the influence of the shaft flexibility and
the role of the frame/bearings coupling on the overall dynamics
of the system. Lastly, the simulation procedure is introduced
along with a brief analysis of convergence issues related to the
implemented numerical strategy. These are followed by the results
and discussion of emerging trends, mainly focusing on the types
of operating regimes detected and the localization of the strain
energy of the dominant modes involved in the interactions.

2. Structural models
2.1 Bladed-disk and casing models
The fan stage model in this investigation extends the one intro-
duced in [10] and incorporates the flexibility of the shaft through
two linear springs connected to the center node of the disk driving
the so-called suspension modes. This modelling innovation targets
potential whirl motions as the blade dynamics and the in-plane
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motions of the shaft are now coupled.
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Figure 3. Fan stage model

The bladed-disk, illustrated in Fig. 3(a), is composed of an
assembly of straight beams. Each element has two nodes with
three degrees of freedom (DoF) per node and is a combination of
simple Bernoulli beams (flexural displacements) and rod elements
(longitudinal displacements), allowing to account for both radial
and tangential displacements. As in [10], the model consists of
22 blades, with radius of Rbd D 0:5 m and ten elements per blade,
as well as a dedicated set of beams representing the disk and
allowing the structural coupling between neighbouring blades.
The stiffness of the center node linear springs is arbitrarily chosen
to ko D 3:4 � 107 N=m, which corresponds to about 500 times the
tangential stiffness of a blade and is representative of an industrial
fan.

The casing, also depicted in Fig. 3(a), is built using a set of
curved beams (40 elements). These elements have two nodes and
four DoF per node, leading to a total of 160 DoF. Its radius is
defined by the radius of the bladed-disk plus an initial clearance ı
arbitrarily prescribed: Rc D Rbd C ı.

Parameter Value
bladed-disk radius Rbd D 0:5 m

disk radius Rdisk D 0:05 m
clearance ı D 1 mm

beams cross-section 100 � 10 mm2

Table 1. Geometry parameters

The considered material is steel for both structures, the corre-

sponding geometry parameters are listed in Tab. 1 and the equa-
tions of motion governing the dynamics of the system are:�

Mc 0
0 Mbd

�� Rxc

Rxbd

�
C
�

Dc 0
0 Dbd

�� Pxc

Pxbd

�
C
��

Kc 0
0 Kbd

�
CK�

��
xc

xbd

�
D
�

f c
ext

f bd
ext

�
C
�

Bc

Bbd

�
fcn

(1)

that is, in a compact form:

MRxC DPxCKx D fext C Bfcn (2)

where x is the n-dimensional displacement vector, M is the mass
matrix and D is the damping matrix computed from the modal do-
main1. The stiffness matrix K stores uncoupled blocks Kbd and Kc

corresponding to each structure, and a coupling term K� detailed
in section 2.3 reflecting the stiffness of the bearings, denoted B1
and B2, and the fan frame depicted in Fig. 3(b). Finally, fext stores
the prescribed external loads acting on the casing and bladed-disk
respectively, and fcn stores the contact forces which couple the
two underlying linear systems through the unilateral and frictional
contact constraints matrices B.

2.2 Craig-Bampton model reduction
In order to gain computational efficiency while capturing the es-
sential dynamic response, the bladed-disk dynamics is reduced
through the Craig-Bampton component mode synthesis method [24].
The DoF xbd are partitioned into internal DoF xi and boundary DoF
xb: the latter is kept in the reduced model for contact treatment pur-
poses [23] and the former is reduced to � of modal participations
qcb using:

xbd D
�

xb
xi

�
D
�

I 0
‰ s ‰c

��
xb
qcb

�
(3)

where ‰ s stores the static modes. Its size is the number of bound-
ary DoF kept in the reduced model. Matrix ‰c stores � constraint
modes to control the accuracy of the reduction basis.

Both radial and tangential DoF of every blade-tip are kept in
the reduced model as well as the two DoF from the center node.
Also, � D 110 constraint modes are incorporated as stated in the
next section, leading to 156 DoF for the structural matrices related
to the bladed-disk2 of Eq. (1). As for the casing, it is not reduced
in this investigation and all 40 nodes are considered for contact
treatment.

2.3 Bearings and frame coupling methodology
Contrary to the assumptions made in [23], where the bladed-disk
and the casing are independent structures solely coupled by the uni-
lateral contact constraints, as displayed in Fig. 3(b), the structural
couplings provided by the fan frame and bearings is accounted for
in the present study. These two components are incorporated in
the model through an array of linear springs, which differs from
the approach in [21] where they are represented by a pair of simple
isotropic springs. As detailed in the following, the added com-
plexity in the frame/bearings model introduces time-dependent
periodic terms in the stiffness matrix due to the rotation.

As detailed in next section, 1-nodal diameter bladed-disk
modes are the only modes potentially exhibiting off-axis shaft
motions and participating in the coupling with the casing through
the bearings. Hence, it is proposed to explicitly derive the coupling

1Modal viscous damping is such that D becomes diagonal in the modal space
with non-vanishing terms 2�!i , where !i is the undamped natural frequency of
the i -th mode and � is the damping coefficient.

2Without any explicit notice, the structural matrices of the bladed-disk are the
reduced version of the finite element ones in the paper.
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matrix K� of Eq. (1) in a reduced-order modal space, constraining
the bladed-disk distortions to a specific set of modes: the first 1-
nodal diameter flexural mode .uc; us/ pictured in Fig. 6(b) and the
suspension modes .uco ; uso/, both featuring non-negligible shaft
motions. For the casing, all nodal diameters actually participate in
the coupling and should be incorporated to obtain a general version
of matrix K�. However, as a first approximation, it is proposed to
solely consider the participation of its first 1-nodal diameter mode
.vc; vs/ which was shown to be dominant in the interactions [23].
Accordingly, the physical displacements are projected onto the
modal basis through the change of variable x D Vu, where V
contains the uncoupled eigenvectors Vbd and Vc, and u are the cor-
responding modal coordinates, which in the reduced-order modal
basis take the form:

x D QV Qu (4)

with QuT D �vc; vs; uc; us; uco ; uso

�
and

QV D
� QVc 0

0 QVbd

�
where QV contains the associated set of eigenvectors and is of size
n � 6. Thus, the dynamics of the bladed-disk/casing system is
described solely considering modes whose radial distortions con-
tain an important off-axis component at the shaft/bearing interface
and may be visualized as the two elastic rings illustrated in Fig. 4,
where the blue springs represent the frame/bearings coupling.

Rbd

ubd

˛

Rc

vc

�

�t

x
y

X

Y

Figure 4. Equivalent reduced-order model: deformed [ ] and unde-
formed [ ] bladed-disk, deformed [ ] and undeformed [ ] casing

and frame/bearings [blue springs]

As adopted in [20], this choice results in the following dis-
placement fields:

ubd.˛; t/ D �uc.t/C uco.t/
�

cos˛ C �us.t/C uso.t/
�

sin˛
vc.�; t/ D vc.t/ cos � C vs.t/ sin �

(5)

where ubd.˛; t/ and vc.�; t/ correspond to the displacements of the
bladed-disk and the casing respectively, described by the angles
� 2 Œ0 I 2�� and ˛ D � ��t in the static frame of reference. The
gap between the two structures g.�; t/ is expressed as:

g.�; t/ D ı C vc.t/ cos � C vs.t/ sin �

� �uc.t/C uco.t/
�

cos.� ��t/
� �us.t/C uso.t/

�
sin.� ��t/

(6)

where ı is the initial operating clearance introduced earlier. Further,
the rotational speed� of the bladed-disk is assumed to be constant

in counter-clockwise direction and the springs coupling stiffness
is denoted �. From the assumed displacement forms in Eq. (5),
Hamilton’s principle is adopted to derive the associated equations
of motion. The kinetic and strain energies of the two rings are:

T bd.t/ D 1

2
mu
� Puc.t/

2 C Pus.t/
2
�C 1

2
mo
� Puco.t/

2 C Puso.t/
2
�

T c.t/ D 1

2
mv
� Pvc.t/

2 C Pvs.t/
2
�

Kbd.t/ D 1

2
ku
�
uc.t/

2 C us.t/
2
�C 1

2
ko
�
uco.t/

2 C uso.t/
2
�

Kc.t/ D 1

2
kv
�
vc.t/

2 C vs.t/
2
�

(7)

where .mu; mo; ku; ko/ and .mv; kv/ are the modal masses and
stiffnesses of the bladed-disk and the casing, respectively. The
strain energy of the coupling stiffnesses � arises as:

K�.t/ D 1

2
�

Z 2�

0

�
vc.t/ cos � C vs.t/ sin �

� �uc.t/C uco.t/
�

cos.� ��t/
� �us.t/C uso.t/

�
sin.� ��t/�2d�

(8)

Accordingly, the following stiffness is obtained in the modal coor-
dinates:
QK.�; t/ D QKC QK�.�; t/

D QVTK QVC QK�.�; t/

D

2666664
!2v C �v 0 ��ucˇ �usˇ ��ucˇ �usˇ

0 !2v C �v ��usˇ ��ucˇ ��usˇ ��ucˇ
��vcˇ ��vsˇ !2u C �u 0 0 0

�vsˇ ��vcˇ 0 !2u C �u 0 0

��vcˇ ��vsˇ 0 0 !2o C �u 0

�vsˇ ��vcˇ 0 0 0 !2o C �u

3777775
(9)

with cˇ D cos�t and sˇ D sin�t , !2u D ku=mu, !2o D ko=mo
and !2v D kv=mv . The normalized coupling terms3 become
�u D �=mu D �=mo and �v D �=mv , and the resulting stiffness
matrix—symmetric only under the condition that mv D mu D
mo—has time-periodic coefficients. This matrix is the sum of
the uncoupled stiffness matrices projected onto the reduced-order
modal basis and the frame/bearings coupling matrix, which con-
tains the time-dependent terms. This results in the following
reduced equations:

RQuC QD PQuC QK.�; t/ Qu D QVT.fext C Bfcn/ (10)

In Eq. (10), the forcing terms are kept in the physical space for read-
ability: this is where the blade-to-casing clearances and contact
forces can be determined precisely. The reduced damping matrix
QD D QVTD QV is diagonal and the time-dependent stiffness matrix (9)
must be computed at each time-step of the time-marching strategy
implemented in the following.

3. Modal analysis of the bladed-disk/casing
system
This section explores the modal properties of the introduced bladed-
disk/casing system. First, it is shown that the off-axis displacement
components of the shaft are solely described by 1-nodal diameter
modes in a cyclic-symmetry framework. Second, a linear modal
analysis of the uncoupled structures is carried out and modal co-
incidence critical speeds are predicted. Last, the dynamics of the
coupled structures is analyzed from a modal perspective in order
to understand how the frame/bearings coupling affects the overall
dynamics.

3In the projection onto the modal space, the eigenvectors are generally normal-
ized with respect to the mass matrix, hence the corresponding modal masses are
unitary and the coupling terms would simply become �u D �v D �.
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3.1 Shaft motions in cyclically symmetric structures
Perfectly tuned cyclically symmetric structures are those com-
posed of a repetition of N identical sectors. Such structure feature
modes that can be sorted by modal families and nodal diameters
k—also called spatial harmonics—depending on their frequency
and geometrical shape [25]. In order to determine which spatial

P
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5
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6

(a) Full shaft

P
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2

2

3

3

4

4

5
5
6

6

(b) Hollow shaft

Figure 5. Example of cyclically symmetric structures with 6 sectors

harmonics are affected by an off-axis motion4 of a node belonging
to the axis of rotation of this type of structure, the physical dis-
placements x, limited to the components associated to such node
as illustrated in Fig. 5, are translated into the Fourier space Ou by
means of the change of variable proposed in [26]. In the local
frame of the n-th sector .Rn/, this displacement is:

xRn
D
�
a cos.n˛/
�a sin.n˛/

�
with n D Œ1I : : : IN� (11)

where a is the displacement amplitude and ˛ D 2�=N corre-
sponds to the so-called fundamental interblade phase shift. By
manipulating the expressions of the resulting cyclic displacements
for each spatial harmonic Ouk , it can be shown that:
Single harmonics Either k D 0 or k D N=2 (for N even), the

cyclic displacements correspond to:

Ou0 D 1p
N

NX
nD1

xRn
D 0

Ou N
2 D 1p

N

NX
nD1

.�1/n�1xRn
D 0

(12)

which do not participate in the off-axis shaft displacements.
Double harmonics Ranging from k D 1 to k D K D bN=2�1c,

the associated cyclic displacements are:

k D 2; : : : ; K; Oukc D Ouks D 0

k D 1; Oukc D Ouks D a
p
2N cos.˛/

(13)

where the only non-zero contribution corresponds to the first
spatial harmonic.

It is then clear that a point lying on the rotational axis of a cyclically
symmetric structure displays off-axis displacements on 1-nodal
diameter modes only. Accordingly, any precessional motion of the
shaft is completely described through a combination of 1-nodal
diameter modes. Similar conclusions hold for circular plates [27].

3.2 Modal analysis of the uncoupled structures
The modal properties of the bladed-disk and casing are now studied
independently. The prediction of modal coincidence in the sense
of [15] and the corresponding whirling motions involved in the
interactions are discussed. For the sake of confidentiality, all
frequencies are normalized with respect to the bladed-disk lowest
eigenfrequency.

4Only displacements perpendicular to the axis of rotation are considered.

3.2.1 Bladed-disk
The sensitivity of the structure mode shapes and eigenfrequen-
cies to the flexibility of the shaft is now assessed. In agreement
with the developments presented above, Figs. 6 display a center
node displacement for k D 1 only. Additionally, the two DoF

(a) !bd
0 D 1:02 (b) !bd

1 D 1

(c) !bd
3 D 1:03 (d) !bd

4 D 1:03
Figure 6. First family of free vibration modes: center node displaced [ ]

and rest [ ] position

of the center node drive the suspension modes through the linear
springs connected to it. These modes arise between the first two
modal families (green dashed line in Fig. 7(b)) with a frequency
fo ' 2:5 and have a shape similar to Fig. 6(b), thus exhibiting a
major whirling component. The veering diagrams in Fig. 7 show a
comparison of the eigenfrequencies with a free and clamped center
node. Clearly, such conditions only affect the 1-nodal diameter
modes of each modal family. In conclusion, accounting for the
flexibility of the shaft has two main consequences: it generates
a shift in 1-nodal diameter eigenfrequencies as these modes can
now reveal a whirling component, and it engenders the suspension
modes, similar in shape to the k D 1 (1F) mode but featuring a
weaker distortion of the blades.

3.2.2 Modal coincidence predictions and whirl motions
Modal coincidence occurs when traveling waves of matching nodal
diameters exhibit the same propagation speed [15]. The high linear
blade-tip velocities make it possible to assume that sliding only
occurs during contact phases. Accordingly, the waves stemming
from the interactions are always counter-rotating on the rotor and
co-rotating on the stator. Therefore, the linear modal coincidence
prediction of critical speeds is [28]:

!c
k D k�cr

k � !bd
k (14)

where !c
k

and !bd
k

are the casing and bladed-disk eigenfrequen-
cies of matching nodal diameter k, and the corresponding critical
speeds �cr

k
are represented by the crossing of modal lines in the

Campbell diagram 8.
For the models considered in this investigation, in Fig. 8 several

crossings occur in the rotational speed range � 2 Œ0:7 I 1:3� for
the first family of modes, while for the second family, these cross-
ings are spread over a larger frequency range and occur at higher
rotational speeds. With regard to interactions between 1-nodal
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Figure 7. Veering diagram with clamped [ ] and free [ ] center node
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Figure 8. Relative frame Campbell diagram: bladed-disk k D 1 [ ],
other k [ ], suspension modes [ ],

casing k D 1 [ ] and other k [ ] modes

diameter modes that potentially lead to high-amplitude whirling
motions, as established in [23], the first flexural (1F) modal family
crossing appears at �cr

1 ' 1:05, while for the suspension modes it
occurs at �cr

susp ' 2:6, which lies well beyond the operating speed
range corresponding to � 2 Œ0:6 I 2�.

According to [21], depending on the contact location with
respect to the shaft displacements, either forward or backward
whirling motions are likely to be excited because of the momentum
that frictional forces generate at the center of the bladed-disk. In
this sense, two scenarios are identified:
Standard scenario Contact occurs in the direction of the shaft

displacements as illustrated in Fig. 9(a) where the blue arrow
indicates the shaft displacement and the blue zone, the pre-
ferred contact location. The casing distortion is of smaller
magnitude than that of the bladed-disk and the frictional forces
(green arrows) create a momentum on the shaft which is in a
direction opposite to the rotational speed leading to backward
whirling.

Inverted scenario In this configuration illustrated in Fig. 10(a),
the distortion of the casing is larger than that of the bladed-
disk, absorbing the blade-tip clearance in the opposite side of
the shaft displacements. This yields forward whirling motions
since the momentum generated by the frictional forces is now
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Figure 9. Regular contact configuration for 1-nodal diameter modes

in the direction of the rotational speed.
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(b) Phase: shaft [ ] and min. gap [ ]

Figure 10. Inverted contact configuration for 1-nodal diameter modes

The particularity of the inverted scenario is that there would
be two traveling waves of opposite direction propagating simul-
taneously on the bladed-disk. Indeed, a co-rotating wave would
be generated on the shaft while the frictional contact forces also
produce a counter-rotating one on the blade-tips according to the
permanent sliding assumption. This suggests that there exists a
node of vibration along the radius of the bladed-disk for the change
of sign in the traveling waves to occur, hence it is necessary that
several 1-nodal diameter modes participate in the response.

For both contact configurations, the kinematic phase angle of
the shaft and the shortest blade-to-casing clearance are plotted in
Figs. 9(b) and 10(b) over one period of rotation. In the standard
scenario, the minimum gap is always in phase with the shaft dis-
placement, while for the inverted scenario, they are also in phase
but shifted by an angle �� D � .

3.3 Modal analysis of the coupled structures

The modal properties of the coupled structures—through the bear-
ings and frame—described in the modal subspace by Eq. (10) are
now assessed, thereby neglecting the forcing and damping terms.
Hence, the free and conservative system is:

RQuC QK.�; t/ Qu D 0 (15)

where the time-periodic coefficients5 of the stiffness matrix de-
fined in Eq. (9) can be advantageously transformed into time-

5Eq. (15) is a type of Mathieu equation.
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independent terms through the change of variable [29]:0BBBBBB@
vc
vs
uc
us
uco

uso

1CCCCCCA D
26666664
0 0 0 0 sˇ0 cˇ0
0 0 0 0 �cˇ0 sˇ0
0 0 sˇ0 �cˇ0 0 0

0 0 cˇ0 sˇ0 0 0

sˇ0 �cˇ0 0 0 0 0

cˇ0 sˇ0 0 0 0 0

37777775

0BBBBBB@
q1
q2
q3
q4
q5
q6

1CCCCCCA (16)

with cˇ0 D cos �t
2

and sˇ0 D sin �t
2

, corresponding to change
of frame at a rotation of half the rotational speed. Therefore, this
change of variable implies:

Qu D P.t/q
PQu D PP.t/qC P.t/ Pq
RQu D RP.t/qC 2 PP.t/ PqC P.t/ Rq

(17)

which leads to the following equation of motion with constant
coefficients:0BBBBBB@
Rq1
Rq2
Rq3
Rq4
Rq5
Rq6

1CCCCCCAC
26666664
0 � 0 0 0 0

�� 0 0 0 0 0

0 0 0 � 0 0

0 0 �� 0 0 0

0 0 0 0 0 �

0 0 0 0 �� 0

37777775

0BBBBBB@
Pq1
Pq2
Pq3
Pq4
Pq5
Pq6

1CCCCCCA

C

26666664
�o 0 � 0 � 0

0 �o 0 � 0 �

� 0 �u 0 � 0

0 � 0 �u 0 �

� 0 � 0 �v 0

0 � 0 � 0 �v

37777775

0BBBBBB@
q1
q2
q3
q4
q5
q6

1CCCCCCA D
0BBBBBB@
0

0

0

0

0

0

1CCCCCCA

(18)

with,�o D !2o C�� �
2

4
; �u D !2uC�� �

2

4
; �v D !2vC�� �

2

4
,

and � D �u D �v is the normalized coupling stiffness considering
that mu D mv D mo. Thus, Eq. (18) is written in a compact form
as:

RqCG.�/ PqCK.�/q D 0 (19)

corresponding to a set of second-order linear ODE with constant
coefficients with:

P�1P D I6
G.�/ D 2P�1 PP
K.�/ D P�1 RPC P�1 QK.�; t/P

(20)

and for which a stability analysis of the equilibrium solution q D 0
becomes straightforward [30].

3.3.1 Linear stability analysis and mode types
First, Eq. (19) is expressed in its state-space form:

Pz.t/C Az D 0 (21)

where

z D
�

q
Pq
�

and A D
�

0 �I
K.�/ G.�/

�
The stability of the fixed-point is then addressed through Floquet
theory by computing the eigenvalues of the transformation matrix
A in Eq. (21). For a pair .�; �/, the equilibrium position becomes
unstable when one of the eigenvalues show a strictly positive real
part.

The stability chart in Fig. 11 is computed with respect to �
and �, as the modal properties of the bladed-disk and casing are

not considered as variables: unstable responses are represented in
red, the color being proportional to the magnitude of the associ-
ated eigenvalue real part. Two unstable zones denoted A and B
correspond to the coupling of the casing modes with the 1-nodal
diameter bladed-disk and suspension modes respectively, where
the range of the associated unstable rotational speeds increases
with �. As detailed in [29], this instability is a parametric res-
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0
0
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1
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�
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N
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]
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Figure 11. Stability analysis: [ ] unstable configurations
and [ ] example point

onance which depends on the � and � parameters considered,
as well as the eigenvalues of both bladed-disk and casing. It
is worth noticing that co-rotating modes do not yield unstable
configurations, as both unstable zones emanate from the linear
modal coincidence condition (14) calculated in the previous sec-
tion .�cr

1 ' 1:05 and �cr
susp ' 2:6/.

The stability diagram 11 suggests that structural changes ei-
ther on the bladed-disk or on the casing can shift �cr

1 out of the
operating range in order to avoid instabilities. The stiffness of the
frame and bearings between the two structures not only appears
to modify the band width of the predicted unstable speeds but
it also introduces a shift in the first unstable configuration. The

1 1:5 2 2:5

0
1

2
3

�

=.
�
/

(a) Imaginary part

1 1:5 2 2:5

�5
0
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�

<.
�
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(b) Real part

Figure 12. Evolution of eigenvalues for � D 500 N=m

imaginary and real parts of the eigenvalues corresponding to the
blue line in Fig. 11 are depicted in Fig. 12. For a given pair .�;�/
leading to unstable motions, three types of modes actually coexist:
oscillatory, damped and divergent modes.
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3.3.2 Coupled modes and contact initiation
To obtain a visual representation of the bladed-disk/casing system
coupled modes, the resulting modal displacements in the time-
invariant modal space must be recast into the original physical
space. This is of particular interest for the appropriate characteri-
zation of the contact initiation: direction of contact with respect
to the shaft displacement and types of waves traveling along the
casing and the bladed-disk. The following steps summarize the
projection procedure:
1. Complex modal analysis of A in Eq. (21) for a pair .�;�/.
2. Dynamics of a selected mode in time with appropriate initial

conditions.
3. Projection of the modal solution into associated Qu coordinates

using Eq. (16).
4. Projection into the initial physical space x through modeshapes
QV in Eq. (4) to obtain the corresponding bladed-disk and casing
modal displacements.
The mode considered in the projection is the divergent one,

arising from the selected .�;�/ parameters that render the equilib-
rium solution unstable, which are represented by the blue circle in
Fig. 11. The associated time-response is projected into physical
coordinates through the above procedure. As expected from the
stability analysis, this divergent mode is characterized by a back-
ward traveling wave on the bladed-disk and a forward rotating one
on the casing, whose deformed shapes are displayed in Fig. 13 and
are similar to those of the uncoupled system illustrated in Fig. 9(a).

Indeed, in Fig. 14(c), the comparison between the shaft phase
and the smallest operating clearance phase shows how the two
structures vibrate in phase and how contact takes place in the same
side of the shaft displacement. This contact configuration is in
agreement with the kinematic predictions of linear modal coinci-
dence given in Figs. 9(b) for the standard contact scenario. The
corresponding divergent whirling orbits are depicted in Figs. 14(a)
and 14(b) where the blue arrow indicates the whirling direction.
It is shown how a (growing) backward traveling wave in the ro-
tating frame translates into a (growing) forward traveling wave in
the static frame because of the bladed-disk rotation. Therefore,
instabilities induced by the frame/bearing flexibility might initiate
interactions between the casing and bladed-disk, which potentially
develop into modal interactions in the sense of [10, 15].

4. Contact simulations
Various mechanisms affect the blade-to-casing clearances in ser-
vice [6]. These are classified into axisymmetric and asymmetric
clearance changes, the former being caused by uniform loads on
both casing and rotor (e.g. centrifugal loads) and the latter by
non-uniform loads generally acting on the stationary components
(e.g. casing ovalization due to thermal gradients, in-take flow aero-
dynamic loads). In this context, two contact configurations, both
leading to asymmetric clearance changes and potentially produc-
ing harmful interactions are now investigated: (1) initial casing
distortion, where an external static load is applied on the casing
and (2) mass imbalance on the bladed-disk.

4.1 Solution algorithm
The numerical procedure implemented in this investigation can be
described by the following steps:
1. A perturbation is applied to the system to absorb the initial

blade-tip clearance ı and initiate contact, either:
� The casing is distorted along a 1-nodal diameter during a

short time interval; the two structures are then left free to
interact.
� A mass imbalance force is applied to the bladed-disk.

2. Equations of motion are solved through an explicit time-marching
scheme [10] and can be treated in two bases:
� In the physical space through Eq. (1) as in [23].
� In the truncated modal space through Eq. (10), where the

proposed formulation of frame/bearings coupling can be
incorporated.

3. If the frame/bearings coupling is included in the formulation,
the stiffness matrix in Eq. (9) is calculated at each time-step.

4. When a penetration is detected, the contact forces fcn are com-
puted using a Lagrange multipliers method in the physical
space [31].

5. Friction is accounted for through a Coulomb law and sliding is
assumed.

Based on previous work [10], the solution algorithm 1 is used to
compute the time response of the system.

Input:
� geometrical and mechanical properties of casing and bladed-disk
� reduction basis: �
� coupling stiffness: �
� simulation parameters: speed range, time-step, simulation time Ttot,
� perturbation for contact initiation, either:

– casing distortion: k, amplitude, loading duration
– mass imbalance: amplitude

� initial conditions
for � D �i W �f do

Initialization
for t D 0 W Ttot do

if � ¤ 0 – then
computation of coupling stiffness matrix;

end
prediction of displacements (physical or modal);
blade-tips to casing gap calculation;
if penetration detected – then

contact forces (Lagrange multipliers);
friction forces (Coulomb law);
if modal truncation – then

forces projection to modal space
end
displacements correction (physical or modal);

end
time increment;

end
end
Output:
� bladed-disk and casing displacements .xbd; xc/

� contact forces .fcn/

Algorithm 1: Simulation procedure

4.2 Space-time discretization convergence
In order to ensure the accuracy of the results, a convergence study
was carried out with regards to the spatial and temporal discretiza-
tion. In this sense, two parameters are of interest: the size of the
reduced-order model � and the time-step�t in the time integration
procedure.

The nonlinearity of the contact force and the explicit nature of
the time-stepping scheme make the algorithm strongly sensitive
to the time-step size. Convergence is reached in displacements
and contact forces for �t D 10�6 s which is preserved for all
simulations performed in this investigation.

Similarly, convergence is verified for increasing �. As in [32],
where the notion of motion convergence is introduced, asymp-
totic convergence is not perfectly achieved in displacements but is
reached in the types of motion detected even for a small reduction
basis, since the lower frequency modes have a major participation
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Figure 14. Center node motion characteristics: � D 1:17
and � D 500 N=m

in the response. The value � D 110 is kept for the rest of the
study, giving a good approximation in terms of the bladed-disk
eigenfrequencies in the Craig-Bampton space when compared to
those of the full FE-model, reaching a relative error lower than
0:75 % for the first five families of modes.

4.3 Results and discussion
The nonlinear dynamics of the bladed-disk/casing system is first
investigated in the full space (Eq. (2)) with respect to the above-
mentioned perturbation mechanisms and where the frame/bearings
coupling is omitted as in [23]. The system response is then consid-
ered in the reduced-order modal basis through Eq. (10), where the
effects of the kinematic constraints imposed by the modal projec-
tion are discussed and the role of the frame/bearings coupling is
addressed.

4.3.1 Scenario A: contact initiation through casing dis-
tortion

The first scenario involves a casing statically distorted into a k-
nodal diameter shape in order to absorb the initial blade-tip clear-
ance [23]. A casing ovalization .k D 2/ generates a symmetric
response on the rotor with two diametrically opposed blades ex-

hibiting an identical response: this results into a zero displacement
of the center node and is not further discussed. Instead, it is as-
sumed that the casing distortion is along a 1-nodal diameter shape,
which may be caused by aerodynamic loads at take-off [6] and
which seems to favor high-amplitude whirling motions as reported
in [23] where three motion types are predicted:
Divergent motion Vibration amplitudes increase in time, thus

involving whirling orbits of growing amplitude: this is the
most critical scenario.

Sustained motion Intermittent contacts lead to a shaft whirling
orbit of almost constant amplitude with a radius of about the
initial gap ı. This motion type is generally witnessed for
rotational speeds close to critical regimes and the associated
vibration amplitudes are sufficiently large to generate high-
cycle fatigue issues.

Damped motion It is characterized by decreasing vibratory am-
plitudes in time subsequently producing a loss of contact. The
interaction is limited to the transient part of the response.

Parameter Value
simulation time Ttot D 3 s

coupling � D 0 N=m
gap ı D 1 mm

friction coefficient � D 0:1
rotational speeds � 2 Œ0:95 I 2�
casing distortion k D 1

modal force F c D 30 kN

Table 2. Simulation parameters - scenario A

The simulations are carried out considering the parameters
listed in Tab. 2, where the structural coupling � is set to zero.
The resulting frequency response of the bladed-disk is depicted
in Fig. 15, evaluating the center node displacements .F xo/. The
FFT is computed once the transient response is damped out. This
figure features a first group of critical speeds around the linearly
predicted one �cr

1 ' 1:05 for which the highest amplitudes are
reached. In general, it is shown that the dynamics is mainly driven
by the first family of modes regardless of the rotational speed, with
a minor contribution of the suspension modes and a negligible
participation of all other modes. Other critical interactions are also
detected—denoted �cr

nl in Fig. 15—that cannot be predicted by the
linear modal coincidence criterion.

The linear modal interaction at �cr
1 is further analyzed in

Fig. 16 where the associated whirling orbits of the shaft are de-
picted. The interaction is characterized by a backward whirl in
the rotating frame and the whirling direction is unchanged in the
static frame. However, since the first eigenfrequency of the casing
!c
1 is very low and the resulting critical speed �cr

1 is very close
to !bd

1 , the precessional motion of the shaft is almost inexistent
in the static frame as shown in Fig. 16(b). The spectrogram of
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Figure 15. Frequency response of center node for casing distortion
excitation
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Figure 16. Center node orbit .umax
ro
' 3:6 mm/: � D 1:05 and

� D 0 N=m. Blue arrows indicate whirling direction and the bladed-
disk rotation is counter-clockwise

the response is displayed in Fig. 17(a) along with the modal strain
energy associated to the first family of modes, the suspension
modes and the global response of the bladed-disk in Fig. 17(b).
This energy is calculated as:

SEbd D 1

2
xbd TKxbd D 1

2
ubd Tƒubd with ƒ D VTKV (22)

where ubd contains the modal contributions of specific modes6 and
ƒ the eigenvalues associated to the eigenmodes V of the system.

Spectrogram 17(a) shows how the suspension modes have
a non-negligible contribution during the transient part of the re-
sponse t 2 Œ0 s I 0:5 s� while the remaining of the response lies on
the 1F modal family. This is consistent with the energy distribu-
tions in Fig. 17(b) where it is clear that the 1-nodal diameter mode
is responsible for the divergence (as expected), with a very rapid
growth in amplitude after t D 1:8 s. It is also shown that the k D 0
mode is present in the divergent part of the response along with
the suspension modes, while all other nodal diameters do not seem
to participate. However, during the transient part of the response
higher order modes also participate in the response, as it may be
seen that the 1F modal family and the suspension modes cannot
account for the total strain energy.

Further post-processing of the other critical interactions men-
tioned above result in a very similar behavior in terms of strain
energies, vibration amplitudes and frequency content, not shown
here for the sake of brevity. However, as depicted in Figs. 18(a)
and 18(b) for �cr

nl D 1:39, a backward whirling orbit is obtained
in the rotating frame similar to the case of �cr

1 , which is translated
into a forward traveling one in the static frame due to the higher
rotational speed. In this particular case, the 1-nodal diameter of

6All modes are considered when calculating the global strain energy
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Figure 17. Results for initial casing distortion at � D 1:05
and � D 0 N=m
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Figure 18. Results for initial casing distortion at � D 1:39
and � D 0 N=m

the 1F modal family of the bladed-disk interacts with the 5th-
super-harmonic in time of the 1-nodal diameter mode of the casing
.!c D 5!c

1/. This type of interaction cannot be predicted by the
linear modal coincidence criterion (14) but exhibits a similar order
of magnitude in terms of displacements than those detected for�cr

1 ,
hence being just as critical from a structural integrity perspective.
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In terms of contact location versus shaft displacement, it is
shown in the phase comparison depicted in Fig. 18(c) that the sys-
tem responds as in the standard contact scenario described in the
previous section. Although in this case, for the mode responsible
of the divergence whose modeshape is illustrated in Fig. 6(b), the
most elongated blade is not perfectly aligned with the shaft maxi-
mum radial displacement, thus introducing the phase shift between
the two quantities visible in Fig. 18(c). A decrease in the whirling
frequency is also visible in this figure: there are three oscillations
for t 2 Œ2 s I 2:2 s� while there are only two for t 2 Œ2:8 s I 3 s�.
This behavior can be explained by the frequency increase of the
bladed-disk response in the relative frame during the divergent
phase of the simulation, visible in spectrogram 17(a) for� D 1:05,
which translates into a frequency decrease in the fixed frame due
to the wave propagation direction. A similar behavior was ob-
served for all the other divergent interactions detected. Further,
analogous conclusions than in [23] can be drawn for other types of
regimes, as sustained behaviors are observed near critical speeds
and damped motions are attained elsewhere in the rotational speed
range. It should also be noted that the shaft dynamics appeared
to be crucial in the emergence of divergent regimes, as a clamped
center node configuration led only to damped motions with the
same simulation parameters listed in Tab. 2.

4.3.2 Scenario B: contact initiation through mass im-
balance

The mass imbalance is reflected via an external forcing term with
a constant component in the rotating frame and proportional to
the square of the rotational speed. Its magnitude is selected so
that the initial blade-tip clearance is absorbed with the lowest �
value considered in Tab. 2. The main difference with scenario A is
that the zero solution of Eq. (1) no longer exists and therefore, the
former damped regimes cannot be reached. This type of contact
initiation mechanism is only meaningful when extending the scope
of the interactions to whirl motions and hence could not be studied
with a rigid shaft assumption considered in [10].
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Figure 19. Frequency response of center node for mass imbalance
excitation

The same post-processing strategy as for scenario A is consid-
ered. The frequency response of the shaft is depicted in Fig. 19
over the entire rotational speed range without accounting for the
frame/bearings coupling but with the input parameters listed in
Tab. 2. In this figure, the same colormap as in Fig. 15 is used in
order to highlight the change in vibration amplitudes, which are
generally smaller than those obtained when a modal interaction
arises. The shaft is shown to respond mainly on the suspension
modes and the 1F modal family, and some interaction regimes are
detected for � 2 Œ1:42 I 1:75� where the amplitudes become of the
same order of magnitude as in the first configuration.

For the critical speed �cr
1 , the shaft displacements in the rotat-

ing frame are depicted in Fig. 20(a) along with the whirling orbit

in the static frame in Fig. 20(b). The shaft whirls in an circular
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Figure 20. Results for mass imbalance load at� D 1:05 and � D 0 N=m

co-rotating orbit of about 1:1 mm radius with oscillations in the
order of 0:1 mm. The associated state-space orbit in Fig. 20(c),
defined by the lateral shaft displacements Xo and velocities PXo,
clearly shows that once the transient part of the response damps out
.t > 1:1 s/ the solution reaches a stable limit cycle. This is further
highlighted in the Poincaré map 20(d), defined in the state-space
.Xo; PXo/ with a sampling frequency equal to the rotational speed
� D 1:05, where the limit cycle oscillation of the steady-state
response evolve in a highly localized zone of the .Xo; PXo/ plane,
thus suggesting that the shaft exhibits an almost perfectly periodic
motion. In fact, the strain energy distribution depicted in Fig. 20(e)
shows how the mass imbalance load mainly excites the suspension
modes while the remaining of the strain energy is localized on
the 1-nodal diameter mode, all other modes having a negligible
contribution to the overall dynamics. It is expected for the mass
imbalance to mainly excite the suspension modes in a linear frame-
work, yet in the nonlinear framework introduced by the unilateral
contact constraints, all modes of both structures tend to be excited
by the contact loads. For the current models, at the predicted
modal coincidence speed, the arising rotor/stator interactions do
not seem to develop into divergent regimes and are well contained
by the surrounding casing (vibration levels are in the order of

11



10 µm for the casing). It appears that the energy levels stabilize
after t ' 1:1 s as steady-state is reached and are about ten times
lower in comparison to Fig. 17(b), where for the same rotational
speed, the transient excitation develops into a modal interaction
resulting into a continuous growth of vibration amplitudes.

The blade-to-casing distances are displayed in Figs. 21(a)
and 21(b) where it is shown that: several blades remain in per-
manent contact; two blades exhibit intermittent contacts and the
remaining ones vibrate freely, solely excited by the disk coupling
with the neighboring blades. This behavior is consistent with the
findings reported in [20, 21], where the resulting contact loads are
almost constant on the bladed-disk and act as rotating loads on the
casing. However, in [21], these operating conditions appeared to
induce a growth of vibration amplitudes on both structures at the
modal coincidence speed, combining the whirling motion of the
shaft with a 2-nodal diameter wave on the casing and the blades.
This major difference with respect to the behavior observed in
the current investigation might be explained by the rigid disk as-
sumption and the clamped boundary conditions imposed at the
blades foot in [21], and as suggested in [32], by the strong kine-
matic constraints induced on the models in [21] which tend to
artificially favor the detection of modal interactions. Additionally,
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Figure 21. Contact characteristics: � D 1:05 and � D 0 N=m

in the phase comparison depicted in Fig. 21(c), it is shown how
unilateral contact takes place in the same direction as the shaft
displacement once a steady-state is reached. These observations
are in agreement with the kinematic predictions given in the previ-
ous section in Fig. 9(b) and indicate that the imbalance is prone to
initiate contact in the expected standard direction.

Nevertheless, some high-amplitude interaction regimes are in-
deed detected for � 2 Œ1:42 I 1:75�. It is proposed in the following
to further characterize the system response in this speed range and
determine whether or not divergent regimes are observed. In the
energy distribution for � D 1:6 shown in Fig. 22, it is clearly
visible how the energy levels are much higher than those depicted
in Fig. 20(e) for � D 1:05 and are in the same order of magnitude
than when a modal interaction arises in Fig. 17(b). The main dif-

ference between the two types of interactions is that the vibrations
are contained by the casing when a mass imbalance is the source
of excitation, while the vibrations grow exponentially when modal
coincidence occurs. Indeed, as displayed in Fig. 22, a rapid growth

0 0:5 1 1:5 2 2:5 3

0
2
0
0

4
0
0

6
0
0

8
0
0

t [s]

S
E

[J
]

Figure 22. Strain energy at � D 1:6 and � D 0 N=m: total [ ],
k D 0 [ ], k D 1 [ ], other k [ ] and susp. [ ]

in the strain energy is detected after t D 0:5 s, reaching a peak in
amplitude of about 800 J over the time interval t 2 Œ1:8 I 2:2� s and
decaying to a minimum by the end of the simulation7. As for the
modes participating this interaction, it is shown that: besides the
contribution of the suspension modes which are dominant during
the first 0:2 s of the response and exhibit rather constant energy
levels throughout the rest of the simulation, a major influence of
the k D 0 and k D 1modes is noted during the transient growth in
energy levels as well as a non-negligible participation of all other
harmonics throughout the entire response.

4.3.3 Sensitivity to the frame/bearings coupling
Lastly, the nonlinear dynamics of the bladed-disk/casing reduced-
order coupled model are investigated with respect to the two
loading scenarios discussed above for the full uncoupled sys-
tem, the main objective being to characterize the influence of
the frame/bearings stiffness � on the interactions detected.

Casing distortion excitation The linear modal coincidence
captured in the full space at�cr

1 depicted in Figs. 16 and 20, is also
detected in the reduced space as shown in Fig. 23 for � D 0 N=m,
since the modes kept in the truncation are those having a major
participation in the system response. It may be seen in this figure,
in agreement with prior observations, how the 1-nodal diameter
mode is the one responsible for the divergence. It is followed
by a very rapid growth in amplitude of the suspension modes
strain energy, which generate a far more aggressive response than
with the full system. Indeed, as explained in [32], the kinematic
restrictions imposed by the modal projection artificially favor the
initiation of high-amplitude interactions.

The sensitivity of the bladed-disk response to the frame/bearings
coupling stiffness � is analyzed in Fig. 24, where the maximal
displacement of the center node is displayed for rotational speeds
near �cr

1 and three different values of � D Œ0 I 500 I 1000� N=m. It
is shown in this figure how the structural coupling introduces a
stiffening of the system and produces a shift in the modal interac-
tion speed, as would be expected from the stability analysis carried
out in section 3.3. The frequency content and energy distributions,
as well as the contact direction with respect to the shaft displace-
ments, are not affected by the coupling and again the 1-nodal
diameter of the 1F family generates the divergences.

7These simulations were conducted over larger simulation times and vibration
levels stabilize at the same order of magnitude as for� D 1:05. For this source
of excitation, no divergent regimes were detected.
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Figure 23. Results for casing distortion excitation at � D 1:05 and
� D 0 N=m
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Figure 24. Maximal shaft displacements near �cr
1 : � D 0 N=m [ ],
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Mass imbalance excitation The coupling matrix seems to
have a negligible influence on the system response. As depicted
in Fig. 25(a), very similar shaft displacements are obtained at �cr

1

for all values of � D Œ0 I 500 I 1000� N=m tested. Similar than
for the full system, these displacements correspond to a forward
whirling circular orbit in the static frame of about 1:2 mm radius
with oscillations in the order of 0:1 mm. As for the modal defor-
mations illustrated in Fig. 25(c), these are also in agreement with
prior observations in terms of energy levels and localization, since
the suspension modes are largely dominant throughout the entire
response. Also, regarding the interactions encountered in the speed
range� 2 Œ1:42 I 1:75� for scenario B, these could not be observed
in the truncated modal space, since they were characterized by
a transient growth of vibration amplitudes and a non-negligible
participation of all the 1F harmonics, in particular the k D 0 and
k D 1 as was shown in Fig. 22. Instead, divergent regimes were
obtained for � > 1:52 where, as illustrated in Fig. 26, the strain
energy distribution and associated magnitudes become similar to
those of modal interactions (c.f. figure 23(c)). This indicates that
the truncation modal basis chosen in Eq. (4) is not sufficiently rich
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Figure 25. Results for mass imbalance excitation at � D 1:05
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Figure 26. Strain energy for � D 0 N=m at � D 1:65: total [ ],
k D 1 [ ] and susp. [ ]

to capture the overall system behavior.
These observations suggest that the frame/bearings coupling

between casing and bladed-disk plays a major role in the modal
interaction regimes detected in scenario A and in the subsequent
high-amplitude precessional motions of the shaft, and has a limited
influence in the system behavior when a mass imbalance is the
source of excitation. The modal truncation basis proved to be suf-
ficient to capture the dominant dynamics of the system in scenario
A. However, even if this basis is appropriate in scenario B for small
rotational speeds, for � > 1:52 non-physical divergences were
reached regardless of the coupling stiffness � considered due to
the strong kinematic constraints imposed by the modal projection.

5. Conclusions and perspectives
This study focuses on the occurrence of shaft precessional motions
induced by unilateral blade/casing contacts in a two-spool commer-
cial engine fan stage. A 2D in-plane FE-model representative of a
bladed-disk/casing system is built, where the flexibility of the shaft
is represented by a pair of linear springs linked to the center of
the disk which drive the so-called suspension modes. Additionally,
it is proposed to model the structural link between bladed-disk
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and casing provided by the fan frame and the bearings through
an array of linear springs. The associated methodology, based on
the derivation of Hamilton’s principle for the calculation of the
corresponding coupling stiffness matrix, involves a truncated set of
modes utilized for the projection of the equations of motion. This
coupling stiffness matrix contains time-periodic coefficients which
can be eliminated through a change of frame in order to carry
out a linear modal analysis, from which the stability of the zero
solution revealed two unstable zones where damped, oscillatory
and divergent modes coexist.

By means of a time-marching strategy, the unilateral contact
interactions between these flexible structures are initiated via two
distinct mechanisms: (1) a prescribed casing distortion and (2) a
mass imbalance on the bladed-disk. The shaft dynamics proved
to have a key role in producing potentially harmful regimes, in
particular in the former scenario which can lead to divergent modal
interactions. For most of the interactions detected, the shaft pre-
cessional motion takes the form of a backward traveling wave in
the rotating frame which is translated into a forward traveling one
in the static frame. Through a projection from physical to cyclic
coordinates and the calculation of the associated modal strain en-
ergy, it is shown how the 1-nodal diameter mode of the first modal
family of the bladed-disk is dominant when a modal interaction
occurs, while the suspension modes have a major role when a mass
imbalance is the source of excitation.

In the truncated modal space, the nonlinear dynamics of the
reduced-order coupled system are studied considering both loading
scenarios. The modal projection proved to be suitable for the
detection of modal interactions initiated by the casing distortion,
where the frame/bearings stiffness appeared to introduce a shift in
the detected critical speeds in agreement with the linear stability
predictions. However, when a mass imbalance is the source of
excitation, the obtained results are shown to be valid up to a
certain speed .� > 1:52/ beyond which only divergent regimes
are observed, as the strong kinematic constraints induced by the
modal projection do not allow to capture the behavior of the full
system where an important contribution of all harmonics is noted.

These qualitative observations set a basis for two different
research tracks which are currently being pursued: firstly, one
regards an extension of the coupling matrix to all nodal diameter
modes in order to avoid the modal truncation and study the dy-
namics of the fully coupled structures. This will enable to better
comprehend the influence of the coupling stiffness in the detected
interactions and a generalization of the stability analysis here pre-
sented. Geometric nonlinearity effects are also to be included in
the formulation. The second track concerns the implementation
of 3D industrial bladed-disk/casing models, which exhibit more
realistic and complex veering behaviors, that will allow to account
for out-of-plane motions and for the whirling conical component
induced by the shaft bending. This type of model will also include
centrifugal and gyroscopic effects, which are neglected in this
two-dimensional study, and the role of the abradable coating wear
on the high-amplitude shaft precessional motions arising from the
contact events will be investigated.

Acknowledgements

Thanks go to SNECMA for its technical and financial support.
This work takes place in the framework of the MAIA mechanical
research and technology program sponsored by CNRS, ONERA
and SAFRAN Group.

References

[1] J.C. Williams and E.A. Starke Jr. “Progress in structural materials for
aerospace systems”. Acta Materialia 51.19 (2003), pp. 5775–5799.
DOI: 10.1016/j.actamat.2003.08.023.

[2] R.S. Félix Patrón, Y. Berrou, and R.M. Botez. “New methods of
optimization of the flight profiles for performance database-modeled
aircraft”. Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering (2014), pp. 1–15.
DOI: 10.1177/0954410014561772.

[3] J. Sobieszczanski-Sobieski and R.T. Haftka. “Multidisciplinary aero-
space design optimization: survey of recent developments”. Struc-
tural Optimization 14.1 (1997), pp. 1–23.
DOI: 10.1007/BF01197554.

[4] J.D Mattingly, W.H. Heiser, and D.T. Pratt. Aircraft engine design.
Ed. by J.S. Przemieniecki. 2nd Edition. AIAA Education Series,
2002.

[5] R. Howard and S.L. Puterbaugh. “Performance impact of tip clear-
ance variation on a transonic, low aspect ratio, axial compressor
stage”. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
2014.
DOI: 10.2514/6.2014-3439.

[6] S.B. Lattime and B.M. Steinetz. “High-pressure-turbine clearance
control systems: current practices and future directions”. Journal of
Propulsion and Power 20.2 (2004), pp. 302–311.
DOI: 10.2514/1.9255.

[7] A.R. Bartha. “Dry friction backward whirl of rotors”. PhD thesis.
Swiss Federal Institute of Technology, Zurich, Switzerland, 2000.
DOI: 10.3929/ethz-a-004130993.

[8] A. Batailly, M. Legrand, A. Millecamps, and F. Garcin. “Numerical-
experimental comparison in the simulation of rotor/stator interaction
through blade-tip/abradable coating contact”. Journal of Engineering
for Gas Turbines and Power 134.8 (2012).
DOI: 10.1115/1.4006446. OAI: hal-00746632.

[9] A. Muszynska. “Whirl and whip–Rotor/bearing stability problems”.
Journal of Sound and Vibration 110.3 (1986), pp. 443–462.
DOI: 10.1016/S0022-460X(86)80146-8.

[10] M. Legrand, C. Pierre, P. Cartraud, and J.P. Lombard. “Two-dimen-
sional modeling of an aircraft engine structural bladed disk-casing
modal interaction”. Journal of Sound and Vibration 319.1-2 (2009),
pp. 366–391.
DOI: 10.1016/j.jsv.2008.06.019. OAI: hal-00328186.

[11] J. Jiang, H. Ulbrich, and A. Chavez. “Improvement of rotor perfor-
mance under rubbing conditions through active auxiliary bearings”.
International Journal of Non-Linear Mechanics 41.8 (2006), pp. 949–
957.
DOI: 10.1016/j.ijnonlinmec.2006.08.004.

[12] J. Sweet and J. Genin. “Non-linear rotor bearing behavior”. Interna-
tional Journal of Non-Linear Mechanics 7.4 (1972), pp. 407–418.
DOI: 10.1016/0020-7462(72)90034-0.

[13] D.W. Childs. Turbomachinery rotordynamics: phenomena, modeling,
and analysis. Wiley-Interscience, 1993.

[14] N. Salvat, A. Batailly, and M. Legrand. “Modeling of abradable coat-
ing removal in aircraft engines through delay differential equations”.
Journal of Engineering for Gas Turbines and Power 135.10 (2013).
DOI: 10.1115/1.4024959. OAI: hal-00879815.

[15] P. Schmiechen. “Travelling Wave Speed Coincidence”. PhD thesis.
Imperial College of Science, Technology and Medicine, 1997.

[16] National Airlines Inc. Aircraft accident report: DC-10-10, N60N4.
Tech. rep. NTSB-AAR-75-2. National Transportation Safety Board,
1973.

[17] M. Legrand, A. Batailly, and C. Pierre. “Numerical investigation of
abradable coating removal in aircraft engines through plastic consti-
tutive law”. Journal of Computational and Nonlinear Dynamics 7.1
(2012).
DOI: 10.1115/1.4004951. OAI: hal-00627526.

14

http://dx.doi.org/10.1016/j.actamat.2003.08.023
http://dx.doi.org/10.1177/0954410014561772
http://dx.doi.org/10.1007/BF01197554
http://dx.doi.org/10.2514/6.2014-3439
http://dx.doi.org/10.2514/1.9255
http://dx.doi.org/10.3929/ethz-a-004130993
http://dx.doi.org/10.1115/1.4006446
http://hal.archives-ouvertes.fr/hal-00746632
http://dx.doi.org/10.1016/S0022-460X(86)80146-8
http://dx.doi.org/10.1016/j.jsv.2008.06.019
http://hal.archives-ouvertes.fr/hal-00328186
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.08.004
http://dx.doi.org/10.1016/0020-7462(72)90034-0
http://dx.doi.org/10.1115/1.4024959
http://hal.archives-ouvertes.fr/hal-00879815
http://dx.doi.org/10.1115/1.4004951
http://hal.archives-ouvertes.fr/hal-00627526


[18] J. Padovan and F. K. Choy. “Nonlinear Dynamics of Rotor-Blade-
Casing Rub Interactions”. Journal of Turbomachinery 109.4 (1987),
pp. 527–534.
DOI: 10.1115/1.3262143.

[19] H. Ma, X. Tai, Q. Han, Z. Wu, D. Wang, and B. Wen. “A revised
model for rubbing between rotating blade and elastic casing”. Journal
of Sound and Vibration 337 (2015), pp. 301–320.
DOI: 10.1016/j.jsv.2014.10.020.

[20] N. Lesaffre, J.-J. Sinou, and F. Thouverez. “Contact analysis of a
flexible bladed-rotor”. European Journal of Mechanics - A/Solids
26.3 (2007), pp. 541–557.
DOI: 10.1016/j.euromechsol.2006.11.002. OAI: hal-00322887v2.

[21] M.O. Parent, F. Thouverez, and F. Chevillot. “Whole engine interac-
tion in a bladed rotor-to-stator contact”. Proceedings of the ASME
Turbo Expo Conference. GT2014-25253. Düsseldorf, Germany, June
2014.
DOI: 10.1115/GT2014-25253. OAI: hal-01223063.

[22] M.O. Parent, F. Thouverez, and F. Chevillot. “3D interaction in
bladed rotor-to-stator contact”. Proceedings of EURODYN 9th Inter-
national Conference on Structural Dynamics. Porto, Portugal, 2014.
OAI: hal-01223447.

[23] N. Salvat, A. Batailly, and M. Legrand. “Two-dimensional modeling
of shaft precessional motions induced by unilateral blade/casing
contacts in aircraft engines”. Proceedings of the ASME Turbo Expo
Conference. GT2014-25688. Düsseldorf, Germany, June 2014.
DOI: 10.1115/GT2014-25688. OAI: hal-01090671.

[24] R. Craig Jr. and M. Bampton. “Coupling of substructures for dynamic
analysis”. AIAA Journal 6.7 (1968), pp. 1313–1319.
DOI: 10.2514/3.4741.

[25] D.L. Thomas. “Dynamics of rotationally periodic structures”. Inter-
national Journal for Numerical Methods in Engineering 14.1 (1979),
pp. 81–102.
DOI: 10.1002/nme.1620140107.

[26] R. Bladh. “Efficient predictions of the vibratory response of mistuned
bladed disks by reduced order modeling”. PhD thesis. University of
Michigan, 2001. OAI: tel-00358168.

[27] C-H. Kim, H.S. Cho, and H.G. Beom. “Exact solutions of in-plane
natural vibration of a circular plate with outer edge restrained elasti-
cally”. Journal of Sound and Vibration 331.9 (2012), pp. 2173–2189.
DOI: 10.1016/j.jsv.2011.12.027.

[28] A. Batailly, M.B. Meingast, and M. Legrand. “Unilateral contact
induced blade/casing vibratory interactions in impellers: Analysis for
rigid casings”. Journal of Sound and Vibration 337 (2015), pp. 244–
262.
DOI: 10.1016/j.jsv.2014.10.010. OAI: hal-01120157.

[29] V.E. Shapiro. “Rotating class of parametric resonance processes in
coupled oscillators”. Physics Letters A 290.5-6 (2001), pp. 288–296.
DOI: 10.1016/S0375-9601(01)00693-4.

[30] L. Meirovitch. Computational methods in structural dynamics. 5.
Springer Science & Business Media, 1980.

[31] N.J. Carpenter, R.L. Taylor, and M.G. Katona. “Lagrange constraints
for transient finite element surface contact”. International Journal
for Numerical Methods in Engineering 32.1 (1991), pp. 103–128.
DOI: 10.1002/nme.1620320107.

[32] A. Batailly, M. Legrand, P. Cartraud, and C. Pierre. “Assessment
of reduced models for the detection of modal interaction through
rotor stator contacts”. Journal of Sound and Vibration 329.26 (2010),
pp. 5546–5562.
DOI: 10.1016/j.jsv.2010.07.018. OAI: hal-00524762.

15

http://dx.doi.org/10.1115/1.3262143
http://dx.doi.org/10.1016/j.jsv.2014.10.020
http://dx.doi.org/10.1016/j.euromechsol.2006.11.002
http://hal.archives-ouvertes.fr/hal-00322887v2
http://dx.doi.org/10.1115/GT2014-25253
http://hal.archives-ouvertes.fr/hal-01223063
http://hal.archives-ouvertes.fr/hal-01223447
http://dx.doi.org/10.1115/GT2014-25688
http://hal.archives-ouvertes.fr/hal-01090671
http://dx.doi.org/10.2514/3.4741
http://dx.doi.org/10.1002/nme.1620140107
http://tel.archives-ouvertes.fr/tel-00358168
http://dx.doi.org/10.1016/j.jsv.2011.12.027
http://dx.doi.org/10.1016/j.jsv.2014.10.010
http://hal.archives-ouvertes.fr/hal-01120157
http://dx.doi.org/10.1016/S0375-9601(01)00693-4
http://dx.doi.org/10.1002/nme.1620320107
http://dx.doi.org/10.1016/j.jsv.2010.07.018
http://hal.archives-ouvertes.fr/hal-00524762

	Introduction
	Structural models
	Bladed-disk and casing models
	Craig-Bampton model reduction
	Bearings and frame coupling methodology

	Modal analysis of the bladed-disk/casing system
	Shaft motions in cyclically symmetric structures
	Modal analysis of the uncoupled structures
	Modal analysis of the coupled structures

	Contact simulations
	Solution algorithm
	Space-time discretization convergence
	Results and discussion

	Conclusions and perspectives

