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Abstract  

Our paper focuses on identification and classification of remarkable Bol algebras class 

generated by exceptional compact symmetric pair g2/so(4) and characterized by the identity (x.y).(z.u)=0. This study is based on a matrix realization of g2 as an algebra of anti-symmetric 

matrixes of order 8 × 8. These matrixes verify a system of invariant identities imposed by 

isomorphism that exists between g2 and the octonions derivations algebra. The aim of the research 

and its results are a part of a common classic investigation approach that specifically targets 

classification of mathematical studied objects . In the treated case of couple g2/so(4), our work 

focuses on Bol Algebras that represent the linear infinitesimal analog of local analytic (left) Bol 

loops generated by the homogeneous space G2/SO(4)  that is symmetric, compact and of rank 2. 

The paper contains a complete list of the monoparametric mentioned algebras families that 

appear as complex solutions of a constructed matrix equations system. 
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1. Introduction 

Introduction of "group" concept by Évariste Galois was surely a great turning point in 

science history [2]. Henri Poincaré wrote: "The concept of group pre-exists in our minds, at least 

potentially. It is imposed on us not as a form of our sensitivity, but as a form of our 

understanding". To statistically estimate the role of "group" in modern sciences, just for example 



consider the number of papers treating groups in a yearly sample of a certain journal. For journal 

Advances in Modeling, series A (year 2005), we find 5 publications about groups [4,20-22,24]. 

Mathematic developments based on group concept had proven efficiency of this fundamental 

being for treating questions of solvability of algebraic equations by radicals, as well as questions 

of constructability using rule and compass in geometry. On footsteps of Galois researches, works 

of Sophus Lie, Felix Klein, Henri Poincaré, Elie Cartan, Wilhelm Killing, and many others, have 

revealed the big importance of concept "differentiable group" in several branches of mathematics 

and mechanics. Particularly, researches of these scientists have shown possibility of adequate 

local infinitesimal approximation of differentiable manifold having a group structure (Lie group), 

using the corresponding tangent space having a linear algebraic structure (Lie algebra). The 

correspondence between the geometric structures (curvilinear) and the algebraic structure (linear) 

is locally one-to-one, what allows application of algebraic methods for local resolution of 

geometric problems. In 1955, Anatoly Mal’cev [7] noticed that theory of Lie could be generalized 

on differentiable manifolds equipped with a diassociative loop structure (in this case, any two 

elements of the manifold generate a sub-group, the tangent space will then be a binary Lie 

algebra). Mal’cev has particularly developed a theory similar to Lie’s one, for differentiable 

manifolds of Moufong loops (diassociative loops that verify the identity said of Moufong: 

z.(x.(z.y))=((z.x).z).y). The obtained algebras in this case are named Mal’cev algebras and are 

characterized by an internal law (.), bilinear, anticommutative, and verifying identity: 

(x.y).(x.z) = ((x.y).z).x + ((y.z).z).x + ((z.x).x).y. 

Based on Lie and Mal’cev theories, as well as on results establishing equivalence between 

homogeneous spaces and loops [13,14], L. Sabinin and P.Mikheev have developed a theory about 

local linear infinitesimal element of the differentiable (left) Bol loop (loop that verifies the left 

identity of Bol: x(y(xz))=(x(yx))z). Notice that Moufang loop could be defined as a loop verifying 

at once the left identity of Bol, as well as the right identity ( ((zx)y)x=z((xy)x)), so that the theory 

of Sabinin-Mikheev generalizes the theory of Mal’cev and a fortiori Lie’s one. We also must 

notice that theory of Sabinin-Mikheev is strongly related to works of M. Akivis and his disciples 

in the area of Bol three webs [1].  

Thus, Bol algebras generalize those of Lie, as well as those of Mal’cev [5,7]. The Lie functor, 

establishing equivalence between the category of local Lie groups and the category of Lie 

algebras, could be generalized, not only in case of local analytic diassociative (resp. Moufang) 

loops, and binary Lie (resp. Mal’cev) algebras, but this functor has also a generalization in cases 

of Bol local analytic loops and Bol algebras [8,15-19]. These latter algebras representing the 

linear infinitesimal analog of local analytic Bol loops, are characterized, contrary to classical 



cases of Lie and Mal’cev, by two internal composition laws; the first one is bilinear, anti-

commutative and expressing the "deviation measurement" of the composition law in the loop 

from the commutativity; the other law is ternary, trilinear, anti-symmetric according to the two 

first arguments, and it expresses the " deviation measurement" loop law from the associativity. 

Symmetric spaces being homogeneous, generalizing the physic-geometric concept of 

symmetry, their linear infinitesimal analogs, Bol algebras, are surely important mathematics 

models for mathematics and physics sciences [13,14]. 

We have already realized the classification of Bol algebras associated to compact symmetric 

spaces of rank 1 [26-28]. Let’s mention, particularly, that in the case of exterior cubic 

automorphism of so(8) (triality automorphism), relatively to the binary law of Bol algebra 

generated by the symmetric pair so(8)/so(7), we obtained the 7-dimensional simple algebra of 

Mal’cev that isn’t of Lie [28]. 

Our paper is devoted to classification of monoparametric families of Bol algebras of 

remarkable class associated to the symmetric couple g2/so(4) and characterized by identity (x.y).(u.v)=0. Addressing the problem is justified by the following factors: 

- Examples of algebras that are of Bol without being of Mal’cev (particularly of Lie) are too 

rare according to our knowledge. Our classification offers a large variety of such algebras. 

- Bol algebras are characterized by 2 internal composition laws, one being binary and the other 

one is ternary. These two laws are weakly linked, and it appears that elaboration of a 

structural theory achieving these algebras is far from being easy [see for example 9-12]. 

Consequently, inductive accumulation of partial and concrete results concerning these 

algebras will be justifiable and inevitable during researches going on elaboration of a 

structural theory. 

- The considered problem is a step towards classification of Bol algebras associated to 

symmetric spaces (particularly to spaces of rank 2). Results must then offer additional 

information on mathematical objects already introduced and adopted by big classics of 

sciences in different mathematical areas. Particularly, the mentioned classification must offer 

linear mathematic structures modeling locally a large variety of "geometric symmetries". 

- Frequent use of octonions and of hyper-complex systems to model physical and mathematical 

problems. 

 

2. Lie triple systems and Bol algebras 

Let T  be a n-dimensional vector space, defined over a commutative field K. We design by ߠ 

the trivial vector of T. 



Definition 1. The vector space T is said a Lie triple system, if there’s a ternary internal 

composition law defined on T: [−, −, −]: ࢀ × ࢀ × ࢀ → ,࢞) ࢀ      ,࢟ (ࢠ → ,࢞] ,࢟  ,[ࢠ
satisfying the following axioms: 

1. the [-,-,-] law is linear for all its arguments, 

,ݔ ∀) .2 ,ݕ ݖ ∈ ,ݔ]   (ܶ ,ݕ [ݖ = ,ݕ]− ,ݔ ,ݔ]  and  [ݖ ,ݔ [ݕ =  ,ߠ

,ݔ ∀) .3 ,ݕ ݖ ∈ ,ݔ]   (ܶ ,ݕ [ݖ + ,ݖ] ,ݔ [ݕ + ,ݕ] ,ݖ [ݔ =  ,ߠ

,ݔ ∀) .4 ,ݕ ,ݖ ,ݑ ݒ ∈ ,ݔ]   (ܶ ,ݕ ,ݖ] ,ݑ [[ݒ = ,ݔ]] ,ݕ ,[ݖ ,ݑ [ݒ + ,ݖ] ,ݔ] ,ݕ ,[ݑ [ݒ + ,ݖൣ ,ݑ ,ݔ] ,ݕ  .൧[ݒ
(If charK  ≠ 2, the two conditions in axiom 2 are equivalent). 

 

Definition 2. The Lie triple system T is said (left) Bol algebra, if there’s a second binary 

internal composition law defined on T: 

                                       
(. ): ܶ × ܶ → ,ݔ) ܶ (ݕ → .ݔ  ,ݕ

satisfying the following additional axioms: 

,ݔ ∀) .5 ݕ ∈ .ݔ  (ܶ ݕ = .ݕ− .ݔ  and  ݔ ݔ =  ,ߠ

6. (∀ ܽ, ܾ, ,ݔ ݕ ∈ ܶ)   [ܽ, ܾ, .ݔ [ݕ = [ܽ, ܾ, .[ݔ ݕ + .ݔ [ܽ, ܾ, [ݕ + ,ݔ] ,ݕ ܽ. ܾ] + (ܽ. ܾ). .ݔ)  .(ݕ
(If charK ≠ 2, the two conditions in axiom 5 are equivalent). 

Let Γ = L⊕E a Lie algebra represented as a direct sum of vector subspaces L and E, where L is a 

subalgebra of Γ and E is a vector subspace.  

 

Definition 3. The pair (L,E) is said symmetric if: 

1: [L,E]⊆E,   2. [E,E]⊆L. 

 

Proposition 1. [6,25] The pair (L,E) is symmetric if and only if it exists an automorphism ߪ: ߁ → (ݔ)ߪ : such that ߁ = ቄݔ      if ݔ−ܮ߳ݔ   if ܧ߳ݔ 

For the proof, see for example [6]. 

 

Proposition 2. If (L,E) is a symmetric pair, the ternary law introduced by relation: [ݔ, ,ݕ [ݖ ≝ ,ݔ]] ,[ݕ ,ݔ) ,[ݖ ,ݕ ݖ ∈  ,(ܧ

equips E with a Lie triple system structure (for the proof, see for example [6]). 



Let T be a Lie triple system. By Endv(T) we designate the space of vector endomorphisms of T. 

 

Definition 4. The linear application ∆:T→T, (∆∈Endv(T)) is said derivation of T, if: (∀ݔ, ,ݕ ݖ ∈ ,ݔ]∆   (ܶ ,ݕ [ݖ = ,ݔ∆] ,ݕ [ݖ + ,ݔ] ,ݕ∆ [ݖ + ,ݔ] ,ݕ  .[ݖ∆
 

N.B. The vector space defined over field K and generated by derivations of T is designed by 

D(T). 

 

Proposition 3. [6,15,25] Equipped with the commutation law [∆ଵ, ∆ଶ] = ∆ଵ∆ଶ − ∆ଶ∆ଵ, (∆1, ∆2 ∈D(T)), 

the vector space D(T) is a Lie algebra. 

For the proof, see for example [6]. 

Let a and b be two elements of a triple system T. Let’s introduce the application Da,b as: ܦ,: ܶ → ݔ ܶ → (ݔ),ܦ ≝ [ܽ, ܾ,  [ݔ
Assume, by definition D0(T) ≝ VectK ൛ܦ,:  ܽ, ܾ ∈ ܶൟ. 

 

Proposition 4. 

1. (∀ܽ, ܾ ∈ ,ܦ   (ܶ ∈ D(T). 

2. D0(T) is a subalgebra of the Lie algebra D(T). 

Proof. 

,ݔ∀) .1 ,ݕ ݖ ∈ ,ߙ∀) (ܶ ߚ ∈ K ݔߙ),ܦ   ( + (ݕߚ = [ܽ, ܾ, ݔߙ + [ݕߚ = ,ܽ]ߙ ܾ, [ݔ + ,ܽ]ߚ ܾ, = [ݕ (ݔ),ܦߙ +   ,(ݕ),ܦߚ

so ܦ, is linear. On the other hand, 

,ݔ],ܦ  ,ݕ [ݖ = ൣܽ, ܾ, ,ݔ] ,ݕ = ൧[ݖ ൣ[ܽ, ܾ, ,[ݔ ,ݕ ൧ݖ + ,ݔ] [ܽ, ܾ, ,[ݕ [ݖ + ,ݔൣ ,ݕ [ܽ, ܾ, ൧[ݖ = ,(ݔ),ܦൣ ,ݕ ൧ݖ ,ݔൣ+ ,(ݕ),ܦ ൧ݖ + ,ݖൣ ,ݕ   ,൧(ݖ),ܦ
hence ܦ, ϵ D(T). 

2. It’s sufficient to prove the stability of D0(T) for the commutation. According to identity 4 

(definition 1), 

,ݔ∀)  ,ݕ ,ݑ ݒ ∈ ,௫,௬ܦ] (ܶ [௨,௩ܦ = ௨,௩ܦ௫,௬ܦ − ௫,௬ܦ௨,௩ܦ = ௩,[௫,௬,௨]ܦ +  .௨,[௫,௬,௩] ϵ D0(T)ܦ



Let’s now introduce the vector space: 

[T,T]⊕T=D0(T)⊕T which is the direct sum of D0(T) and T. Let’s define the composition law on [T,T]⊕T as follows: (∀ܽ, ܾ, ܿ, ݀, ݔ ∈ ܶ) [a,b]=-[b,a]=Da,b=-Db,a, 

   [Da,b, x]=-[x,Da,b]=[a,b,x],              (1) 

   [Da,b,Dc,d]=Da,bDc,d – Dc,dDa,b. 

(the law is propagated on all the space by linearity). 

 

Proposition 5. 

1. For the law introduced by relations (1), the vector space: Γ=[T,T]⊕T=D0(T)⊕T  
is a Lie algebra. 

2. The pair (D0(T),T) is symmetric, i.e. [D0 (T),T]⊆T and [T,T]⊆D0(T). 
The proof is evident. 

Let <E,(.),[-,-,-]> be a Bol algebra over R. 

 

Théorème. (L. Sabinin, P. Mikheev  [15-19]) 

Suppose that (E,(.),[-,-,-]) is a Bol algebra over R; then there exists a finite-dimensional Lie 

algebra Γ over the field R, a subalgebra L in Γ, and a linear imbedding ߮: ܧ →  such that (after߁

identifying ߮(ܧ) with E): 

1. Γ=L⊕E (direct sum of vector spaces), 
2. [[E,E],E] ⊆E, 
,ݔ∀) .3 ,ݕ ݖ ∈  ,x.y=[x,y]E and [x,y,z]=[[x,y],z]  (ܧ

where [x,y] denotes the result of commuting in Γ, and [x,y]E is the projection of vector [x,y] 

parallelly to L onto E. 

 

Definition 5. The vector endomorphism ∆: E→E is said a pseudoderivation of E with the 

companion d∈E, if ([4]): (∀ݔ, ,ݕ ݖ ∈   (ܧ

1) ∆(x.y)=∆(x).y+x.∆(y)+[x,y,d]-(x.y).d, 

2) ∆[x,y,z]=[∆x,y,z]+[x,∆y,z]+[x,y,∆z]. 

Let D and ∆ be two pseudoderivations of E, with respective companions d and ߜ, and let  ߙ, ,ܽ ,R ߳ߚ  ܧܾ߳



Proposition 6. [15-16,18] 

ܦߙ .1 + ݀ߙ is a pseudoderivation of E with companion ∆ߚ +   .ߜߚ

,ܦ] .2 ∆] = ∆ܦ − (ߜ)ܦ is a pseudoderivation of E with companion ܦ∆ − ∆(݀) − ݀.  .ߜ

3. Da,b is a pseudoderivation of E with companion a.b. 

For the proof, see for example [18]. 

Let E be a Bol algebra and define:  ( )0D E =Vect
R

{(Da,b , a.b), a,bϵE} 

and  ( ) ⊕0DΓ = E E = {((Da,b, a.b), x), a,b,xϵE} (direct sum of vector spaces). 

Let’s introduce an internal composition law on Γ as follows: 

۔ۖەۖ
,,ܦቂቀ൫ۓ ܽ. ܾ൯, 0ቁ , ቀ൫ܦ,ௗ, ܿ. ݀൯, 0ቁቃ = ൬ቀൣܦ,, ,,ௗ൧ܦ .ܿ),ܦ ݀) − .ܽ),ௗܦ ܾ) − (ܽ. ܾ). (ܿ. ݀)ቁ , 0൰ቂቀ൫ܦ,, ܽ. ܾ൯, 0ቁ , ൫(0,0), ൯ቃݔ = ቀ(0,0), ,ቁ                                                                               (2)ൣ൫(0,0)(ݔ),ܦ ,൯ݔ ൫(0,0), ൯൧ݕ = (൫ܦ௫,௬, .ݔ ,൯ݕ 0)  

(The law is propagated on Γ by linearity). 

 

Proposition 7. [18] 

1. Equipped with the composition law (2), Γ is a Lie algebra. 

2. The pair ( ( )0D E , E) is symmetric. 

3. The vector subspace L =VectR  ቄቀ൫ܦ,, ܾܽ൯, −ܾܽቁ , ܽ, ܾ ∈  .ቅ is a subalgebra of Γܧ

4. dim L = dim ( )0D E  and L∩E={0}. 

For the proof, see for example [18]. 

 

N.B.*(∀ܽ, ܾ ∈ ,൫(0,0)ൣ  (ܧ ܽ൯, ൫(0,0), ܾ൯൧ = ቀ൫ܦ,, ܽ. ܾ൯, 0ቁ = ቀ൫ܦ,, ܽ. ܾ൯, −ܽ. ܾቁ +        ((0,0), ܽ. ܾ), i.e. ܽ. ܾ = [ܽ, ܾ]ா (projection of [a,b] onto E parallelly to L). 

*(∀ܽ, ܾ, ܿ ∈ ,(ܧ ൣ[ܽ, ܾ], ܿ൧  = ቂൣ൫(0,0), ܽ൯, ൫(0,0), ܾ൯൧, ൫(0,0), ܿ൯ቃ = ቂቀ൫ܦ,, ܽ. ܾ൯, 0ቁ , ൫(0,0), ܿ൯ቃ = ቀ(0,0), ,(ܿ)ቁܦ = [ܽ, ܾ, ܿ] 
 

Consequence. Let Γ=L⊕E a Lie algebra. Suppose that (L,E) is a symmetric pair, where L is a 

subalgebra of Γ and E a vector subspace. Then the binary operation of the Bol algebra E 

associated with pair (L,E) is identified by some subalgebra K of Γ, such that Γ=K⊕E (direct sum 

of vector spaces). The composition laws in E are given by the following formulas: (∀ܽ, ܾ, ܿ ∈  [c ,[a,b]]=[a,b,c]  (ܧ



   a.b = [a,b]E (projection of vector [a,b] onto E parallelly to K). 

 

3. Lie algebra g2. Symmetric pair g2/so(4) 

The g2 algebra is defined as being the Lie algebra of the exceptional compact group G2 of 

automorphisms of octonions O (Cayley numbers). We’ll work with a concrete matrix realization 

of g2. We then fix table 1 of octonions multiplication. 

 e0 e1 e2 e3 e4 e5 e6 e7 

e0 e0 e1 e2 e3 e4 e5 e6 e7 

e1 e1 -e0 e3 -e2 -e5 e4 e7 -e6 

e2 e2 -e3 -e0 e1 e6 e7 -e4 -e5 

e3 e3 e2 -e1 -e0 -e7 e6 -e5 e4 

e4 e4 e5 -e6 e7 -e0 -e1 e2 -e3 

e5 e5 -e4 -e7 -e6 e1 -e0 e3 e2 

e6 e6 -e7 e4 e5 -e2 -e3 -e0 e1 

e7 e7 e6 e5 -e4 e3 -e2 -e1 -e0 

Table 1: Octonions multiplication. 

The Lie algebra g2 is isomorph to the algebra of derivations of the octonions O. We’ll realize g2 
using square matrixes (8 × 8). Let x,y ∈ O ; we have: 

g2 = {D ϵ so(7) ⊂ so(8): D(x.y) = Dx . y – x.Dy}. 

Let {݁}ୀ  the canonical basis of algebra O, adopted in table 1. Let’s introduce in so(8) the 

matrixes {Gij: 0≤i<j≤7}, by the following relations: 

Gijej = ei,   Gijei = -ej,    Gijek = 0,  if k≠i, j. 

 

Proposition 8. 

1. {Gij, 0≤i<j≤7} is a basis of algebra so(8). 

2. {Gij, 0<i<j≤7} is a basis of algebra so(7) supposed included in so(8) in a standard manner (i.e. 

for D ∈ so(8), D ∈ so(7) if and only if De0=0). 

3. [Gij, Gkℓ] = GijGkℓ – GkℓGij = ߜܩℓ + ܩℓߜ − ℓܩߜ −   (3)ܩℓߜ

Proof. 

1) & 2): it’s obvious that {Gij, 0≤i<j≤7} and {Gij, 0<i<j≤7} are free generating families 

respectively in so(8) and so(7). 3) [Gij, Gkℓ](et) = GijGkℓ(et)-GkℓGij(et) =Gij(δℓtek- δkteℓ)-Gkl(δtjei- δtiej) = δlt(δkjei- δkiej)- δkt(δℓjei- δℓiej)-[δtj(δiℓek- δikeℓ)- δti(δℓjek- δkjeℓ)]  = (δℓtδkj- δktδℓj)ei+(δktδℓi- δℓtδki)ej+(δtiδℓj- δtjδiℓ)ek+(δtjδik- δtiδkj)eℓ. 



On the other hand,  (δjkGiℓ+δiℓGjk-δikGjℓ-δjℓGik)(et)=(δℓtδkj-δktδℓj)ei+(δktδℓi-δℓtδki)ej +(δtiδℓj-δtjδiℓ)ek+(δtjδik- δtiδkj)eℓ. 
Thus, [Gij, Gkℓ]  = ߜܩℓ + ܩℓߜ − ℓܩߜ −  .ܩℓߜ

 

Let’s introduce the linear applications: Li:  O → O    with the following formulas: 
         x → Li(x) 

ݔ∀) ∈ O)      ܮ(ݔ) = ݁ݔ,    ݅ = 1, … ,7. 
 

Lemma. In the chosen basis (table 1), matrixes Li have the following forms: 

L1 = -G01-G23+G45-G67 L2 = -G02+G13-G46-G57 L3 = -G03-G12+G47-G56 

L4 = -G04-G15+G26-G37 L5 = -G05+G14+G27+G36 L6 = -G06+G17-G24-G35 

L7 = -G07-G16-G25+G34 

The proof results immediately from table 1. 

 

Proposition 9. Let D be an element of so(8) such that De0=0, and for each i>0, 

Dei=∑ ୀଵߙ ݁. Then D∈g2 if and only if [D,Li]= ∑ ୀଵߙ  .ܮ

 

Proof.  

D(ei.ej)=Dei.ej+ei.Dej 
 ⇔ D(ei.ej)-ei.Dej=Dei.ej  ⇔DLi(ej)-LiD(ej)= ∑ ୀଵߙ )ܮ ݁)   ⇔ 

[D,Li](ej)= ∑ ୀଵߙ )ܮ ݁),  

then [D,Li]= ∑ ୀଵߙ  .ܮ

Let A be a matrix of so(7)⊂so(8); ܣ = ∑ ܽܩଵஸழஸ .  (Ae0=0) 

 

Proposition 10. ܣ ∈ ݃ଶ  ⇔ ൞ܽଵ = ܽଶସ + ܽଷହ    (݅) ܽଶ = −ܽଵସ − ܽଷ  (݅݅)ܽଶହ = −ܽଵ + ܽଷସ (݅݅݅) ܽସହ = ܽଶଷ + ܽ     (݅ݒ)ܽଶ = ܽଵହ + ܽଷ    (ݒ) ܽସ = ܽଵଷ − ܽହ     (݅ݒ)ܽସ = ܽଵଶ + ܽହ    (݅݅ݒ)   (4) 

Proof. According to formula (3), we have: [Gij,L1] = -[Gij,G01]-[Gij,G23]+[Gij,G45]-[Gij,G67] = -( δj0Gi1+δi1Gj0- δi0Gj1- δj1Gi0) -( δj2Gi3+δi3Gj2- δi2Gj3- δj3Gi2)+( δj4Gi5+δi5Gj4- δi4Gj5- δj5Gi4)-( δj6Gi7+δi7Gj6- δi6Gj5- δj7Gi6), 

then  

[A,L1] =∑ ܽ[ܩஸழஸ ,  ଵ]=a12G02+a13G03+a14G04+a15G05+a16G06+a17G07ܮ

+a13G12-a12G13+a15G14+a14G15+a17G16-a16G17+(a25+a34)G24+(a24+a35)G25+(a27+a36)G26 



+(-a26+a37)G27+(-a24+a35)G34+(-a25+a34)G35+(-a26+a37)G36+(-a27-a36)G37+(a47-a56)G46 

+(-a46-a57)G47+(a46+a57)G56+(a47-a56)G57. 

But {ܮ୧}୧ୀଵ  ∪  ଵஸழஸis a basis in so(8), then the decomposition must be unique according{ܩ} 

to this basis: 

[A,L1]=-a12L2-a13L3-a14L4-a15L5-a16L6-a17L7+ (-a16-a25+a34)G24+(-a17+a24+a35)G25 

+(a14+a27+a36)G26+(a15-a26+a37)G27+(a17-a24-a35)G34+(-a16-a25+a34)G35 

+(a15-a26+a37)G36 +(-a14-a27-a36)G37+(-a12+a47-a56)G46+(a13-a46+a57)G47 

+(-a13+a46+a57)G56+(-a12+a47-a56)G57, 

then [A, L1]ϵ Vect{ܮ}ୀଵ  if and only if equalities (i), (ii), (iii), (v), (vi) and (vii) in (4) are 

satisfied. Operating similarly with [A, L2], we find: 

[A,L2]=a12L1-a23L3-a24L4-a25L5-a26L6-a27L7+ (a16+a25-a34)G14+(a17-a24-a35)G15 

+ (-a14-a27-a36)G16+(-a15+a26-a37)G17+(a14+a27+a36)G34+(a15-a26+a37)G35 

+(a16+a25-a34)G36+(a17-a24-a35)G37+(-a12+a47-a56)G45+(a23-a45+a67)G47 

+(-a23+a45-a67)G56+(a12-a47+a56)G67, 

then equality (iv): a45 = a23+a67 in (4) is also satisfied. 

Consequences. General form for elements of the realization matrix of g2, in the adopted case 

table 1, is the following: 

 

ێێۏ
ێێێ
0ۍێ 0 0 0 0 0 0 00 0 ܽଵଶ ܽଵଷ ܽଵସ ܽଵହ ܽଵ ܽଶସ + ܽଷହ0 −ܽଵଶ 0 ܽଶଷ ܽଶସ −ܽଵ + ܽଷସ ܽଵହ + ܽଷ −ܽଵସ − ܽଷ0 −ܽଵଷ −ܽଶଷ 0 ܽଷସ ܽଷହ ܽଷ ܽଷ0 −ܽଵସ −ܽଶସ −ܽଷସ 0 ܽଶଷ + ܽ ܽଵଷ − ܽହ ܽଵଶ + ܽହ0 −ܽଵହ ܽଵ − ܽଷସ −ܽଷହ −ܽଶଷ − ܽ 0 ܽହ ܽହ0 −ܽଵ −ܽଵହ − ܽଷ −ܽଷ −ܽଵଷ − ܽହ −ܽହ 0 ܽ0 −ܽଶସ − ܽଷହ ܽଵସ + ܽଷ −ܽଷ −ܽଵଶ − ܽହ −ܽହ −ܽ 0 ۑۑے

ۑۑۑ
ېۑ
 

Proposition 11. 

1. dim g2=14. 

2. The following matrixes represent a basis of g2: 

e1=G14-G27 e2=G15-G37 e3=G16+G34 e4=G17+G35     

e5=G24-G35 e6=G25+G34 e7=G26+G37 e8=-G27+G36                    (5)    

E1=G23-G67 E2=G13+G57 E3=G12+G47 E4=G45+G67 E5=G46-G57 E6=G47+G56 

Proof. 

1. Relations (4) are visibly independent and dim so(7)=21, so dim g2=14. 

2. It suffices to prove that family {݁}ୀଵ଼ ∪ ୀଵ{ܧ}   is free, since dim g2=14  and the number of 

matrixes is 14. Assume: ej+8=Ej, j=1,…6. So ∑ ܽଵସୀଵ ݁ = 0, 

then using (5) we obtain: 



a11G12+a10G13+a1G14+a2G15+a3G16+a4G17+a9G23+a5G24+a6G25+a7G26-(a1+a8)G27 

+(a3+a6)G34+(a4+a5)G35+a8G36+(-a2+a7)G37+a12G45+a13G46+(a11+a14)G47+a14G56 

+(a10-a13)G57+(a12-a9)G67=0, 

but family {G12,…,G67} is free, so: 

a11=a10=a1=a2=a3=a4=a9=a5=a6=a7=0,  

a1+a8=0, a3+a6=0, a4-a5=0, -a2+a7=0, a12=0, a13=0,  

a11+a14=0, a14=0, a10-a13=0, a12=0,  

hence ai=0, i=1,…,14. 

Assume L=VectR{E1,…,E6}, E=VectR{e1,…,e8} and dij=[ei,ej]=eiej-ejei, 1≤i<j≤8. 

 

Proposition 12. 

1. L is a subalgebra of algebra g2 and dim E=6. 

2. The pair (L,E) is symmetric and g2= L⊕E. 

3. L=VectR{d12, d13, d14, d16, d17, d23}. 

4. L is isomorph to so(4)=so(3)⊕so(3). 

Proof. Based on formula (3) and equalities (5), we can draw the following tables: 

 

[-,-] E1 E2 E3 E4 E5 E6 

E1 0 E3-E6 -E2-E5 0 E6 -E5 

E2 -E3+E6 0 E1+E4 -E6 0 E4 

E3 E2+E5 -E1-E4 0 -E5 E4 0 

E4 0 E6 E5 0 -2E6 2E5 

E5 -E6 0 -E4 2E6 0 -2E4 

E6 E5 -E4 0 -2E5 2E4 0 

Table 2: Multiplication in sub-algebra L relative to base Ei. 

[-,-] e1 e2 e3 e4 e5 e6 e7 e8 

e1 0 -E1-E4 -E2-E5 -E3 -E3 -E2 E1 0 

e2 E1+E4 0 -E6 -2E2 E2 -E3 0 E1 

e3 E2+E5 E6 0 -E4 E1+E5 0 -E3 -E2-E5 

e4 E3 2E2 E4 0 0 E1+E4 -E2 E3-E6 

e5 E3 -E2 -E1-E5 0 0 -2(E1+E4) -E5 E6 

e6 E2 E3 0 -E1-E4 2(E1+E4) 0 -E6 -E5 

e7 E1 0 E3 E2 E5 E6 0 -2E1 

e8 0 -E1 E2+E5 E6-E3 -E6 E5 2E1 0 

Table 3: Multiplication in subspace E relative to base ei 



[-,-] e1 e2 e3 e4 e5 e6 e7 e8 

E1 e7 e8 e4+e5 -e3+e6 -e6 e5 -2e8 2e7 

E2 -e6 -2e4 e1-e8 2e2 -e2 e1 e4 e3-e6 

E3 -2(e4+e5) -e6 -e7 e1 e1 e2 e3 -e4-e5 

E4 -(e2+e7) e1-e8 -e4 e3 -e6 e5 e8 -e7 

E5 -e3+e6 e4 e1-e8 -e2 -e7 -e8 e5 e6 

E6 -(e4+e5) -e3 e2 e1-e8 e8 -e7 e6 -e5 

Table 4: Mixed multiplication [L, E]. 

 

1. According to table 2, L is stable for composition, so L is a subalgebra of g2. 

2. According to tables 3 and 4, we have [L,E]⊆E, [E,E]⊆L, so the pair (L,E) is symmetric. It’s obvious that g2=L⊕E (direct sum of vector spaces). 

3. Matrixes d12, d13, d14, d16, d17 and d23 are linearly independent; effectively, according to 

relations (5), we have: 

d12 =[G14-G27, G15-G37] = -G23-G45, d13 =[G14-G27, G16+G34] = -G13-G46, 

d14 =[G14-G27, G17+G35] = -G12-G47, d16 =[G14-G27, G25+G34] = -G13-G57,           (6) 

d17 =[G14-G27, G26+G37] = G23-G67, d23 =[G15-G37, G16+G34] = -G47-G56. 

Suppose that:  

λ1d12+ λ2d13+ λ3d14+ λ4d16+ λ5d17+ λ6d23=0 
 ⇒ 

(λ5-λ1)G23-(λ2+λ4)G13-λ3G12-λ2G46-(λ2+λ6)G46-λ1G45-λ5G67-λ6G56-λ4G57=0 
 ⇒ λ1=…=λ6=0. 

Then: 

 VectR{d12, d13, d14, d16, d17, d23} = L,  

and we also have: 

d12=-d35=-d46=½d56, d13=d38, d14=d15=d26=d37, d16=½d24=-d25=d47, 

d17=d28=-½d78, d23=-d58=d67, d18=d27=d36=d45=0,    d57=d68=d13-d16,             (7) 

d34=d12+d17, d48=d23-d14. 

       

[-,-] d12 d13 d14 d16 d17 d23 

d12 0 d23-d14 d16 -d14 0 d16-d13 

d13 d14-d23 0 d17 0 -d14 d12+d17 

d14 -d16 -d17 0 d12 d13 0 

d16 d14 0 -d12 0 d23-d14 -d12-d17 

d17 0 d14 -d13 d14-d23 0 d16-d13 

d23 d13-d16 -d12-d17 0 d12+d17 d13-d16 0 

Table 5: Multiplication in sub-algebra L relative to base dij. 



4. Assume that: L1=½(d12-d17) L2=-½(d16+d13) L3=
ௗమయଶ − ݀ଵସ 

L4=-½(d12+d17) L5=½(d16-d13) L6=½d23, 

We obtain the multiplication table 6, which is of so(4). 
 L1 L2 L3 L4 L5 L6 

L1 0 -L3 L2 0 0 0 

L2 L3 0 -L1 0 0 0 

L3 -L2 L1 0 0 0 0 

L4 0 0 0 0 L6 -L5 

L5 0 0 0 -L6 0 L4 

L6 0 0 0 -L5 -L4 0 

 Table 6: Multiplication in sub-algebra L relative to base Li. 

Then, L is isomorph to so(3)⊕so(3). 
 

4. Bol Algebras of g2/so(4) 

Let ܽ = ∑ ଼ܽୀଵ ݁ an element of E. Suppose that [d12,a]= ∑ ଼ୀଵߙ ݁, and let D12 the square matrix 

(8×8) such that ܦଵଶܽ =  T(α1,…,α8). Similarly, we introduce =ߙ where ܽ=T(a1,…,a8) and ,ߙ

matrixes D13, D14, D16, D17, D23 that correspond, in the canonical basis of R8, respectively to 

matrixes d13, d14, d16, d17, d23; for example, [d12, a]=(e1,…,e8).D12 ܽ= ∑ ୧୧଼ୀଵߙ ݁୧. 
 

Lemma 1. Matrixes D12, D13, D14, D16, D17 and D23 can be written as follows: 

 

ଵଶܦ =
ێێۏ
ێێێ
0ۍ −1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 −1 0 0 −2 0 00 0 0 −1 2 0 0 00 0 0 0 0 0 0 −10 0 0 0 0 0 1 0 ۑۑے

ۑۑۑ
ې
ଵଷܦ      =

ێێۏ
ێێێ
0ۍ 0 −2 0 0 −1 0 00 0 0 −1 1 0 0 01 0 0 0 0 0 0 −10 1 0 0 0 0 −1 00 0 0 0 0 0 −1 00 0 0 0 0 0 0 00 0 0 0 1 0 0 00 0 2 0 0 1 0 0 ۑۑے

ۑۑۑ
ې ଵସܦ     =

ێێۏ
ێێێ
0ۍ 0 0 −1 −1 0 0 00 0 0 0 0 −1 0 00 0 0 0 0 0 −1 02 0 0 0 0 0 0 12 0 0 0 0 0 0 10 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 ۑۑے0

ۑۑۑ
ې
 

 

ଵܦ =
ێێۏ
ێێێ
0ۍ 0 −1 0 0 −1 0 00 0 0 −2 1 0 0 00 0 0 0 0 0 0 −10 2 0 0 0 0 −1 00 0 0 0 0 0 0 01 0 0 0 0 0 0 10 0 0 0 0 0 0 00 0 1 0 0 0 0 0 ۑۑے

ۑۑۑ
ې
ଵܦ      =

ێێۏ
ێێێ
0ۍ 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 −1 0 0 0 00 0 1 0 0 0 0 00 0 1 0 0 1 0 00 0 0 1 −1 0 0 01 0 0 0 0 0 0 20 1 0 0 0 0 −2 ۑۑے0

ۑۑۑ
ې
ଶଷܦ          =

ێێۏ
ێێێ
0ۍ 0 0 −1 0 0 0 00 0 −1 0 0 0 0 00 1 0 0 0 0 0 01 0 0 0 0 0 0 01 0 0 0 0 0 0 10 0 0 0 0 0 −1 00 0 0 0 0 1 0 20 0 0 1 −1 0 0 ۑۑے0

ۑۑۑ
ې
   (8) 

 

The result follows from tables 3 and 4 immediately. 

For the binary composition law, according to table 5, relations (7) and proposition 7, we have: 



. e1 e2 e3 e4 e5 e6 e7 e8 

e1 0 x1 x2 x3 x3 x4 x5 0 

e2 -x1 0 x6 2x4 -x4 x3 0 x5 

e3 -x2 -x6 0 x1+x5 -x1 0 x3 x2 

e4 -x3 -2x4 -x1-x5 0 0 -x1 x4 x6-x3 

e5 -x3 x4 x1 0 0 2x1 x2-x4 -x6 

e6 -x4 -x3 0 x1 -2x1 0 x6 x2-x4 

e7 -x5 0 -x3 -x4 -x2+x4 -x6 0 -2x5 

e8 0 -x5 -x2 -x6+x3 x6 -x2+x4 2x5 0 

Table 7: General form of the Bol algebra binary law. 

where x1=e1.e2, x2=e1.e3, x3=e1.e4, x4=e1.e6, x5=e1.e7, x6=e2.e3. 

Let ݔ = ∑ ଼ୀଵݔ ݁ and Xi= T(xi1,…,xi8), i=1,…6. 

Similarly, let’s designate by XiXj, 1≤i<j≤6, columns of coefficients of development of 15 

elements xi.xj, 1≤i<j≤6, according to basis {݁}ୀଵ଼ . 

 

Lemma 2. In our case, identity 6 in definition 2 is equivalent to the following matrix equations 

system: 

1) X1X2=D12X2-D13X1+X3-X6 2) X1X3=D12X3-D14X1-X4  3) X1X4=D12X4-D16X1+X3 

4) X1X5=D12X5-D17X1 5) X1X6=D12X6-D23X1+X2-X4 6) X2X3=D13X3-D14X2-X5 

7) X2X4=D13X4-D16X2 8) X2X5=D13X5-D17X2+X3  9) X2X6=D13X6-D23X2-X1-X5 

10) X3X4=D14X4-D16X3-X1 11) X3X5=D14X5-D17X3-X2  12) X3X6=D14X6-D23X3 

13) X4X5=D16X5-D17X4+X3-X6 14) X4X6=D16X6-D23X4+X1+X5 

15) X5X6=D17X6-D23X5+X2-X4               (9) 

In the following, we’ll just treat particular case where the Bol algebra verifies the identity: (∀ ݔ, ,ݕ ,ݖ ݑ ∈ .ݔ)  (ܧ .(ݕ .ݖ) (ݑ = 0. 

In this case, the system (9) is equivalent to two systems: the first one is homogeneous and linear: 

1) D12X2-D13X1+X3-X6=0 2) D12X3-D14X1-X4=0  3) D12X4-D16X1+X3=0 

4) D12X5-D17X1=0  5) D12X6-D23X1+X2-X4=0 6) D13X3-D14X2-X5=0 

7) D13X4-D16X2=0  8) D13X5-D17X2+X3=0 9) D13X6-D23X2-X1-X5=0 

10) D14X4-D16X3-X1=0 11) D14X5-D17X3-X2=0 12) D14X6-D23X3=0 

13) D16X5-D17X4+X3-X6=0 14) D16X6-D23X4+X1+X5=0 

15) D17X6-D23X5+X2-X4=0,                      (10) 

and the second one is homogeneous and "cubic":  

XiXj=0,    1≤i<j≤6.     (10bis) 



The real solution that verifies the two systems simultaneously is trivial. But the extension of the 

scalars field gives us several remarkable complex solutions. 

 

Proposition 13. The general solution for system (10) is given by: 

X1=
T(-α3, α4, 0, 0, α2-2α7, - α1-2α8, α4-α5, -α6) 

X2=
T(2α2- α7,- α8, 2α4-α5, α3+α6, α6, 0, -α1-α8, -2α2+α7) 

X3=
T(2α1+α8, - α7, α6, α4+α5, α4+α5, α3, - α2, 0) 

X4=
T(α2-α7, α1-α8, α4-α5, 2α3+α6, 0, α5, 0, - α2) 

X5=
T(0, 0, α1, - α2, - α2+ α7, α8, - α4+2 α5, α3+2 α6) 

X6=
T(α1, α2, α3, α4, α5, α6, α7, α8), αiϵR, i=1,…,8.     (11-0) 

Proof. Matrixes D23, D12-D17, D13+D16, D13-D16 are invertible; equation (10-12) gives: ܺଷ = .ଶଷିଵܦ .ଵସܦ ܺ     (11-1) 

Equations 10-5 and 10-15 imply (D12-D17)X6-D23(X1-X5)=0, hence: 

     ଵܺ − ܺହ = .ଶଷିଵܦ ଵଶܦ) − .(ଵܦ ܺ   (11-2) 

Then,     ଵܺ = ܺହ + .ଶଷିଵܦ ଵଶܦ) − .(ଵܦ ܺ; 

replacing X1 by its value from equation 10-4, we find: ܦଵଶܺହ − ଵ(ܺହܦ + ଵଶܦ)ଶଷିଵܦ − (ଵ)ܺܦ = ଵଶܦ) − ଵ)ܺହܦ − ଵଶܦ)ଶଷିଵܦଵܦ − ଵ)ܺܦ = 0,  

hence: ܺହ = ଵଶܦ) − ଵଶܦ)ଶଷିଵܦଵܦଵ)ିଵܦ −  ଵ)ܺ   (11-3)ܦ

and  

  ଵܺ = ଵଶܦ)] − ଵଶܦ)ଶଷିଵܦଵܦଵ)ିଵܦ − (ଵܦ + ଵଶܦ)ଶଷିଵܦ −  ଵ)]ܺ  (11-4)ܦ

Equations 10-9 and 10-14 imply: (D13+D16)X6-D23(X2+X4)=0; 

hence:    

     ܺଶ + ܺସ = ଵଷܦ)ଶଷିଵܦ +  ଵ)ܺ   (11-5)ܦ

But equation 10-9 implies 

X2=ܦଶଷିଵ.(D13X6-X1-X5),  

i.e. ܺଶ = ଵଷܦ]ଶଷିଵܦ − ଵଶܦ)2 − ଵଶܦ)ଶଷିଵܦଵܦଵ)ିଵܦ − (ଵܦ − ଵଶܦ)ଶଷିଵܦ −  ଵ)]ܺ (11-6)ܦ

And then: ܺସ = ଵଷܦଶଷିଵ൫ܦ−] − ଵଶܦ)2 − ଵଶܦ)ଶଷିଵܦଵܦଵ)ିଵܦ − (ଵܦ + ଵଶܦ)ଶଷିଵܦ −  ଵ)൯ܦ

ଵଷܦ)ଶଷିଵܦ+  +  ଵ)]ܺ         (11-7)ܦ

We can easily verify that columns (11-0) given by equations 11-1, 11-3, 11-4, 11-6, 11-7 

represent the general solution of the linear system (10). 



According to proposition 7, it exists a subalgebra K of g2=L⊕E such that g2=K⊕E, (K∩E={0}) 

and (∀ ܽ, ܾ ∈ .ܽ   (ܧ ܾ = [ܽ, ܾ]ா (projection of [a,b] onto E parallelly to K). Then K is generated 

by a basis of the following from: 

{P1=d12+x1, P2=d13+x2, P3=d14+x3, P4=d16+x4, P5=d17+x5, P6=d23+x6}, 

where:  

dim K=6, x1=e1.e2, x2=e1.e3, x3=e1.e4, x4=e1.e6, x5=e1.e7, x6=e2.e3. 

By requiring stability of vector space VectR{Pj}j=1,…6 for commutation, i.e.: [ ܲ, ℓܲ] = ∑ ℓୀଵߣ ܲ, 1≤k<ℓ≤6, 

we find that all the solutions verifying simultaneously systems (10) and (10bis) are complex 

except the trivial solution. Among the found solutions, we provide the following list of 

monoparametric families: 

 

Algebras 1/1bis      Algebras 2/2bis  

۔ۖەۖ
ଵݔۓ = ݁ଵ. ݁ଶ = ଵ݁ߙ݅∓ − ߙ)  ݁ߙ ≠ ଶݔ(0 = ݁ଵ. ݁ଷ = ଶ݁ߙ− ± ଷݔସ݁ߙ݅ = ݁ଵ. ݁ସ = ଵ݁ߙ− ± ସݔ݁ߙ݅ = ݁ଵ. ݁ = ଶ݁ߙ2− ± ହݔସ݁ߙ2݅ = ݁ଵ. ݁ = ଷ݁ߙ− + ݁ߙ ± ݔ଼݁ߙ݅ = ݁ଶ. ݁ଷ = ଵ݁ߙ− ± ଷ݁ߙ݅ + ଼݁ߙ

(12-1)           

۔ۖەۖ
ଵݔۓ = ଶ݁ߙ ∓ ߙ)        ݁ߙ݅ ≠ ଶݔ(0 = ଷ݁ߙ ∓ ଷݔ݁ߙ݅ = ଵ݁ߙ±2݅ + ସ݁ߙ2 + ସݔହ݁ߙ2 = ଶ݁ߙ݅± + ହݔ݁ߙ = ଷ݁ߙ݅± + ݔ݁ߙ = ଵ݁ߙ݅± + ସ݁ߙ + ହ݁ߙ

             (12-2) 

 

Algebras 3/3bis      Algebras 4/4bis    

۔ۖەۖ
ଵݔۓ = ଵ݁ߙ݅± − ହ݁ߙ ∓ ߙ)    ଼݁ߙ݅ ≠ ଶݔ(0 = ଵ݁ߙ ± ହ݁ߙ݅ − ଷݔ଼݁ߙ = ଶ݁ߙ− ± ଷ݁ߙ݅ ∓ ݁ߙ݅ − ସݔ݁ߙ = ସ݁ߙ݅∓ − ହݔ଼݁ߙ = ସ݁ߙ− ± ݔ଼݁ߙ݅ = ଶ݁ߙ ∓ ଷ݁ߙ݅ ± ݁ߙ݅ + ݁ߙ

 (12-3) 

۔ۖەۖ
ଵݔۓ = ହ݁ߙ∓2݅ − ߙ)      ݁ߙ2 ≠ ଶݔ(0 = ଵ݁ߙ݅∓ − ଶ݁ߙ − ݁ߙ ± ଷݔ଼݁ߙ݅ = ଵ݁ߙ ∓ ସݔଶ݁ߙ݅ = ଵ݁ߙ݅∓ − ହݔଶ݁ߙ = ହ݁ߙ݅± + ݔ݁ߙ = ݁ߙ݅± + ଼݁ߙ

     (12-4) 

 

Algebras 5/5bis      Algebras 6/6bis   

۔ۖەۖ
ଵݔۓ = ଶ݁ߙ ± ହ݁ߙ݅ + ߙ)      ݁ߙ ≠ ଶݔ(0 = ଵ݁ߙ±2݅ + ଷ݁ߙ2 ∓ ଷݔ଼݁ߙ2݅ = ସ݁ߙ + ହ݁ߙ ∓ ସݔ݁ߙ݅ = ଵ݁ߙ݅± + ଷ݁ߙ ∓ ହݔ଼݁ߙ݅ = ସ݁ߙ݅∓ ∓ ହ݁ߙ݅ − ݔ݁ߙ = ଶ݁ߙ݅± + ସ݁ߙ

   (12-5) 

۔ۖەۖ
ଵݔۓ = ݁ߙ݅∓ − ߙ)      ଼݁ߙ ≠ ଶݔ(0 = ଷ݁ߙ݅∓ + ସ݁ߙ + ଷݔହ݁ߙ = ଷ݁ߙ ± ସ݁ߙ݅ ± ସݔହ݁ߙ݅ = ଷ݁ߙ݅∓ + ସ݁ߙ ± ହݔ݁ߙ݅ = ݁ߙ±2݅ + ݔ଼݁ߙ2 = ହ݁ߙ݅± + ݁ߙ

    (12-6) 

  

 

 



Algebras 7/7bis    

ەۖۖ
ۖۖۖ
۔ۖ
ۖۖۖ
ଵݔۓۖ = − ఈ√ଶ ݁ଵ ± ݅ߙ √ଷଶ ݁ଶ ∓ 6݁ହ√ߙ݅  − ହఈଶ  ݁    (ߙ ≠ ଶݔ(0 = ටଷଶߙ݅∓ ݁ଵ − ଶ݁ߙ ± ݅ߙ √ଷଶ ݁ଷ + ఈ√ଶ ݁ସ − ଷఈଶ ݁ ± ටଷଶߙ݅ ଷݔ଼݁ = ଵ݁ߙ2 ∓ ටଷଶ݅ߙ ݁ଶ ± 3݁ସ√ߙ݅ ± 3݁ହ√ߙ݅ + ఈ√ଶ ݁ݔସ = ටଷଶߙ݅∓ ݁ଵ − ఈଶ ݁ଶ + 2݁ସ√ߙ ± ݅ߙ √ଷଶ ݁ݔହ = ఈଶ ݁ଷ ± ටଷଶߙ݅ ݁ହ + ݁ߙ ± ݅ߙ √ଷଶ ݁ + ఈ√ଶ ݔ଼݁ = ఈଶ ݁ଵ + ఈ√ଶ ݁ଷ ± ఈଶ ݅√3݁ସ ± ఈଶ ݅√3݁ହ ± ටଷଶߙ݅ ݁ + ଼݁ߙ

       (12-7)  

 

Algebras 8/8bis   

ەۖۖ
ۖۖۖ
۔ۖ
ۖۖۖ
ଵݔۓۖ = ఈ√ଶ ݁ଵ ± ݅ߙ √ଷଶ ݁ଶ ± 6݁ହ√ߙ݅  − ହఈଶ  ݁    (ߙ ≠ ଶݔ(0 = ටଷଶߙ݅± ݁ଵ − ଶ݁ߙ ± ݅ߙ √ଷଶ ݁ଷ − ఈ√ଶ ݁ସ − ଷఈଶ ݁ ∓ ටଷଶߙ݅ ଷݔ଼݁ = ଵ݁ߙ2 ± ටଷଶ݅ߙ ݁ଶ ± 3݁ସ√ߙ݅ ± 3݁ହ√ߙ݅ − ఈ√ଶ ݁ݔସ = ටଷଶߙ݅± ݁ଵ − ఈଶ ݁ଶ − 2݁ସ√ߙ ± ݅ߙ √ଷଶ ݁ݔହ = ఈଶ ݁ଷ ∓ ටଷଶߙ݅ ݁ହ + ݁ߙ ± ݅ߙ √ଷଶ ݁ − ఈ√ଶ ݔ଼݁ = ఈଶ ݁ଵ − ఈ√ଶ ݁ଷ ± ఈଶ ݅√3݁ସ ± ఈଶ ݅√3݁ହ ∓ ටଷଶߙ݅ ݁ + ଼݁ߙ

       (12-8)  

 

 

 

Algebras 9/9bis   

ەۖۖۖ
۔ۖ
ଵݔۓۖۖ = ଵ݁ߙ− ∓ ఈ√ଶ ݅݁ଶ ± ଷఈ√ଶ ݅݁ହ  − ݁ߙ2 ∓ ఈ√ଶ ݅ ݁ + ߙ)      ଼݁ߙ ≠ ଶݔ(0 = ଶ݁ߙ− ∓ 2݁ଷ√݅ߙ − ହ݁ߙ − ଷݔ݁ߙ = ଵ݁ߙ ± 2݁ଶ√݅ߙ − ଷ݁ߙ ∓ ఈ√ଶ ݅݁ସ ∓ ఈ√ଶ ݅݁ହ + ݁ߙ ± ఈ√ଶ ݅݁ݔସ = ± ఈ√ଶ ݅݁ଵ − ଶ݁ߙ ∓ ఈ√ଶ ݅݁ଷ + ସ݁ߙ ± ఈ√ଶ ହݔ଼݁݅ = ± ఈ√ଶ ݅݁ସ ∓ ఈ√ଶ ݅݁ହ + ݁ߙ ± ఈ√ଶ ݅݁ − ݔ଼݁ߙ = ∓ ఈ√ଶ ݅݁ଶ + ଷ݁ߙ ∓ ఈ√ଶ ݅݁ସ − ݁ߙ ∓ 2݁√ߙ݅ + ଼݁ߙ

              (12-9)  

 

 



Algebras 10/10bis   

ەۖۖۖ
۔ۖ
ଵݔۓۖۖ = ଵ݁ߙ ± ఈ√ଶ ݅݁ଶ ± ଷఈ√ଶ ݅݁ହ  − ݁ߙ2 ± ఈ√ଶ ݅ ݁ − ߙ)       ଼݁ߙ ≠ ଶݔ(0 = ଶ݁ߙ− ± 2݁ଷ√݅ߙ + ହ݁ߙ − ଷݔ݁ߙ = ଵ݁ߙ ± 2݁ଶ√݅ߙ + ଷ݁ߙ ± ఈ√ଶ ݅݁ସ ± ఈ√ଶ ݅݁ହ − ݁ߙ ± ఈ√ଶ ݅݁ݔସ = ± ఈ√ଶ ݅݁ଵ − ଶ݁ߙ ± ఈ√ଶ ݅݁ଷ − ସ݁ߙ ± ఈ√ଶ ହݔ଼݁݅ = ± ఈ√ଶ ݅݁ସ ∓ ఈ√ଶ ݅݁ହ + ݁ߙ ∓ ఈ√ଶ ݅݁ + ݔ଼݁ߙ = ∓ ఈ√ଶ ݅݁ଶ − ଷ݁ߙ ± ఈ√ଶ ݅݁ସ + ݁ߙ ∓ 2݁√ߙ݅ + ଼݁ߙ

      (12-10)

  

Summary 

 It appears to us that these algebras represent mathematical objects which require special 

studying. In this paper, we’ve addressed the issue of Bol algebras generated by the symmetric 

space g2/so(4) and verifying an additional identity of the form (x.y).(z.u) = 0, that we’ve 

introduced because it seems to us that this identity can model in some way the concept of 

"disparity" encountered in the theory of elementary particles. It is well known that g2 is the Lie 

algebra of G2 automorphisms group of octonions system frequently used in various fields of 

research. We’ve provide a list of 20 mono-parametric families of complex Bol algebras. But this 

list is not exhaustive of all possible algebras in the considered case. 

Bol algebras generalize those of Lie and of Mal'cev; so based on information relative to 

the multiplicity of application domains for theories of Lie and Mal'cev (see for example [3,23]), 

we can guess with large credibility that the obtained results are probably applicable in mechanics, 

quantic, elementary particle theories, relativist physics and in space-time theory. 

Our future publications will be dedicated to the completion of the list of obtained 

algebras, as well as to the study of each element in this list. 
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