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Introduction

Introduction of "group" concept by Évariste Galois was surely a great turning point in science history [START_REF] Galois | OEuvres mathématiques d'Évariste Galois[END_REF]. Henri Poincaré wrote: "The concept of group pre-exists in our minds, at least potentially. It is imposed on us not as a form of our sensitivity, but as a form of our understanding". To statistically estimate the role of "group" in modern sciences, just for example consider the number of papers treating groups in a yearly sample of a certain journal. For journal Advances in Modeling, series A (year 2005), we find 5 publications about groups [START_REF] Kozulin | Non-simplicity on infinite groups[END_REF][START_REF] Senashov | Almost layer-finite groups without involutions[END_REF][START_REF] Senashov | On two subgroups of periodic Shunkov's groups[END_REF][START_REF] Senashov | Infinite frobenius groups[END_REF][START_REF] Shunkov | Almost layer finiteness of locally finite groups[END_REF].

Mathematic developments based on group concept had proven efficiency of this fundamental being for treating questions of solvability of algebraic equations by radicals, as well as questions of constructability using rule and compass in geometry. On footsteps of Galois researches, works of Sophus Lie, Felix Klein, Henri Poincaré, Elie Cartan, Wilhelm Killing, and many others, have revealed the big importance of concept "differentiable group" in several branches of mathematics and mechanics. Particularly, researches of these scientists have shown possibility of adequate local infinitesimal approximation of differentiable manifold having a group structure (Lie group), using the corresponding tangent space having a linear algebraic structure (Lie algebra). The correspondence between the geometric structures (curvilinear) and the algebraic structure (linear) is locally one-to-one, what allows application of algebraic methods for local resolution of geometric problems. In 1955, Anatoly Mal'cev [START_REF] Mal'cev | Analytic Loops[END_REF] noticed that theory of Lie could be generalized on differentiable manifolds equipped with a diassociative loop structure (in this case, any two elements of the manifold generate a sub-group, the tangent space will then be a binary Lie algebra). Mal'cev has particularly developed a theory similar to Lie's one, for differentiable manifolds of Moufong loops (diassociative loops that verify the identity said of Moufong: z.(x.(z.y))=((z.x).z).y). The obtained algebras in this case are named Mal'cev algebras and are characterized by an internal law (.), bilinear, anticommutative, and verifying identity:

(x.

y).(x.z) = ((x.y).z).x + ((y.z).z).x + ((z.x).x).y.

Based on Lie and Mal'cev theories, as well as on results establishing equivalence between homogeneous spaces and loops [START_REF] Sabinin | On Geometry of Loops[END_REF][START_REF] Sabinin | On the equivalence of categories of loops and homogeneous spaces[END_REF], L. Sabinin and P.Mikheev have developed a theory about local linear infinitesimal element of the differentiable (left) Bol loop (loop that verifies the left identity of Bol: x(y(xz))=(x(yx))z). Notice that Moufang loop could be defined as a loop verifying at once the left identity of Bol, as well as the right identity ( ((zx)y)x=z((xy)x)), so that the theory of Sabinin-Mikheev generalizes the theory of Mal'cev and a fortiori Lie's one. We also must notice that theory of Sabinin-Mikheev is strongly related to works of M. Akivis and his disciples in the area of Bol three webs [START_REF] Akivis | local algebras of a differential quasigroup[END_REF]. Thus, Bol algebras generalize those of Lie, as well as those of Mal'cev [START_REF] Kuz | min, ″ La relation entre les algèbres de Mal'cev et les boucles de Moufang analytiques″[END_REF][START_REF] Mal'cev | Analytic Loops[END_REF]. The Lie functor, establishing equivalence between the category of local Lie groups and the category of Lie algebras, could be generalized, not only in case of local analytic diassociative (resp. Moufang) loops, and binary Lie (resp. Mal'cev) algebras, but this functor has also a generalization in cases of Bol local analytic loops and Bol algebras [START_REF] Mikheev | Smooth Quasigroups and Geometry[END_REF][START_REF] Sabinin | Quasi-groups and differential geometry: Ch. 12, Quasigroups and Loops: Theory and Applications[END_REF][START_REF] Sabinin | On the geometry of smooth Bol loops[END_REF][START_REF] Sabinin | On differential geometry of Bol loops[END_REF][START_REF] Sabinin | Lectures on the Theory of Smooth Bol Loops[END_REF][START_REF] Sabinin | On the infinitesimal theory of local analytical loops[END_REF]. These latter algebras representing the linear infinitesimal analog of local analytic Bol loops, are characterized, contrary to classical cases of Lie and Mal'cev, by two internal composition laws; the first one is bilinear, anticommutative and expressing the "deviation measurement" of the composition law in the loop from the commutativity; the other law is ternary, trilinear, anti-symmetric according to the two first arguments, and it expresses the " deviation measurement" loop law from the associativity. Symmetric spaces being homogeneous, generalizing the physic-geometric concept of symmetry, their linear infinitesimal analogs, Bol algebras, are surely important mathematics models for mathematics and physics sciences [START_REF] Sabinin | On Geometry of Loops[END_REF][START_REF] Sabinin | On the equivalence of categories of loops and homogeneous spaces[END_REF].

We have already realized the classification of Bol algebras associated to compact symmetric spaces of rank 1 [START_REF] Al-Houjairi | Bol algebras generated by spaces of constant curvature[END_REF][START_REF] Al-Houjairi | Bol algebras of the involutive pairs su(n+I)/s(u(n)⊕u(1)), sp(n+1)/sp(n)⊕sp(1) and f 4 / so(9)[END_REF][START_REF] Al-Houjairi | Bol Algebras of involutive pairs of rank 1[END_REF]. Let's mention, particularly, that in the case of exterior cubic automorphism of so(8) (triality automorphism), relatively to the binary law of Bol algebra generated by the symmetric pair so(8)/so [START_REF] Mal'cev | Analytic Loops[END_REF], we obtained the 7-dimensional simple algebra of Mal'cev that isn't of Lie [START_REF] Al-Houjairi | Bol Algebras of involutive pairs of rank 1[END_REF].

Our paper is devoted to classification of monoparametric families of Bol algebras of remarkable class associated to the symmetric couple g 2 /so(4) and characterized by identity (x.y).(u.v)=0. Addressing the problem is justified by the following factors:

-Examples of algebras that are of Bol without being of Mal'cev (particularly of Lie) are too rare according to our knowledge. Our classification offers a large variety of such algebras.

-Bol algebras are characterized by 2 internal composition laws, one being binary and the other one is ternary. These two laws are weakly linked, and it appears that elaboration of a structural theory achieving these algebras is far from being easy [see for example [START_REF] Ndoune | A note on Levi-Malcev theorem for homogeneous Bol algebras[END_REF][START_REF] Pérez-Izquierdo | An envelope for Bol algebras[END_REF][START_REF] Pérez-Izquierdo | An envelope for Malcev algebra[END_REF][START_REF] Pérez-Izquierdo | Algebras, hyperalgebras, non-associative bi-algebras and loops[END_REF].

Consequently, inductive accumulation of partial and concrete results concerning these algebras will be justifiable and inevitable during researches going on elaboration of a structural theory.

-The considered problem is a step towards classification of Bol algebras associated to symmetric spaces (particularly to spaces of rank 2). Results must then offer additional information on mathematical objects already introduced and adopted by big classics of sciences in different mathematical areas. Particularly, the mentioned classification must offer linear mathematic structures modeling locally a large variety of "geometric symmetries".

-Frequent use of octonions and of hyper-complex systems to model physical and mathematical problems.

Lie triple systems and Bol algebras

Let T be a n-dimensional vector space, defined over a commutative field K. We design by the trivial vector of T.

Definition 1.

The vector space T is said a Lie triple system, if there's a ternary internal composition law defined on T:

[-, -, -]: × × → ( , , ) →[ , , ],
satisfying the following axioms:

1. the [-,-,-] law is linear for all its arguments, (∀ ,,,,∈ ) [ ,,[ ,,]] = [[ ,,],,] + [ ,[ ,,],] + ,,[ ,,] .

(If charK ≠ 2, the two conditions in axiom 2 are equivalent).

Definition 2. The Lie triple system T is said (left) Bol algebra, if there's a second binary internal composition law defined on T: (If charK ≠ 2, the two conditions in axiom 5 are equivalent).

(. ): × → ( , ) → . ,
Let Γ = L⊕E a Lie algebra represented as a direct sum of vector subspaces L and E, where L is a subalgebra of Γ and E is a vector subspace. Definition 3. The pair (L,E) is said symmetric if:

1: [L,E]⊆E, 2. [E,E]⊆L.
Proposition 1. [START_REF] Loos | Symmetric Spaces[END_REF][START_REF] Yamaguti | On the Lie triple system and its generalization[END_REF] The pair (L,E) is symmetric if and only if it exists an automorphism

: → such that : ( ) = if -if
For the proof, see for example [START_REF] Loos | Symmetric Spaces[END_REF].

Proposition 2. If (L,E

) is a symmetric pair, the ternary law introduced by relation:

[ , , ] ≝ [[ , ], ], ( , , ∈ ),
equips E with a Lie triple system structure (for the proof, see for example [START_REF] Loos | Symmetric Spaces[END_REF]).

Let T be a Lie triple system. By End v (T) we designate the space of vector endomorphisms of T.

Definition 4. The linear application ∆:T→T, (∆∈End v (T)) is said derivation of T, if:

(∀ , , ∈ ) ∆[ , , ] = [∆ , , ] + [ , ∆ , ] + [ , , ∆ ].
N.B. The vector space defined over field K and generated by derivations of T is designed by D(T).

Proposition 3. [START_REF] Loos | Symmetric Spaces[END_REF][START_REF] Sabinin | Quasi-groups and differential geometry: Ch. 12, Quasigroups and Loops: Theory and Applications[END_REF][START_REF] Yamaguti | On the Lie triple system and its generalization[END_REF] Equipped with the commutation law

[∆ , ∆ ] = ∆ ∆ -∆ ∆ , (∆ 1 , ∆ 2 ∈D(T)),
the vector space D(T) is a Lie algebra.

For the proof, see for example [START_REF] Loos | Symmetric Spaces[END_REF].

Let a and b be two elements of a triple system T. Let's introduce the application D a,b as:

, : → → , ( ) ≝ [ , , ]
Assume, by definition D 0 (T) ≝ V ect K , : , ∈ .

Proposition 4.

(∀ , ∈ )

, ∈ D(T).

D 0 (T) is a subalgebra of the Lie algebra D(T).

Proof.

1. (∀ , , ∈ ) (∀ , ∈ K ) , ( + ) = [ , , + ] = [ , , ] + [ , , ] = , ( ) + , (
), so , is linear. On the other hand, ,[ ,,] = ,,[ ,,] = [ ,,],,+ [ ,[ ,,],] + ,,[ ,,] = , ( ), , + , , ( ), + , , , ( ) , hence , ϵ D(T).

2. It's sufficient to prove the stability of D 0 (T) for the commutation. According to identity 4 (definition 1),

(∀ , , , ∈ ) [ , , , ] = , , -, , = [ , , ], + ,[ , , ] ϵ D 0 (T).
Let's now introduce the vector space:

[T,T]⊕T=D 0 (T)⊕T which is the direct sum of D 0 (T) and T. Let's define the composition law on [T,T]⊕T as follows:

(∀ , , , , ∈ ) [a,b]=-[b,a]=D a,b =-D b,a , [D a,b , x]=-[x,D a,b ]=[a,b,x], ( 1 
)
[D a,b ,D c,d ]=D a,b D c,d -D c,d D a,b .
(the law is propagated on all the space by linearity).

Proposition 5.

1. For the law introduced by relations (1), the vector space: Γ=[T,T]⊕T=D 0 (T)⊕T is a Lie algebra.

The pair (D 0 (T),T) is symmetric, i.e. [D 0 (T),T]⊆T and [T,T]⊆D 0 (T).

The proof is evident.

Let <E,(.),[-,-,-]> be a Bol algebra over R.

Théorème. (L. Sabinin, P. Mikheev [START_REF] Sabinin | Quasi-groups and differential geometry: Ch. 12, Quasigroups and Loops: Theory and Applications[END_REF][START_REF] Sabinin | On the geometry of smooth Bol loops[END_REF][START_REF] Sabinin | On differential geometry of Bol loops[END_REF][START_REF] Sabinin | Lectures on the Theory of Smooth Bol Loops[END_REF][START_REF] Sabinin | On the infinitesimal theory of local analytical loops[END_REF])

Suppose that (E,(.),[-,-,-]

) is a Bol algebra over R; then there exists a finite-dimensional Lie algebra Γ over the field R, a subalgebra L in Γ, and a linear imbedding : → such that (after identifying ( ) with E):

1. Γ=L⊕E (direct sum of vector spaces),

[[E,E],E] ⊆E,

(∀ , , ∈ ) x.y=[x,y] E and [x,y,z]=[[x,y],z],

where For the proof, see for example [START_REF] Sabinin | Lectures on the Theory of Smooth Bol Loops[END_REF].

Let E be a Bol algebra and define:  ( )

0 D E =Vect R {(D a,b , a.b), a,bϵE} and  ( ) ⊕ 0 D Γ = E E = {((D a,b , a.b), x), a,b,xϵE} (direct sum of vector spaces).
Let's introduce an internal composition law on Γ as follows:

, , . , 0 , , , . , 0 = , , , , , ( . ) -, ( . ) -( . ). ( . ) , 0 , , . , 0 , (0,0), = (0,0), , ( )

(0,0), , (0,0), = ( , , . , 0) (The law is propagated on Γ by linearity). Proposition 7. [START_REF] Sabinin | Lectures on the Theory of Smooth Bol Loops[END_REF] 1. Equipped with the composition law (2), Γ is a Lie algebra.

The pair (  ( )

0 D E , E) is symmetric.

The vector subspace L =VectR

, , , -, , ∈ is a subalgebra of Γ.

dim L = dim  ( )

0 D E and L∩E={0}.

For the proof, see for example [START_REF] Sabinin | Lectures on the Theory of Smooth Bol Loops[END_REF]. Consequence. Let Γ=L⊕E a Lie algebra. Suppose that (L,E) is a symmetric pair, where L is a subalgebra of Γ and E a vector subspace. Then the binary operation of the Bol algebra E associated with pair (L,E) is identified by some subalgebra K of Γ, such that Γ=K⊕E (direct sum of vector spaces). The composition laws in E are given by the following formulas:

(∀ , , ∈ ) [a,b,c]=[[a,b], c] a.b = [a,b] E (projection of vector [a,b] onto E parallelly to K).
3. Lie algebra g 2 . Symmetric pair g 2 /so(4)

The g 2 algebra is defined as being the Lie algebra of the exceptional compact group G 2 of automorphisms of octonions O (Cayley numbers). We'll work with a concrete matrix realization of g 2 . We then fix table 1 of octonions multiplication. The Lie algebra g 2 is isomorph to the algebra of derivations of the octonions O. We'll realize g 2 using square matrixes (8 × 8). Let x,y ∈ O ; we have: (7) ⊂ so(8): D(x.y) = Dx . y -x.Dy}.

g 2 = {D ϵ so
Let { } the canonical basis of algebra O, adopted in table 1. Let's introduce in so [START_REF] Mikheev | Smooth Quasigroups and Geometry[END_REF] the matrixes {G ij : 0≤i<j≤7}, by the following relations:

G ij e j = e i , G ij e i = -e j , G ij e k = 0, if k≠i, j.

Proposition 8.

1. {G ij , 0≤i<j≤7} is a basis of algebra so(8).

2. {G ij , 0<i<j≤7} is a basis of algebra so [START_REF] Mal'cev | Analytic Loops[END_REF] supposed included in so( 8) in a standard manner (i.e.

for D ∈ so [START_REF] Mikheev | Smooth Quasigroups and Geometry[END_REF], D ∈ so [START_REF] Mal'cev | Analytic Loops[END_REF] if and only if De 0 =0).

3.

[G ij, G kℓ ] = G ij G kℓ -G kℓ G ij = ℓ + ℓ - ℓ -ℓ (3) 
Proof.

1) & 2): it's obvious that {G ij , 0≤i<j≤7} and {G ij , 0<i<j≤7} are free generating families respectively in so(8) and so [START_REF] Mal'cev | Analytic Loops[END_REF].

3) [G ij , G kℓ ](e t ) = G ij G kℓ (e t )-G kℓ G ij (e t ) =G ij (δ ℓt e k -δ kt e ℓ )-G kl (δ tj e i -δ ti e j ) = δ lt (δ kj e i -δ ki e j )-δ kt (δ ℓj e i -δ ℓi e j )-[δ tj (δ iℓ e k -δ ik e ℓ )-δ ti (δ ℓj e k -δ kj e ℓ )] = (δ ℓt δ kj -δ kt δ ℓj )e i +(δ kt δ ℓi -δ ℓt δ ki )e j +(δ ti δ ℓj -δ tj δ iℓ )e k +(δ tj δ ik -δ ti δ kj )e ℓ .

On the other hand, (δ jk G iℓ +δ iℓ G jk -δ ik G jℓ -δ jℓ G ik )(e t )=(δ ℓt δ kj -δ kt δ ℓj )e i +(δ kt δ ℓi -δ ℓt δ ki )e j +(δ ti δℓ j -δ tj δ iℓ )e k +(δ tj δ ik -δ ti δ kj )e ℓ .

Thus,

[G ij, G kℓ ] = ℓ + ℓ - ℓ -ℓ .
Let's introduce the linear applications: L i : O → O with the following formulas:

x → L i (x)

(∀ ∈ O) ( ) = , = 1, … ,7.
Lemma. In the chosen basis (table 1), matrixes L i have the following forms: 

L 1 = -G 01 -G 23 +G 45 -G 67 L 2 = -G 02 +G 13 -G 46 -G 57 L 3 = -G 03 -G

Proof.

D(e i .e j )=De i .e j +e i .De j ⇔ D(e i .e j )-e i .De j =De i .e j ⇔DL i (e j )-L i D(e j )= ∑ ( ) ⇔

[D,L i ](e j )= ∑ ( ), then [D,L i ]= ∑ .
Let A be a matrix of so( 7)⊂so( 8); = ∑ . (Ae 0 =0)

Proposition 10. ∈ ⇔ = + ( ) = - - ( ) = - + ( ) = + ( ) = + ( ) = - ( ) = + ( ) (4) 
Proof. According to formula (3), we have: 4) is also satisfied.

[G ij ,L 1 ] = -[G ij ,G 01 ]-[G ij ,G 23 ]+[G ij ,G 45 ]-[G ij ,G 67 ] = -( δ j0 G i1 +δ i1 G j0 -δ i0 G j1 -δ j1 G i0 ) -( δ j2 G i3 +δ i3 G j2 -δ i2 G j3 -δ j3 G i2 )+( δ j4 G i5 +δ i5 G j4 -δ i4 G j5 -δ j5 G i4 )-( δ j6 G i7 +δ i7 G j6 -δ i6 G j5 -δ j7 G i6 ), then [A,L 1 ] =∑ [ , ]

Consequences.

General form for elements of the realization matrix of g 2 , in the adopted case table 1, is the following:

0 0 0 0 0 0 0 0 0 0 + 0 - 0 - + + - - 0 - - 0 0 - - - 0 + - + 0 - - - - - 0 0 - - - - - - - 0 0 - - + - - - - - 0
Proposition 11.

1. dim g 2 =14.

2. The following matrixes represent a basis of g 2 : 4. L is isomorph to so( 4)=so( 3)⊕so [START_REF] Günaydin | Non-associativity, Malcev algebras and string theory[END_REF].

e 1 =G
Proof. Based on formula (3) and equalities ( 5), we can draw the following tables: 

[-,-] E 1 E 2 E 3 E 4 E 5 E 6 E 1 0 E 3 -E 6 -E 2 -E 5 0 E 6 -E 5 E 2 -E 3 +E 6 0 E 1 +E 4 -E 6 0 E 4 E 3 E 2 +E 5 -E 1 -E 4 0 -E 5 E 4 0 E 4 0 E 6 E 5 0 -2E 6 2E 5 E 5 -E 6 0 -E 4 2E 6 0 -2E 4 E 6 E 5 -E 4 0 -2E 5 2E 4 0
-E 4 -E 2 -E 5 -E 3 -E 3 -E 2 E 1 0 e 2 E 1 +E 4 0 -E 6 -2E 2 E 2 -E 3 0 E 1 e 3 E 2 +E 5 E 6 0 -E 4 E 1 +E 5 0 -E 3 -E 2 -E 5 e 4 E 3 2E 2 E 4 0 0 E 1 +E 4 -E 2 E 3 -E 6 e 5 E 3 -E 2 -E 1 -E 5 0 0 -2(E 1 +E 4 ) -E 5 E 6 e 6 E 2 E 3 0 -E 1 -E 4 2(E 1 +E 4 ) 0 -E 6 -E 5 e 7 E 1 0 E 3 E 2 E 5 E 6 0 -2E 1 e 8 0 -E 1 E 2 +E 5 E 6 -E 3 -E 6 E 5 2E 1 0
d 12 =[G 14 -G 27 , G 15 -G 37 ] = -G 23 -G 45 , d 13 =[G 14 -G 27 , G 16 +G 34 ] = -G 13 -G 46 , d 14 =[G 14 -G 27 , G 17 +G 35 ] = -G 12 -G 47 , d 16 =[G 14 -G 27 , G 25 +G 34 ] = -G 13 -G 57 , (6) 
d 17 =[G 14 -G 27 , G 26 +G 37 ] = G 23 -G 67 , d 23 =[G 15 -G 37 , G 16 +G 34 ] = -G 47 -G 56 .
Suppose that: We obtain the multiplication table 6, which is of so(4).

λ 1 d
L 1 L 2 L 3 L 4 L 5 L 6 L 1 0 -L 3 L 2 0 0 0 L 2 L 3 0 -L 1 0 0 0 L 3 -L 2 L 1 0 0 0 0 L 4 0 0 0 0 L 6 -L 5 L 5 0 0 0 -L 6 0 L 4 L 6 0 0 0 -L 5 -L 4 0
Table 6: Multiplication in sub-algebra L relative to base L i .

Then, L is isomorph to so(3)⊕so(3). = 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -2 0 0 0 0 0 -1 2 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 = 0 0 -2 0 0 -1 0 0 0 0 0 -1 1 0 0 0 1 0 0 0 0 0 0 -1 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 0 0 = 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 2 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0 -1 0 0 -1 0 0 0 0 0 -2 1 0 0 0 0 0 0 0 0 0 0 -1 0 2 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 -1 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 -2 0 = 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 2 0 0 0 1 -1 0 0 0

Bol

The result follows from tables 3 and 4 immediately.

For the binary composition law, according to table 5, relations [START_REF] Mal'cev | Analytic Loops[END_REF] Lemma 2. In our case, identity 6 in definition 2 is equivalent to the following matrix equations system:

1) X 1 X 2 =D 12 X 2 -D 13 X 1 +X 3 -X 6 2) X 1 X 3 =D 12 X 3 -D 14 X 1 -X 4 3) X 1 X 4 =D 12 X 4 -D 16 X 1 +X 3 4) X 1 X 5 =D 12 X 5 -D 17 X 1 5) X 1 X 6 =D 12 X 6 -D 23 X 1 +X 2 -X 4 6) X 2 X 3 =D 13 X 3 -D 14 X 2 -X 5 7) X 2 X 4 =D 13 X 4 -D 16 X 2 8) X 2 X 5 =D 13 X 5 -D 17 X 2 +X 3 9) X 2 X 6 =D 13 X 6 -D 23 X 2 -X 1 -X 5 10) X 3 X 4 =D 14 X 4 -D 16 X 3 -X 1 11) X 3 X 5 =D 14 X 5 -D 17 X 3 -X 2 12) X 3 X 6 =D 14 X 6 -D 23 X 3 13) X 4 X 5 =D 16 X 5 -D 17 X 4 +X 3 -X 6 14) X 4 X 6 =D 16 X 6 -D 23 X 4 +X 1 +X 5 15) X 5 X 6 =D 17 X 6 -D 23 X 5 +X 2 -X 4 (9) 
In the following, we'll just treat particular case where the Bol algebra verifies the identity:

(∀ , , , ∈ ) ( . ). ( . ) = 0.

In this case, the system ( 9) is equivalent to two systems: the first one is homogeneous and linear:

1) D 12 X 2 -D 13 X 1 +X 3 -X 6 =0 2) D 12 X 3 -D 14 X 1 -X 4 =0 3) D 12 X 4 -D 16 X 1 +X 3 =0 4) D 12 X 5 -D 17 X 1 =0 5) D 12 X 6 -D 23 X 1 +X 2 -X 4 =0 6) D 13 X 3 -D 14 X 2 -X 5 =0 7) D 13 X 4 -D 16 X 2 =0 8) D 13 X 5 -D 17 X 2 +X 3 =0 9) D 13 X 6 -D 23 X 2 -X 1 -X 5 =0 10) D 14 X 4 -D 16 X 3 -X 1 =0 11) D 14 X 5 -D 17 X 3 -X 2 =0 12) D 14 X 6 -D 23 X 3 =0 13) D 16 X 5 -D 17 X 4 +X 3 -X 6 =0 14) D 16 X 6 -D 23 X 4 +X 1 +X 5 =0 15) D 17 X 6 -D 23 X 5 +X 2 -X 4 =0, (10) 
and the second one is homogeneous and "cubic":

X i X j =0, 1≤i<j≤6. (10bis) 
The real solution that verifies the two systems simultaneously is trivial. But the extension of the scalars field gives us several remarkable complex solutions.

Proposition 13. The general solution for system [START_REF] Pérez-Izquierdo | An envelope for Bol algebras[END_REF] is given by:

X 1 = T (-α 3 , α 4 , 0, 0, α 2 -2α 7 , -α 1 -2α 8 , α 4 -α 5 , -α 6 )
X 2 = T (2α 2 -α 7 ,-α 8 , 2α 4 -α 5 , α 3 +α 6 , α 6 , 0, -α 1 -α 8 , -2α 2 +α 7 )

X 3 = T (2α 1 +α 8 , -α 7 , α 6 , α 4 +α 5, α 4 +α 5 , α 3 , -α 2 , 0) We can easily verify that columns given by equations 11-1, 11-3, 11-4, 11-6, 11-7 represent the general solution of the linear system [START_REF] Pérez-Izquierdo | An envelope for Bol algebras[END_REF]. By requiring stability of vector space VectR{P j } j=1,…6 for commutation, i.e.:

X 4 = T (α 2 -α 7 , α 1 -α 8 , α 4 -α 5 , 2α 3 +α 6 , 0, α 5 , 0, -α 2 ) X 5 = T (0, 0, α 1 , -α 2 , -α 2 + α 7 , α 8 , -α 4 +2 α 5 , α 3 +2 α 6 ) X 6 = T (α 1 , α 2 , α 3 , α 4 , α 5 , α 6 , α 7 , α 8 ), α i ϵR, i=1,…,8. ( 11 
[ , ℓ ] = ∑ ℓ , 1≤k<ℓ≤6,
we find that all the solutions verifying simultaneously systems ( 10) and (10bis) are complex except the trivial solution. Among the found solutions, we provide the following list of 

= - ∓ √ ± √ -2 ∓ √ + ( ≠ 0) = - ∓ √2 - - = ± √2 - ∓ √ ∓ √ + ± √ = ± √ - ∓ √ + ± √ = ± √ ∓ √ + ± √ - = ∓ √ + ∓ √ - ∓ √2 + (12-9)

2 .

 2 (∀ , , ∈ ) [ , , ] = -[ , , ] and [ , , ] = , 3. (∀ , , ∈ ) [ , , ] + [ , , ] + [ , , ] = , 4.

satisfying the following additional axioms: 5 .

 5 (∀ , ∈ ) . = -. and . = , 6. (∀ , , , ∈ ) [ , , . ] = [ , , ]. + . [ , , ] + [ , , . ] + ( . ). ( . ).

N

  .B.*(∀ , ∈ ) (0,0), , (0,0), = , , . , 0 = , , . , -. + ((0,0), . ), i.e. . = [ , ] (projection of [a,b] onto E parallelly to L).*(∀ , , ∈ ), [ , ],= (0,0), , (0,0), , (0,0), = , , . , 0 , (0,0), = (0,0), , ( ) = [ , , ]
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 01 Proof. Matrixes D 23 , D 12 -D 17 , D 13 +D 16 , D 13 -D 16 are invertible; equation[START_REF] Pérez-Izquierdo | An envelope for Bol algebras[END_REF][START_REF] Pérez-Izquierdo | An envelope for Malcev algebra[END_REF][START_REF] Pérez-Izquierdo | Algebras, hyperalgebras, non-associative bi-algebras and loops[END_REF] gives: 5 and 10-15 imply (D 12 -D 17 )X 6 -D 23 (X 1 -X 5 )=0, hence: by its value from equation 10-4, we find: 10-14 imply:(D 13 +D 16 )X 6 -D 23 (X 2 +X 4 )=0;

Table 1 :

 1 Octonions multiplication.

  12 +G 47 -G 56 L 4 = -G 04 -G 15 +G 26 -G 37 L 5 = -G 05 +G 14 +G 27 +G 36 L 6 = -G 06 +G 17 -G 24 -G 35 L 7 = -G 07 -G 16 -G 25 +G 34The proof results immediately from table 1.

Proposition 9.

Let D be an element of so

[START_REF] Mikheev | Smooth Quasigroups and Geometry[END_REF] 

such that De 0 =0, and for each i>0, De i =∑ . Then D∈g 2 if and only if [D,L i ]= ∑ .

  =a 12 G 02 +a 13 G 03 +a 14 G 04 +a 15 G 05 +a 16 G 06 +a 17 G 07 +a 13 G 12 -a 12 G 13 +a 15 G 14 +a 14 G 15 +a 17 G 16 -a 16 G 17 +(a 25 +a 34 )G 24 +(a 24 +a 35 )G 25 +(a 27 +a 36 )G 26 +(-a 26 +a 37 )G 27 +(-a 24 +a 35 )G 34 +(-a 25 +a 34 )G 35 +(-a 26 +a 37 )G 36 +(-a 27 -a 36 )G 37 +(a 47 -a 56 )G 46 +(-a 46 -a 57 )G 47 +(a 46 +a 57 )G 56 +(a 47 -a 56 )G 57 .

	But { }	∪ { }	is a basis in so(8), then the decomposition must be unique according
	to this basis:	
	[A,L 1 ]=-a 12 L 2 -a 13 L 3 -a 14 L 4 -a 15 L 5 -a 16 L 6 -a 17 L 7 + (-a 16 -a 25 +a 34 )G 24 +(-a 17 +a 24 +a 35 )G 25
		+(a 14 +a 27 +a 36 )G 26 +(a 15 -a 26 +a 37 )G 27 +(a 17 -a 24 -a 35 )G 34 +(-a 16 -a 25 +a 34 )G 35
		+(a 15 -a 26 +a 37 )G 36 +(-a 14 -a 27 -a 36 )G 37 +(-a 12 +a 47 -a 56 )G 46 +(a 13 -a 46 +a 57 )G 47
		+(-a 13 +a 46 +a 57 )G 56 +(-a 12 +a 47 -a 56 )G 57 ,
	then [A, L 1 ]ϵ Vect{ } if and only if equalities (i), (ii), (iii), (v), (vi) and (vii) in (4) are
	satisfied. Operating similarly with [A, L 2 ], we find:
	[A,L 2 ]=a 12 L 1 -a 23 L 3 -a 24 L 4 -a 25 L 5 -a 26 L 6 -a 27 L 7 + (a 16+ a 25 -a 34 )G 14 +(a 17 -a 24 -a 35 )G 15
		+ (-a 14 -a 27 -a 36 )G 16 +(-a 15 +a 26 -a 37 )G 17 +(a 14 +a 27 +a 36 )G 34 +(a 15 -a 26 +a 37 )G 35
		+(a 16 +a 25 -a 34 )G 36 +(a 17 -a 24 -a 35 )G 37 +(-a 12 +a 47 -a 56 )G 45 +(a 23 -a 45 +a 67 )G 47
		+(-a 23 +a 45 -a 67 )G 56 +(a 12 -a 47 +a 56 )G 67 ,

then equality (iv): a 45 = a 23 +a 67 in (

  11 G 12 +a 10 G 13 +a 1 G 14 +a 2 G 15 +a 3 G 16 +a 4 G 17 +a 9 G 23 +a 5 G 24 +a 6 G 25 +a 7 G 26 -(a 1 +a 8 )G 27 +(a 3 +a 6 )G 34 +(a 4 +a 5 )G 35 +a 8 G 36 +(-a 2 +a 7 )G 37 +a 12 G 45 +a 13 G 46 +(a 11 +a 14 )G 47 +a 14 G 56 +(a 10 -a 13 )G 57 +(a 12 -a 9 )G 67 =0, but family {G 12 ,…,G 67 } is free, so: Assume L=VectR{E 1 ,…,E 6 }, E=Vect R {e 1 ,…,e 8 } and d ij =[e i ,e j ]=e i e j -e j e i , 1≤i<j≤8.

	a 11 =a 10 =a 1 =a 2 =a 3 =a 4 =a 9 =a 5 =a 6 =a 7 =0,	
	a 1 +a 8 =0, a 3 +a 6 =0, a 4 -a 5 =0, -a 2 +a 7 =0, a 12 =0, a 13 =0,
	a 11 +a 14 =0, a 14 =0, a 10 -a 13 =0, a 12 =0,	
	hence a i =0, i=1,…,14.		
	Proposition 12.		
	14 -G 27 e 2 =G 15 -G 37	e 3 =G 16 +G 34	e 4 =G 17 +G 35
	e 5 =G 24 -G 35 e 6 =G 25 +G 34 e 7 =G 26 +G 37	e 8 =-G 27 +G 36	(5)
	E 1 =G 23 -G 67 E 2 =G 13 +G 57 E 3 =G 12 +G 47	E 4 =G 45 +G 67 E 5 =G 46 -G 57 E 6 =G 47 +G 56
	Proof.		

1. Relations (4) are visibly independent and dim so

[START_REF] Mal'cev | Analytic Loops[END_REF]

=21, so dim g 2 =14.

2. It suffices to prove that family { } ∪ { }

is free, since dim g 2 =14 and the number of matrixes is 14. Assume: e j+8 =E j , j=1,…6. So ∑ = 0, then using (

5

) we obtain:

a 1.

L is a subalgebra of algebra g 2 and dim E=6.

2. The pair (L,E

) is symmetric and g 2 = L⊕E. 3. L=Vect R {d 12 , d 13 , d 14 , d 16 , d 17 , d 23 }.

Table 2 :

 2 Multiplication in sub-algebra L relative to base E i .

	[-,-]	e 1	e 2	e 3	e 4	e 5	e 6	e 7	e 8
	e 1	0	-E 1						

Table 3 :

 3 Multiplication in subspace E relative to base e i

	[-,-]	e 1	e 2	e 3	e 4	e 5	e 6	e 7	e 8
	E 1	e 7	e 8	e 4 +e 5	-e 3 +e 6	-e 6	e 5	-2e 8	2e 7
	E 2	-e 6	-2e 4	e 1 -e 8	2e 2	-e 2	e 1	e 4	e 3 -e 6
	E 3	-2(e 4 +e 5 )	-e 6	-e 7	e 1	e 1	e 2	e 3	-e 4 -e 5
	E 4	-(e 2 +e 7 )	e 1 -e 8	-e 4	e 3	-e 6	e 5	e 8	-e 7
	E 5	-e 3 +e 6	e 4	e 1 -e 8	-e 2	-e 7	-e 8	e 5	e 6
	E 6	-(e 4 +e 5 )	-e 3	e 2	e 1 -e 8	e 8	-e 7	e 6	-e 5

Table 4 :

 4 Mixed multiplication [L, E]. 1. According to table 2, L is stable for composition, so L is a subalgebra of g 2 . 2. According to tables 3 and 4, we have [L,E]⊆E, [E,E]⊆L, so the pair (L,E) is symmetric. It's obvious that g 2 =L⊕E (direct sum of vector spaces). 3. Matrixes d 12 , d 13 , d 14 , d 16 , d 17 and d 23 are linearly independent; effectively, according to relations (5), we have:

Table 5 :

 5 12 + λ 2 d 13 + λ 3 d 14 + λ 4 d 16 + λ 5 d 17 + λ 6 d 23 =0 ⇒ Multiplication in sub-algebra L relative to base d ij .

	(λ 5 -λ 1 )G 23 -(λ 2+ λ 4 )G 13 -λ 3 G 12 -λ 2 G 46 -(λ 2+ λ 6 )G 46 -λ 1 G 45 -λ 5 G 67 -λ 6 G 56 -λ 4 G 57 =0 ⇒ λ 1 =…=λ 6 =0.
	Then:						
	Vect R {d 12 , d 13 , d 14 , d 16 , d 17 , d 23 } = L,				
	and we also have:						
	d 12 =-d 35 =-d 46 =½d 56 ,	d 13 =d 38 ,	d 14 =d 15 =d 26 =d 37 ,	d 16 =½d 24 =-d 25 =d 47,
	d 17 =d 28 =-½d 78 ,	d 23 =-d 58 =d 67 , d 18 =d 27 =d 36 =d 45 =0,	d 57 =d 68 =d 13 -d 16 ,	(7)
	d 34 =d 12 +d 17 ,	d 48 =d 23 -d 14 .				
	[-,-]	d 12	d 13	d 14	d 16	d 17	d 23
	d 12	0	d 23 -d 14	d 16	-d 14	0	d 16 -d 13
	d 13	d 14 -d 23	0	d 17	0	-d 14	d 12 +d 17
	d 14	-d 16	-d 17	0	d 12	d 13	0
	d 16	d 14	0	-d 12	0	d 23 -d 14	-d 12 -d 17
	d 17	0	d 14	-d 13	d 14 -d 23	0	d 16 -d 13
	d 23	d 13 -d 16	-d 12 -d 17	0	d 12 +d 17	d 13 -d 16	0

  Algebras of g 2 /so(4) T (a 1 ,…,a 8 ) and = T (α 1 ,…,α 8 ). Similarly, we introduce matrixes D 13 , D 14 , D 16 , D 17 , D 23 that correspond, in the canonical basis of R 8 , respectively to matrixes d 13 , d 14 , d 16 , d 17 , d 23 ; for example, [d 12 , a]=(e 1 ,…,e 8 ).D 12 = ∑ Matrixes D 12 , D 13 , D 14 , D 16 , D 17 and D 23 can be written as follows:

	Let = ∑	an element of E. Suppose that [d 12 ,a]= ∑	, and let D 12 the square matrix
	(8×8) such that	= , where =	

. Lemma 1.

Table 7 :

 7 and proposition 7, we have: General form of the Bol algebra binary law.where x 1 =e 1 .e 2 , x 2 =e 1 .e 3 , x 3 =e 1 .e 4 , x 4 =e 1 .e 6 , x 5 =e 1 .e 7 , x 6 =e 2 .e 3 .Similarly, let's designate by X i X j , 1≤i<j≤6, columns of coefficients of development of 15 elements x i .x j , 1≤i<j≤6, according to basis { } .

	.	e 1	e 2	e 3	e 4	e 5	e 6	e 7	e 8
	e 1	0	x 1	x 2	x 3	x 3	x 4	x 5	0
	e 2	-x 1	0	x 6	2x 4	-x 4	x 3	0	x 5
	e 3	-x 2	-x 6	0	x 1 +x 5	-x 1	0	x 3	x 2
	e 4	-x 3	-2x 4	-x 1 -x 5	0	0	-x 1	x 4	x 6 -x 3
	e 5	-x 3	x 4	x 1	0	0	2x 1	x 2 -x 4	-x 6
	e 6	-x 4	-x 3	0	x 1	-2x 1	0	x 6	x 2 -x 4
	e 7	-x 5	0	-x 3	-x 4	-x 2 +x 4	-x 6	0	-2x 5
	e 8	0	-x 5	-x 2	-x 6 +x 3	x 6	-x 2 +x 4	2x 5	0
	Let = ∑	and X i = T (x i1 ,…,x i8 ), i=1,…6.				

  According to proposition 7, it exists a subalgebra K of g 2 =L⊕E such that g 2 =K⊕E, (K∩E={0})and (∀ , ∈ ) . = [ , ] (projection of [a,b] onto E parallelly to K). Then K isgenerated by a basis of the following from: {P 1 =d 12 +x 1 , P 2 =d 13 +x 2 , P 3 =d 14 +x 3 , P 4 =d 16 +x 4 , P 5 =d 17 +x 5 , P 6 =d 23 +x 6 }, where: dim K=6, x 1 =e 1 .e 2 , x 2 =e 1 .e 3 , x 3 =e 1 .e 4 , x 4 =e 1 .e 6 , x 5 =e 1 .e 7 , x 6 =e 2 .e 3 .

Summary

It appears to us that these algebras represent mathematical objects which require special studying. In this paper, we've addressed the issue of Bol algebras generated by the symmetric space g 2 /so(4) and verifying an additional identity of the form (x.y).(z.u) = 0, that we've introduced because it seems to us that this identity can model in some way the concept of "disparity" encountered in the theory of elementary particles. It is well known that g 2 is the Lie algebra of G 2 automorphisms group of octonions system frequently used in various fields of research. We've provide a list of 20 mono-parametric families of complex Bol algebras. But this list is not exhaustive of all possible algebras in the considered case.

Bol algebras generalize those of Lie and of Mal'cev; so based on information relative to the multiplicity of application domains for theories of Lie and Mal'cev (see for example [START_REF] Günaydin | Non-associativity, Malcev algebras and string theory[END_REF][START_REF] Silvestov | Generelized Lie theory in Mathematics, physics and Beyond[END_REF]), we can guess with large credibility that the obtained results are probably applicable in mechanics, quantic, elementary particle theories, relativist physics and in space-time theory.

Our future publications will be dedicated to the completion of the list of obtained algebras, as well as to the study of each element in this list.