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Abstract. In this paper we address the use of rare event computation techniques to

estimate small over-threshold probabilities of observables in deterministic dynamical

systems. We demonstrate that genealogical particle analysis algorithms can be

successfully applied to a toy model of atmospheric dynamics, the Lorenz ’96

model. We furthermore use the Ornstein-Uhlenbeck system to illustrate a number of

implementation issues. We also show how a time-dependent objective function based

on the fluctuation path to a high threshold can greatly improve the performance of the

estimator compared to a fixed-in-time objective function.

1. Introduction

Rare events may have a large impact on the dynamics of geophysical turbulent flows

and the climate. In bistability situations, a rare transition can drastically change the

structure of the flow, like for instance the bistability of the Kuroshio current [1, 2]

or a change of polarity of the Earth’s magnetic field due to the turbulent dynamics

of the Earth metal core [3]. Rare events can also be extremely important because of

their impact on society, ecosystems or the economy. There are many such examples in

climate dynamics, for example extreme droughts, heat waves, rainfalls and storms [4].

The probability and the impact of these events is likely to change in the future due to

a changing climate [4]. The magnitudes of possible changes are however still uncertain

[5].

On the one hand, for climate dynamics, there is a lack of sufficient reliable empirical

data [6]. How could one assess faithfully the probability of events with recurrence

times longer than one decade with only one or two century long reliable data? In

the last decade, many methods have been developed to extract the most information

possible from this too short time-series. For instance extreme value statistics [7, 8]
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has interestingly allowed to extrapolate from the information available from empirical

observation [9, 10].

Another approach would be to critically study and understand the dynamics of

rare events produced by complex climate models. This second approach seems to be the

only available one for events with a recurrence time longer than decades or centuries.

However, the current scientific state of the art does not yet allow to obtain many results

by following this route. The first critical issue is a sampling problem. Indeed, if one

wants to study events with century or millennial recurrence time and assess the reliability

of the model dynamics to produce those events, a direct numerical simulation would

require to have model runs of at least hundreds of thousands of years long in order to

get reliable statistics on both the probability of and the dynamics leading to these events.

As it is not always reasonable to trade computational length with model complexity,

especially for the turbulent part which is responsible for most of the fluctuations, it is

clear that we are facing an extremely difficult scientific challenge.

Is there a way to produce reliable statistics of specific rare events of a given model,

without having to rely on prohibitively long direct numerical simulations? The same

issue has been faced in many other scientific fields and has led to the development of

some interesting approaches. Indeed, many of the complex systems studied in different

branches of science feature events that are very rare but nevertheless very relevant due to

their high impact. Take for example buffer overflows in digital communication networks,

the insolvency of an insurer or bank, collisions in planetary systems, the dynamics of

phase transitions in condensed matter, the long time dynamics of complex molecules

in chemistry or biology, to name but a few. In recent years a number of promising

algorithms have been developed to tackle these problems [11, 12, 13, 14]. These rare

event simulation algorithms can drastically reduce the error made on the estimation of

small probabilities.

Generally speaking, the objective of the algorithms is to make rare events less

rare, either by altering the dynamics (importance sampling) or by targeted killing

and cloning of an ensemble of realizations (genealogical particle analysis or interacting

particle algorithms). Upon estimation the intervention of the algorithm is then taken

into account to obtain an estimate for quantities of the original system.

Within the class of genealogical particle analysis algorithms, a number of different

strategies exist. A first crucial difference is the type of quantity one aims at estimating.

One can be interested in the distribution of first entrance time to a set or to sample

transition paths [15, 16, 17, 18], the probability of a rare event [19, 20, 21] or expec-

tation values of long time averages such as the scaled cumulant generation function

[22, 23, 24, 25, 26, 27] as it appears in large deviation theory. For these different aims

again different algorithms exist, for example geneological algorithms with fixed [19, 20]

versus variable [21] particle numbers, minimum action algorithms [18], or milestoning

[28]. These algorithms have already been applied to a wide range of systems, for ex-

ample percolation problems [29], in complex chemistry [30], polymer and biomolecule

dynamics [31, 32, 33, 34], magnetism [35, 36], Burger turbulence [37, 38].
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The aim of this work is to make a first step in the application of those approaches

to climate dynamics problems. Climate dynamics has specificities that make past

approaches not directly adaptable. First, the climate is clearly out of equilibrium

(without time reversal symmetry or detailed balance), therefore only non-equilibrium

approaches can be considered. Second, the phenomenology of geophysical turbulent

flows is dominated by large scale synoptic scales and is rather different from other

complex dynamics, for instance molecular dynamics. And third, most climate models are

deterministic models, or sometimes include a stochasticity that does not affect directly

the synoptic scales.

The aim of this paper is to consider the latter specificity of many climate model. We

address the following question: can rare event algorithms based on genealogical particle

analysis be used effectively and efficiently for deterministic dynamics? Most algorithms

rely on a Markov assumption, which is verified for deterministic models. However at

the cloning stage, a new trajectory is branched from another one in order to produce

a new ensemble member. For a strictly deterministic system, the offspring trajectory

will not be different from its parent. To ensure separation of the two trajectories, one

has therefore to add either a very small noise on the overall dynamics or a small change

on the initial condition to the offspring trajectory and rely on the dynamics chaoticity.

A key issue is then to verify a posteriori that the noise is small enough so as not to

distort the measured statistics and probabilities. A test using different decreasing noise

strengths and checking for stability should therefore be used.

In order to perform the first study of the effectiveness of these approaches for chaotic

deterministic dynamics, we have chosen to study a simple chaotic system with many

degrees of freedom, and of relevance for climate dynamics: the Lorenz ’96 model [39, 40].

We have also chosen the conceptually simplest and most robust genealogical algorithm

that allows to sample invariant measure or transition probabilities: the genealogical

particle analysis algorithm. We give a detailed heuristic presentation of the algorithm

and a benchmark on the Ornstein-Uhlenbeck process in section 4.

The genealogical particle analysis algorithms explore the statistics of solutions of the

dynamical systems by running an ensemble of realizations, interrupting the ensemble

simulation at given times and killing ensemble members that do not perform well as

measured by a weight or objective function and cloning the ones with a high weight.

This selective procedure explains the terminology genealogical particle analysis. The

individual realizations are also sometimes referred to as particles. The design of a

good objective function is then arguably the main design issue one faces when using

genealogical particle analysis algorithms. Other choices that have to be made are the

number and timing of interactions and the number of particles to use. We will address

these practical issues in a detailed study of the genealogical particle analysis algorithms

on the Ornstein-Uhlenbeck process. This process is easy to simulate numerically and

allows for analytic expressions to be derived; it is therefore well suited for the purpose

of illustration and testing.
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Another aim of this paper is to propose a systematic approach and procedure to

get reliable results and error estimates. We propose to build the tail of the cumulant

distribution funciton of interest by gluing together pieces of results obtained for different

cloning parameter by a systematic study of the most reliable one, through an empirical

estimate of the algorithm variance. Moreover, we propose a procedure to test empir-

ically this class of algorithms against the real dynamics. Indeed, for a model like the

Lorenz ’96 model, we have no theoretical results that can serve as a benchmark.

The paper is organized as follows. In Section 2 we discuss how the need for rare

event simulation techniques arises, what the objective of such algorithms is (making

rare events typical) and how this goal can be achieved for stochastic processes by

implementing a genealogical particle analysis simulation. In Section 3 we present a

brief discussion of the theory of large deviations and what it can say about the way in

which rare events are reached by a process. This theory can be used to implement a

more efficient rare event sampling method. In Section 4 we proceed by implementing

the genealogical particle analysis simulation to the Ornstein-Uhlenbeck system. We

discuss in depth the selection of the parameters in the algorithm. In Section 5 we then

present the implementation of the genealogical particle analysis simulation on a chaotic

deterministic dynamical system. Finally, we present our conclusions in Section 6.

2. Rare event computation for Markov dynamics

In sections 2.1 and 2.2 we present a classical discussion of the inefficiency of brute force

Monte Carlo simulation for estimating small probabilities. This motivates the need

for rare event computation techniques. We introduce the genealogical particle analysis

algorithm and the related theory in Section 2.3.

2.1. Motivation

The goal of rare event computation techniques is to make the numerical estimation of

small probabilities more efficient. The necessity of using such techniques is demonstrated

by the sampling of the tail of a distribution P using independent samples identically

distributed according to the distribution P . Say one wants to estimate a small

probability γA = P (X ∈ A)� 1 by means of a brute force Monte Carlo estimate

γ̂A =
1

N

N∑
i=1

1A(Xi) (1)

where 1A is the indicator function on the set A. The estimator γ̂A is an unbiased

estimator of γA since the expectation value of γ̂A is clearly γA. When the number of

samples N is large enough for γ̂A to follow a central limit theorem, the statistical error of

the estimator can be quantified by its variance V ar(γ̂A) = V ar(1A(X))/N . Furthermore

V ar(1A(X)) = E((1A(X)− γA)2)



Rare event computation in chaotic systems 5

= E(1A(X))− γ2A = γA − γ2A
≈ γA (2)

when γA is small. The relative error of the estimator RE being proportional to the

standard deviation divided by the estimated quantity, we have RE ∼ 1√
γAN

. The relative

error quickly becomes large as γA goes to zero for fixed sample size N . Fortunately there

exist methods for estimating small probabilities more efficiently.

2.2. Importance sampling

The main ingredient of rare event computation techniques is a sampling from a modified

distribution together with an adapted estimator to counteract this change of measure.

This method to lower the estimator variance of a rare event probability is termed

importance sampling. Again the example of the sampling from independent identically

distributed random variables provides valuable insights.

Say we want to estimate

γA =

ˆ
dXρ(X)1A(X)� 1

where ρ is the density for our random variable X. Instead of doing a straightforward

sampling of X as in (1), assume we can sample from a modified measure ρ̃ for which

ρ̃(X) > 0 whenever X ∈ A and ρ(X) > 0. In such a case, the probability we want to

estimate can be rewritten as

γA =

ˆ
dXρ̃(X)

ρ(X)

ρ̃(X)
1A(X)

= Ẽ(L(X)1A(X))

L(X) :=
ρ(X)

ρ̃(X)
whenever 1A(X)ρ(X) > 0

and we can therefore estimate γA using the estimator

γ̃A =
1

N

N∑
i=1

L(X̃i)1A(X̃i) (3)

on samples X̃i distributed according to ρ̃.

The variance for such an estimator is

Ṽ ar(L(X)1A(X)) = Ẽ(L2(X)1A(X))− γ2A = E(L(X)1A(X))− γ2A
If we could take ρ̃ as the conditional measure with ρ̃(X) = ρ(X)/γA for X ∈ A and zero

elsewhere, such that L(X) = 1A(X)γA, this would result in a zero variance estimator.

This estimator is however not practically implementable, since for this we would need

to know the value of γA, which is the value we seek to calculate.

This calculation demonstrates some important points however. First of all, it shows

that a change of measure can indeed reduce the variance of the estimator. Although the

ideal change of measure is not feasible in practice, a change of measure that is in a sense
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close to it should also give a substantial variance reduction. This modified measure

should therefore have most of its weight on the set of interest A. On the other hand,

this also implies that one needs to have some understanding of the shape of the set A

and the distribution on it to construct an efficient importance sampling.

2.2.1. Skewing a normal distribution To illustrate how a change of measure can

provide significant variance reductions, even if the modified measure is not the ideal

conditional measure, we discuss an example for normally distributed random variables.

This example will also be useful to illustrate and validate our rare event algorithm for

dynamical systems.

Say we want to estimate the probability of the rare event A = {x > a} for a

normally distributed random variable x ∼ N0,1 with zero average and standard deviation

equal to one. Assume that we can skew the distribution with an exponential function

ρ̃(X) = ρ(X) exp(CX)/E(exp(CX)) = 1√
2π

exp
[
− (X−C)2

2

]
which constitutes of a shift

of the average by C. Since L(X) = E
(
eCX

)
/ exp(CX) = exp (−CX + C2/2), the

variance of the terms in the importance sampling estimator is now

Ṽ ar(L(X)1A(X)) = P−c,1(x > a)eC
2 − γ2A (4)

where Pµ,σ denotes probabilities under a normal distribution with mean µ and variance

σ. The standard deviation, the square root of the variance (4), is plotted for a = 2

in Figure (1). The standard deviation has a single minimum, which is obtained for a

value of C which is close to C = 2, for which the mean of the tilted value coincides

with the threshold. This basic example illustrates how importance sampling can lower

dramatically the estimator variance.

As Fig. (1) shows, the relative error, which is proportional to the plotted quantity

Std(γ̃A)/γA, can be reduced by a factor of more than 4 for the case where A = [2,+∞).

Since the error decreases as 1/
√
N , this means a at least 16-fold longer brute force

simulation would be necessary to obtain a similarly accurate result. For graphical

purposes a relatively low threshold 2 was chosen here. For higher thresholds, the

performance gains increase drastically, with a reduction of computational effort by a

factor 6× 105 when A = [5,+∞).

2.3. Genealogical particle analysis algorithm

The motivation for rare event simulation and the discussion of importance sampling

have shown that it is necessary to make rare events less rare. This concept can be

applied to stochastic processes such as the paths followed by either stochastic dynamics

or chaotic deterministic dynamics. In those cases the objective is to alter the probability

of certain paths that are connected to the rare event one wants to study.

Two different strategies are employed to alter the path sampling in stochastic

dynamical systems. The first one is to alter the dynamical equations of the system

by introducing a forcing term [41]. By tuning a parameter of the added forcing term,



Rare event computation in chaotic systems 7

Figure 1: The ratio of the standard deviation to estimated probability of an

exponentially tilted gaussian importance sampling estimator for a threshold a = 2 with

N = 1

one can then attempt to decrease the variance of the rare event estimator. A second

strategy consists in calculating an ensemble of realizations of the stochastic system in

parallel and manipulating the ensemble members by performing selections at a finite

number of selection times so as to bias the population.

Here we will use the second strategy, by employing a variant of the so called

genealogical particle analysis algorithms. The selections applied to the ensemble consist

of dynamical trajectories, called particles, being copied and killed depending on weight

factor asigned to every ensemble member. This strategy has the advantage of not

altering the dynamical trajectories themselves, such that their dynamics can be studied

a posteriori.

Extensive analysis of the convergence of genealogical particle analysis algorithms

can be found for example in [13, 14]. In the following sections, we perform a simpler

calculation, assuming a mean field approximation, to demonstrate the evolution of the

expected particle distributions in a genealogical particle analysis. The validity of this

mean field approximation for large particle number is the subject of the complete proofs

given in [13, 14]. Before going to a truly interacting genealogical particle analysis in

Section 2.3.3, we first get some insight by looking at an algorithm where particles are

reweighted, but by a factor depending only on the evolution of the particle itself, in

Section 2.3.1.

2.3.1. A non-interacting genealogical particle analysis We calculate rare events of a

continuous time Markov chain. P (2)(y|x,∆t) denotes the transition probabilities from

configuration x to y over a time interval ∆t. We are interested in the probability of
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Algorithm 1 Non-interacting weighted particle system

(i) Initiate M particles in configuration x0: ξi,0 = x0 for 1 6 i 6 Nt0 = M

(ii) For every time step k ∈ {1, . . . , n}

(a) Propagate ξi,tk−1
under the dynamics, resulting in ζi,tk distributed according to

P (2)(ζi,tk |ξi,tk−1
,∆tk) with ∆tk = tk − tk−1

(b) Calculate weights Wi,k for particle i:

Wi,k = W (ζi,tk , ξi,tk−1
) := exp(V (ζi,tk)− V (ξi,tk−1

))

for a suitably chosen weight function V

(c) Generate a new particle distribution ξj,tk consisting of Ni,k copies of particle

with configuration ζi,tkwhere Ni,k is chosen at random such that E(Ni,k) = Wi,k

(note that Ntk =
∑

iNi,k)

(iii) Finally, for any F , calculate F̆ = 1
M

Σ
Ntn
i=1F (ξi,tn) to estimate E0,tn(FeV )e−V (x0) (to

estimate γA take F (x) = FA(x) := 1A(x) exp(V (x0)− V (x)))

being in a set of configurations A at a time t = tn, given that the process started in

configuration x0 at time t = 0. Nt denotes the number of particles at time t, whereas

{ξi,t}16i6Nt denote the particle configuration at time t. E0,t denotes expectation values

under the original Markov dynamics P (2) at time t. The algorithm to generate the

particles is described in the box Algorithm 1.

The algorithm can be summarized as follows: after initialization (step i) the

ensemble members are evolved forward in time (step (ii)a) and weight values are

calculated from the previous and current configurations of the particle, ζi,tk and ξi,tk−1

respectively (step (ii)b). Based on these weight values, ensemble members are killed or

cloned (step (ii)c). Repeating this procedure results in a reweighted sample of paths,

from which expectation values of the unweighted path distribution can be estimated

(step iii). The rare event probability for a set A can be obtained by taking as observable

F (x) = 1Ae
−V (x)eV (x0) such that E0,tn(FeV )e−V (x0) = E0,tn(1A).

Note that the random number Ni,k generated in step (ii)c can be zero, such that

particles can be killed as well as cloned (when Ni,k > 1). A way to generate the

random number described in step (ii)c is to take Ni,k = bWi,k + uc where u is uniformly

distributed on [0, 1] and bxc is the floor of x (the largest integer smaller than x).

2.3.2. Unbiased estimator We first show that Algorithm 1 provides an unbiased

estimator for the quantity E0,tn(FeV )e−V (x0), i.e. the algorithm results in a random

estimate whose expectation value equals the quantity to be estimated:

E1

(
1

M
Σ
Ntn
i=1F (ξi,tn)

)
= E0,tn(FeV )e−V (x0)

where E1 is the expectation over the random variables in the algorithm.
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Write N(x, t) the particle number at configuration x, i.e. N(x, t)dx is the number

of particles with x 6 xi,t < x+ dx:

N(x, tk−1) = Σ
Ntk−1

i=1 δ(x− ξi,tk−1
)

According the algorithm 1, if a particle sits at ξi,tk−1
at time step k − 1, Ni,k copies are

created of ζi,tk at the next time step. Hence, the particle number at the next time step

will be

N(x, tk) = Σ
Ntk−1

i=1 Ni,kδ(x− ζi,tk) (5)

One step in the algorithm involves the generation of two sets of random variables, the

updated particle configurations ζi,tk , which is conditioned on ξi,tk−1
, and the number

of particle copies Ni,tk , which depends on both ζi,tk and ξi,tk−1
. The expectation value

of functions depending on the particle configurations ξi,tk at step k can therefore be

expressed as the expectation value

Eξi,tk (•) = Eξi,tk−1
(Eζi,tk |ξi,tk−1

(ENi,k|ζi,tk ,ξi,tk−1
(•)))

Applying this expression to Eq. 5 and using the probabilities for the updated particle

configurations P (ζi,tk |ξi,tk−1
) = P (2)(ζi,tk |ξi,tk−1

,∆tk) and that the number of particle

copies ENi,k|ζi,tk ,ξi,tk−1
(Ni,k) = Wi,k(ζi,tk , ξi,tk−1

), we have

E1(N(x, tk)) = Eξi,tk−1
(Eζi,tk |ξi,tk (Σ

Ntk−1

i=1 Wi,k(ζi,tk , ξi,tk−1
)δ(x− ζi,tk)))

= Eξi,tk−1

(
Σ
Ntk−1

i=1

ˆ
dyP (2)(y|ξi,tk−1

,∆tk)Wi,k(y, ξi,tk−1
)δ(x− y)

)
= Eξi,tk−1

(
Σ
Ntk−1

i=1 P (2)(x|ξi,tk−1
,∆tk)Wi,k(x, ξi,tk−1

)
)

= Eξi,tk−1

(ˆ
dzP (2)(x|z,∆tk)W (x, z)Σ

Ntk−1

i=1 δ(z − ξi,tk−1
)

)
=

ˆ
dzP (2)(x|z,∆tk)W (x, z)E1(N(z, tk−1))

=

ˆ
dzP (2)(x|z,∆tk)eV (x)−V (z)E1(N(z, tk−1))

This equation relates the expected particle density at step k to the density at step

k− 1. By iteration we can relate the density at step k to the density at the start of the

algorithm, which is Mδ(x− x0):

E1(N(x, tk)) =

ˆ
dxk−1 . . . dx1dzP

(2)(x|xk−1,∆tk) . . . P (2)(x1|z,∆tk)

× eV (x)−V (z)Mδ(z − x0)

= MP (2)(x|x0, tk − t0)eV (x)−V (x0)

The expectation value of the quantity calculated at the end of the algorithm in step iii

is therefore

E1

(
1

M
Σ
Ntn
i=1F (ξi,tn)

)
=

1

M
E1

(ˆ
dxΣ

Ntn
i=1 δ(x− ξi,tn)F (x)

)
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Algorithm 2 Interacting genealogical particle analysis

(i) Initiate M particles in configuration x0, ξ
i
0 = x0 for 1 6 i 6 N0 = M

(ii) For every time step k ∈ {1, . . . , n}

(a) Propagate ξi,tk−1
under the dynamics, resulting in ζi,tk distributed according to

P (2)(ζi,tk |ξi,tk−1
,∆tk) with ∆tk = tk − tk−1

(b) Calculate weights for particle i:

W̄i,k =
Wi,k(ζi,tk , ξi,tk−1

)

Zk

Zk =
1

Ntk

ΣiWi,k(ζi,tk , ξi,tk−1
)

(c) Store the value of the normalizing factor Zk
(d) Generate a new particle distribution ξj,tk consisting of Ni,k copies of particle

with configuration ζi,tkwhere Ni,k is chosen at random such that E(Ni,k) = W̄i,k

(iii) Finally calculate 1
M

Σ
Ntn
i=1F (ξi,tn)

∏n
k=1 Zk to estimate E0(Fe

V )e−V (x0) (for γA take

F (x) = 1A(x) exp(V (x0)− V (x)))

=
1

M

ˆ
dxE1(N(x, tn))F (x)

=

ˆ
dxF (x)eV (x)−V (x0)P (2)(x|x0, tn − t0)

= E0,tn(FeV )e−V (x0)

Note that the expected total particle number E1(N(tk)) =
´
dxE1(N(x, tk)) =

M
´
dxP (2)(x|x0, tk − t0)eV (x)−V (x0) is in general not preserved over time. The particle

number can strongly increase, which entails a large numerical cost. The solution to

this problem is to renormalize the weights calculated in step (ii)b of the algorithm,

hence introducing an interaction between the ensemble members. We discuss this new

algorithm in the next section. As we will see, the interaction complicates the algorithm

analysis.

2.3.3. Interacting particles We now add interaction to the weights of the particle

system, so as to control the particle number. A similar analysis as in the previous

section can still be carried out, if one assumes that the number of particles used in

algorithm is large enough, such that averages over particle configurations can be replaced

by an expectation value under the law of large numbers (mean field approximation). The

corresponding algorithm is described in the box Algorithm 2. By applying the algorithm

to a function FA(x) = 1A(x) exp(V (x0) − V (x)) with 1A the indicator function of the

set A, estimates γ̆A of the probability γA can be obtained.

We again perform an analysis of the evolution of the expected particle distribution

in Algorithm 2. For simplicity of the derivation we assume that the number of particles
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Figure 2: Schematic representation of the genealogical particle analysis

Ntk in the algorithm is large, such that by the law of large numbers,

Zk =
1

Ntk

Σ
Ntk
i W (ζi,tk , ξi,tk−1

) ≈ E1(W (ζi,tk , ξi,tk−1
)) (6)

=

ˆ
dx dy

E1(N(x, tk−1))

E1(Ntk−1
)

P (2)(y|x,∆tk)W (y, x)(7)

Using this estimate and the same reasoning as for the non-interacting particle algorithm,

we have for the expected particle distribution that

E1(N(x, tk)) ≈
ˆ
dzP (2)(x|z,∆tk)

W (x, z)

E1(W )
E1(N(z, tk−1)) (8)

The expectation value of W in the denominator can be substituted using Eq. 6. The

particle number is now constant:

E1(Ntk)) =

ˆ
dxE1(N(x, tk)) = E1(Ntk−1

) = . . . = E1(Nt0) = M

We therefore have that

E1(W (ζi,tk , ξi,tk−1
)) ≈

ˆ
dxdyP (2)(x|y,∆tk)W (x, y)

E(N(x, tk−1))

M

Inserting this into 8, we have

E(N(x, tk)) ≈M

´
dyP (2)(x|y,∆tk)W (x, y)E(N(y, tk−1))´
dxdyP (2)(x|y,∆tk)W (x, y)E(N(y, tk−1))

Therefore by iteration

1

M
ΣN
i=1F (xi,tn) ≈ E0(F (xn)W (xn, xn−1) . . .W (x1, x0))

E0(W (xn, xn−1) . . .W (x1, x0))

=
E0(F (xn)W (xn, xn−1) . . .W (x1, x0))

Zn
where Zn = E0(W (xn, xn−1) . . .W (x1, x0)). From Eqs. 6 and 8 we see that Zk ≈
Zk

Zk−1
and therefore 1

M
ΣN
i=1F (xi,tn)

∏n
k=1 Zk ≈ E0(F (xn)W (xn, xn−1) . . .W (x1, x0)) =

E0(Fe
V )e−V (x0)
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The above reasoning can also be extended to show that path dependent quantities

(such as E[x(τ)|x(T ) > a] for τ < T ) can be estimated from the ancestral paths of the

particle system.

2.3.4. Time-dependent weighting The weighting function W (x, y) = exp(V (x)−V (y))

results in a particle distribution tilted by exp(V (x)) at all selection times tk. More

flexibility can be obtained by using time-dependent weighting, for example with a

weighting function of the form

W (tk, x, y) = exp(Vtk(x)− Vtk−1
(y)) (9)

This way the telescoping canceling of Vtk is preserved in products of weights that

appear in the calculation of the tilted measure. For example,

W (tk, x, y)W (tk−1, y, z) = eVtk (x)−Vtk−1
(y)eVtk−1

(y)−Vtk−2
(z)

= exp(Vtk(x)− Vtk−2
(z))

The result is again a particle distribution tilted by exp(Vtk(x)) at time tk, as with

the time-independent weight function. However, paths up to the final time will have

different weights, which can make a large difference in the algorithm performance, as

we will demonstrate in Section 4.2.4.

3. Fluctuation paths and the weighting function

The ideal change of measure discussed in Section 2.2 suggests to make the rare event that

is the least rare the most probable one under the reweighted dynamics. This rationale

extends not only to the distribution of the system at the final time, but also to the

entire path up to the final time. This means that variance can be reduced if the least

unlikely path leading to a high threshold is made more likely under the particle system

dynamics.

For stochastic differential equations in the weak noise limit, the least unlikely

path from an attractor can be calculated from Freidlin-Wentzell type large deviation

theory and is called a fluctuation path (also sometimes an instanton). The particle

system dynamics can be made to more closely follow the fluctuation path by using the

time-dependent weighting discussed in Section 2.3.4. Even if the particle distribution

at the final time is the same as the particle distribution obtained with a constant

weighting, there is still a variance reduction since less particles are killed, increasing

the independence of the particle and thus the effective particle number.

3.1. Fluctuation paths

The probability of a given path in a stochastic differential equation with small noise,

dXε = b(Xε)dt+
√
εdW,
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where W is a Brownian motion, can be estimated using the Freidlin-Wentzell large

deviation theory. The theory determines the probability of seeing a path that is close

to a specified continuous function in the limit of ε going to zero. It roughly states that

lim
ε→0

ε logP [Xε ∈ F ] = − inf
ω∈F

I(ω)

where F is any closed subset of the set of continuous trajectories and the rate functional

I is called the action. The action is given by

I(ω) =
1

2

ˆ T

0

dt(ω̇(t)− b(ω(t)))2 =

ˆ T

0

dtL[ω,
∂ω

∂t
] (10)

L[ω,
∂ω

∂t
] :=

1

2
(ω̇(t)− b(ω(t)))2 (11)

The distribution of paths leading to rare fluctuations then concentrates around

action minima as ε decreases, with given constraints. If the set of paths F contains

the evolution along the deterministic dynamics ẋ = b(x), this path will obviously

minimize the above action, hence the need for constraints to obtain more interesting

results. For example, in the simple case were the deterministic dynamics ẋ = b(x) has

a single attractor x0, the distribution of the paths conditioned on X(0) = X0, X0 6= x0
concentrate close to the minima of the action

´ 0
−∞ dtL[ω, ∂ω

∂t
] with the boundary

conditions X(−∞) = x0 and X(0) = X0. Such a path is called a fluctuation path

leading to X0 (it is also sometimes called an instanton, but instanton usually rather

refers to those fluctuation paths that connect attractors to saddle points).

4. Rare event simulation for a stochastic process: the Ornstein-Uhlenbeck

process

We now illustrate some of the practical issues arising when implementing a genealogical

particle analysis algorithm for rare event estimation. We start off with a stochastic

process for which we can calculate explicitly all of the probabilities that we want to

estimate, for pedagogical reasons, and so that we can compare the numerical results to

the analytic expressions.

4.1. Description of the Ornstein-Uhlenbeck process

We consider the Ornstein-Uhlenbeck process

dx = −λxdt+ σdW (12)

As the transition probabilities P (x(t)|x(0)) are Gaussian, the Ornstein-Uhlenbeck

process preserves Gaussianity. Using the Itô formula, one can derive that the mean

m(t) = E(x(t)) and the variance v(t) = E((x(t) − m(t))2) evolve according to the

equations

ṁ = − λm
v̇ = σ2 − 2λv (13)



Rare event computation in chaotic systems 14

which can be easily solved explicitly.

The probability that x exceeds a certain threshold a at a time t, given that the

process started at x(0) = 0 at time zero can be calculated explicitly as

P (x(t) > a|x(0) = 0) =

ˆ ∞
a

dxNm(t),v(t)(x), (14)

where m and v solve (13) and N is the probability density function of the normal

distribution with mean m and variance v. We consider in the following the estimation

of this probability through a genealogical particle analysis algorithm. Below we will use

the parameter values λ = 1 and σ = 1.

4.2. Algorithm implementation

Let us assume we seek to estimate a small probability γA, for instance γA = P (x(t) ∈
A|x(0) = 0). We denote M the number of particles for each realization of the algorithm.

Then each independent realization i of the algorithm, with M particle each, will give an

estimate γ̆A,i. According to a theorem discussed in [19], asymptotically for large M , the

random number γ̆A,i is distributed according to a Gaussian distribution with standard

deviation σA(M) = σA/
√
M and a corresponding relative error RE(M) = σA(M)/γA.

The value of the estimator relative error RE(M) is essential as it quantifies the relative

error one should expect for each realization of the algorithm, and thus the quality of the

result. How the estimator relative error RE(M) depends on the number of selections,

on their timing, and the type observables are critical questions that we analyze in this

section.

4.2.1. Number of particles The result in [19] proves the existence of the central limit

theorem, but does not give a value for the estimator variance RE(M). In order to get an

estimate of RE(M), we compute it empirically by performing K independent algorithm

realization and using the estimator

RE(M) '

√√√√ 1

K

K∑
i=1

(γ̆A,i − γA)2/γA. (15)

In this formula the value of γA will be either the theoretical value when it is available, for

instance for the Ornstein-Uhlenbeck process, or the estimated value of the probability

by averaging γ̆A,i over K realizations. In the following, by an abuse of notation, RE

denotes either the theoretical estimator variance of the estimator variance evaluated

from (15), which one should be clear from the context.

We first study the estimator variance RE for the OrnsteinUhlenbeck case. We first

test whether or not the regime of the central limit theorem has been reached by changing

the number of particles M , and verifying whether RE (15) reduces by the corresponding√
M factor. Figure 3a shows the expected decrease in relative error as the number of

particles is increased for a range of thresholds a (see eq. (14)). The inverse square root
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Figure 3: (a) The estimator variance RE =
√

1
K

∑K
i=1(γ̆A,i − γA)2/γA where A =

[a,+∞) for different values of the threshold a and number of particles M . RE is

estimated from K = 50 independent runs of the genealogical particle analysis algorithm.

The weight function is exp(C∆x) with C = 4. For comparison: the brute force Monte

Carlo estimator variance with 512 particles for a threshold a = 2 is 0.95. (b) The

estimator variance for a fixed threshold a = 2 for different numbers of particles M . A

1/
√
M function is fitted and shown as the dashed line.

behavior of the error with increasing number of particles is demonstrated for a fixed

threshold in Figure 3b. The parameters are specified in the figure captions.

We study how the estimator variance RE depends on the other numerical

parameters in the following sections.

4.2.2. Number of selections and their timing Since little theoretical analysis has been

performed on the optimal number of selection steps, this is the most heuristic choice

to be made. Some numerical analysis of this issue has been performed in [42]. For the

problem they investigate, changing the number of selections, and using equidistant in

time selections, the estimator variance clearly shows a minimum for a certain number

of selections.

This result can be interpreted as follows. Selections shouldn’t be performed too

frequently, as cloning increases correlations between the particles and therefore reduces

the effective number of independent particles, increasing the estimator variance. If not

performing selections frequently enough however, the particle distribution relaxes to

the unbiased particle measure, leading to the poor brute force Monte-Carlo variance.

This can be seen in Figure 4: for low thresholds a, importance sampling is useless and

estimations with a small number of selections have the lowest estimator relative error

RE. Due to the large time between selections, the particles have relaxed to the particle
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Figure 4: The estimator variance RE =
√

1
K

∑K
i=1(γ̆A,i − γA)2/γA where A = [a,+∞)

with different numbers of selection steps, with M = 1, 000 particles each. The estimator

variance for brute force Monte Carlo is shown as the blue dashed line. The weight

function is exp(C∆x) with C = 4.

measure of brute force Monte Carlo simulations and therefore have a similar estimator

variance. For higher thresholds, for instance for a > 1.7, it becomes advantageous to

kill a larger number of particles to obtain a more skewed final particle distribution,

in order to lower the variance. For the threshold value a = 2 the optimal number of

interactions among the values in the figure is N = 16. For higher thresholds there is a

small reduction in error by increasing the number of selections, although increasing the

number of selections much further beyond N = 64 results in an overall increase of error.

Figure 4 also illustrates the large estimator variance improvement for the genealog-

ical particle analysis algorithm compared with Monte-Carlo sampling, as soon as a ≥ 2.

Besides the number of selections, there also seems to be little theoretical

understanding of the optimal timing for selections. One strategy to selection timing

is to calculate on-the-fly a criterion on the distribution of particle weights (such as the

squared coefficient of variation or entropy) and only perform selection if a fixed threshold

is exceeded. The convergence of such adaptive selection strategies is discussed in [43].

4.2.3. Estimating a range of over-threshold probabilities In the following the weight

function W (x, y) = exp(C(x − y)) is used. From the point of view of the estimator

variance RE (15), to each value of the threshold a corresponds an optimal value of C,

denoted C∗(a), or equivalently for each value of C the estimator variance has a minimum

for a given value of a, denoted a∗(C). For instance Figure 4 shows that the value C = 4
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Figure 5: (a) The estimator variance RE for different weight factors C for a range

of thresholds. The brute force error is computed as
√
γA − γ2A/(

√
MγA) where A =

[a,+∞). (b) The estimated over-threshold probability P (a) compared to the analytic

result. For each value of the threshold a, the estimate corresponding to the value of C

with lowest estimator variance is chosen.

is optimal for a ' 2.5 = a∗. In simple cases, we expect C∗(a) to increase monotonically

with a.

There is an optimal value of a for each value of C, however the estimate is good for

a range of thresholds around this optimum. When instead of a particular over-threshold

probability one is interested in the tail of the complete distribution probability, one

can perform a number of genealogical particle analysis simulations each with different

value of C, and select for each threshold the value corresponding to the lowest estimator

variance RE. Figure 5 illustrates how the tail of P (a) = P (x(t) ≥ a|x(0) = 0) can

be estimated this way, for x the Ornstein-Uhlenbeck process. For large values of the

threshold (above a ≈ 4.6) all estimates have a high error and the highest value of C

is chosen by default. As can be seen on this figure there is very good agreement with

the theoretical value up to probabilities as low as 10−10. Using this strategy, we can

accurately estimate the tail of the over-threshold distribution down to probabilities as

small as 10−10, with relative error lower than one.

4.2.4. Selections along the fluctuation paths We have discussed in Section 2.3.4 that

a time-dependent weighting function can be used. In this way the particle distribution

can be weighted with different exponential factors C(tk) all along the path, but still

lead to the same exponentially tilted final particle distribution. Furthermore, in Section

3.1 we have discussed how for small noises, most of the paths leading to a rare event
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will concentrate around fluctuation paths that minimize the action functional. The

aim of this section is to demonstrate the interest of using fluctuation paths to construct

time-dependent weighting functions in order to increase the efficiency of the genealogical

particle analysis algorithm.

Since the Ornstein-Uhlenbeck process is linear, taking limits of higher thresholds is

equivalent to taking a weak-noise limit through a rescaling of the x coordinate. Hence,

for fixed noise intensity σ, paths starting at x0 = 0 conditioned on reaching the final

threshold a will concentrate around the fluctuation paths in the limit a → ∞. The

action (10) for the Ornstein-Uhlenbeck process (12) is given by I [X] =
´ T
0
dτ(Ẋ+λX)2.

Taking as boundary conditions X(0) = 0 and X(T ) = a the fluctuation paths are easily

computed to be Xf (t) = a sinhλt
sinhλT

.

By using the potential function W (t, x, y) = exp(C(tk)x−C(tk−1)y) with a weight

parameter C(tk) dependent on the selection time tk, we can control µ̃(tk), the mean

particle position at tk, by fixing C(tk). The expected particle distribution for the

Ornstein-Uhlenbeck process tilted with this weighting function after the selection at

tk is

exp (C(tk)x)N0,v(tk)(x)/

ˆ
dx exp (C(tk)x)N0,v(tk)(x)

as discussed in Section 2.3.4. The corresponding expected mean particle position is

therefore µ̃(tk) = C(tk)v(tk) where v(t) = (1 − exp(−2t))/2 is the variance of the

Ornstein-Uhlenbeck process at time t (the solution of Eq. 13 with v(0) = 0). Choosing

C(tk) = Xf (tk)/v(tk), µ̃(t) follows Xf (t) and the algorithm particle distribution closely

follows the fluctuation path leading to the threshold a.

Figure 6 shows the effect of using a weight function based on a fluctuation path

versus an exponential weight function. The bottom two plots show how using the

fluctuation path significantly decreases the fraction of particles that are killed during

the selection steps (N
(−)
k ) to the number of particles at that time step (Nk). This is

also illustrated in the plots in the top and middle rows. The top plots show the paths

from the initial state for all surviving particles at the final time. Paths that have been

killed during the process are not shown. We call these paths the ancestral paths. As

can be seen on the top left plot, only few trajectories from the initial stage of the

algorithm are ancestors of the final positions. This is not the case for the top right plot.

The algorithm using a weight based on a fluctuation path has a much larger number

of ancestors. This richer ancestral tree results in a decreased estimator error for the

over-threshold probabilities, as is demonstrated in Figure 7.

Note that for both the exponential weighting function and the weighting based

on the fluctuation path, the paths reaching the threshold follow the fluctuation path.

Other paths reaching the threshold are so rare that few of them are generated, even if

they are more likely to survive selection in the case of exponential weighting. Note that

the killed paths, partially shown in the middle row of Fig. 6, tend to have a negative

change in position before being killed. The higher target path in the exponential makes

for a higher average dissipative force −x on the particles, leading to a large discrepancy
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Figure 6: Ancestral paths (top), the final portion of killed paths, plotted only between

tk−1 and tk if the path is killed at tk (middle) and the fraction of the number of particles

killed N
(−)
k to the total number of particles Nk (bottom) for genealogical particle analysis

algorithms with either exponential weighting with C = 6.0 (left) or weighting based on

the fluctuation path (right) for the fluctuation path ending at a = 3.0 at the final

time T = 2. The dashed black lines in the top plots show the fluctuation path. The

dash-dotted line in the top left plot shows the mean of the target particle distributions

after selection (equals Cv(t)). The average number of particles for both simulations is

M = 104 and the number of selections steps is 32. For graphical purposes a randomly

selected sample of 2% of the ancestral and killed paths are shown in the first two rows

between the actual particle distribution and the target distribution at selection times.

5. Genealogical particle analysis algorithm for a deterministic dynamical

system: the Lorenz ’96 model

The Lorenz ’96 model is a deterministic dynamical system that is often used as a toy

model in the meteorology community. It was proposed by Lorenz as part of a study on
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Figure 7: The over-threshold probability P (x > a) as estimated by the genealogical

particle analysis algorithm either with an exponential weight (blue long-dashed line)

or a weight based on fluctuation paths (red medium-dashed line). The two short-

dashed lines, at equal distance from the estimated averages, correspond to a 2 standard

deviation interval of the estimator. The full line is the analytic result. Both

implementations use the same number of particles N = 1e4 and 32 selections steps

and both have roughly the same computational cost.

error growth and predictability for chaotic dynamical systems [39, 40].

A crucial difference between the famous Lorenz ’63 model and the less well-known

Lorenz ’96 model is that the latter has a large number of degrees of freedom. Indeed

macroscopic variables of deterministic systems with a large number of degrees of freedom

often behave qualitatively similar to solutions of stochastic differential equations with

much less degrees of freedom. Such results can be proven for some specific types of

models (feauturing separation of time scale, independence, ...).

It is believed however that similar results remain true for a wide range of models

and observables even though mathematical proofs are out of reach. If this conjecture

is correct, then the sampling of rare events through genealogical particle analysis

algorithms should be applicable to macroscopic variables of deterministic systems with

a large number of degrees of freedom. In this section, we demonstrate empirically,
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through numerical simulation, that genealogical particle analysis algorithms can indeed

efficiently sample the tail of the energy distribution for the Lorenz ’96 model.

5.1. Description of the model

The Lorenz ’96 model consists of L variables xi on a ring i ∈ {0, .., L−1}, with dynamics

ẋi = xi−1(xi+1 − xi−2) +R− xi

where indices i are in ZL, i.e. the index i is identified with i mod L if i /∈ {0, .., L− 1}.
The non-linear part of the dynamics xi−1(xi+1 − xi−2) conserves the energy E(x) =
1
2L

∑L
i=1 x

2
i , while R is a forcing and −xi a linear dissipation. The dynamics is chaotic

for R ≥ 8 [39, 40]. We will estimate the probability of reaching a certain energy

threshold after a time t, starting from the zero vector x0,i = 0∀i. A small perturbation

ε ~N0,1 is added to the particle configuration to make the trajectories diverge. For large

enough times T , the system will therefore relax to its physical invariant measure and

it makes sense to determine probabilities of exceedances of macroscopic observables

γEt := P (E(x(T )) > Et). Throughout the article we will use a number of variables

L = 32 and a forcing R = 28 = 256.

Figure 8 shows a plot of the over-threshold probabilities of the energy of the Lorenz

’96 system, estimated through a brute force Monte-Carlo simulation from randomly

perturbed initial conditions. Given that we have finite computer resources at our

disposal, assume we can generate at most M = 105 independent measurements of the

energy. If the maximal relative error that we are willing to tolerate is for example

0.5 then since RE =
√
γEt − γ2Et

/(
√
MγEt) ≈ 1/(

√
MγEt) the lowest probability that

we can estimate is approximately γEt = 1/M(RE)2 = 4.10−5. From Figure 8 we can

deduce that the corresponding highest energy threshold obtainable lies around an energy

threshold Et = 1785. Beyond this threshold the use of rare event algorithms becomes

necessary.

5.2. Algorithm implementation

We use the following settings for the genealogical particle analysis simulation. The initial

condition is set to xi = ε ~N0,1. The total integration time per realization is T = 1, 27.

This time interval corresponds to roughly 5 times the decorrelation time of the energy

observable. The standard deviation of the estimator
√

1
K

∑K
i=1(γ̆A,i − γA)2 is estimated

from K = 10 independent runs of the algorithm and the truth γA is taken from a long

brute force Monte Carlo simulation. The number of interaction is set to 64.

5.2.1. Weight function For simplicity, we have employed an exponential weight

function W = exp(C∆E) where ∆E is the change in energy between two interactions.

This choice doesn’t require any a priori knowledge of the dynamics and is easy to

implement. This weight function is not optimal, but, as we will show, it already gives

good results.
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Figure 8: Over-threshold probability γEt = P (E(t) > Et) estimated from a brute force

simulation and estimator variance RE =
√
γEt − γ2Et

/(
√
MγEt) of the energy E of the

Lorenz ’96 system with R = 28 and M = 105.

For the value of the forcing parameter R = 28 the distribution of the energy values

is roughly Gaussian. One can therefore estimate the mean µE and the variance σ2
E from

a brute force Monte Carlo simulation and use these values along with the reasoning of

Section 2.2.1 to determine an appropriate value of the exponential weighting factor C

in the weighting function W = exp(C∆E). One can then choose a value C = ∆µE/σ
2
E

where ∆µE is the desired change of the mean energy of the final particle distribution.

The values of C in the weighting function W = exp(C∆E) for the calculations

presented in this section are taken as Cr = r/(2σE) with r ∈ {1, 2, 3, , 4} and σE being

the standard deviation of the energy so as to increase the mean energy ∆µE by steps of

size σE/2.

5.2.2. Noise perturbation For deterministic dynamical systems, in order for two

trajectories to have different dynamics after selection, a small perturbation can be added.

This can be achieved by adding for example a weak Brownian perturbation at all times,

or by adding a small instantaneous perturbation to offspring at the selection times. The

former approach provides a simpler mathematical framework. Indeed the study of the

noise effect would amount to the study of the stochastic differential equation properties

in the weak noise limit, independent of the genealogical particle analysis algorithm. By

contrast the latter approach intertwines the random perturbation with the genealogical

particle analysis algorithm effects and is therefore more complicated to analyze. The

latter approach, however, has the practical advantage of being computationally simpler.

In this study, as we will proceed purely empirically, we have opted for the latter
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approach. The clones are perturbed by ε ~N0,1 where ~N0,1 is a standard L-dimensional

Gaussian random variable, i.e. the noise acts independently on all of the variables.

The small noise perturbation invariably adds an error to the estimates of the tail

probabilities. To obtain a rough upper bound on the strength of the perturbation that

can be added without significantly perturbing the tail, we first perform a brute force

simulation with the added noise for different noise strengths and verify that the tail

probabilities do not change significantly compared to the sampling error of the brute

force calculation. A set of independent realizations is performed like in the brute force

Monte Carlo approach, the only difference being that at the selection times tk the same

noise perturbations is added as in the genealogical particle analysis simulation. No

selection is performed however in these runs. This way we can estimate the effect of

the noise on the final time particle distribution. Figures 9a and 9b show that below a

perturbation strength of ε = 0.87 and for thresholds higher than a = 1600, the noise does

not have a significant effect on the over-threshold probabilities. More complex schemes

of noise perturbation could be implemented to assure that the perturbed trajectory

remains close to the attractor, for example by storing a configuration at a time point

before tk, adding a small perturbation to it and evolve it up to tk to have the perturbation

relax towards the attractor.

Furthermore, after performing the genealogical particle analysis algorithm, we check

that the perturbing noise intensity ε is small enough by decreasing ε and checking that

the estimates of the over-threshold tail statistics are consistent. Figure 9b shows that

for ε = 0.1 the results remain stable upon halving the noise intensity.

5.2.3. Estimating the tail of the energy distribution We use for the Lorenz ’96 model

the procedure described in Section 4.2.3: we increase the values of the weight parameter

C and use for each threshold value the best estimate from the point of view of the

empirical estimator variance. The result is shown in Figure 10. As there is no analytic

expression for the energy distribution tail of the Lorenz ’96 system, we use a long brute

force Monte Carlo estimation as comparison. The estimator variance markedly decreases

when using the genealogical particle analysis algorithm. When constructing the over-

threshold probability, we see that the tail can be reliably reproduced when compared to

the longer brute force calculation.

The improvements in efficiency from using a rare event simulation scheme can be

quantitatively estimated from Figure 10. The plot of the empirical relative error shows

how for a threshold around a = 1800 a brute force Monte Carlo calculation yields

a relative error of 0.5, whereas the genealogical particle analysis simulation yields a

relative error of approximately 0.05. A reduction in relative error by a factor 10 is

achieved. Since the brute force Monte Carlo error scales as 1/
√
M , a similar reduction

by a raw increase of processing power would require M to increase by a factor of 100.

For higher thresholds and with more fine tuning of the selection process, a much larger

reduction is likely to be achievable.
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Figure 9: (a) The over-threshold probability P (E > a) of the energy E of the Lorenz ’96

system with perturbations of varying strengths ε at times tk, without performing killing

and cloning, with 10 000 independent realisations. The dotted line shows the estimated

2σ interval for over-threshold probability of the energy of the Lorenz ’96 system, as

estimated from two realizations of the genealogical particle analysis algorithm with

different perturbing noise strength ε upon cloning.

6. Conclusion

In this paper we have addressed the use of rare event computation techniques to estimate

small over-threshold probabilities of observables in deterministic dynamical systems. We

have demonstrated that the genealogical particle analysis algorithms can be successfully

applied to a toy model of atmospheric dynamics, the Lorenz ’96 model as presented in

Section 5.1. We have furthermore used the Ornstein-Uhlenbeck system to illustrate a

number of implementation issues.

The example of the Ornstein-Uhlenbeck has illustrated the importance of the

choice of the objective function for the performance of the genealogical particle analysis

algorithm estimator. We have shown how a time-dependent objective function based

on the fluctuation path to a high threshold can greatly improve the performance of

the estimator compared to a fixed-in-time objective function. Furthermore we have

discussed how the number of particles and the number of selection steps influence the

performance of the estimator.

For the deterministic chaotic system a complication arises in that a stochastic

perturbation needs to be added to the system to make identical clones of one parent

diverge and explore the system’s path space. We have demonstrated in this example

how the estimates of the rare event simulation are stable for small perturbations and

agree with results from brute force Monte Carlo estimations. We therefore can have
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(a) (b)

Figure 10: (a) The empirical relative error RE for different weight factors C, for a

range of energy thresholds a, for the Lorenz ’96 model. The number of particles is

M = 1, 000. The brute force Monte Carlo relative error (in blue) is estimated with the

same number of realizations M as
√
γ̂a − γ̂2a/(γ̂a

√
M) (b) The over-threshold probability

tail as estimated from the genealogical particle analysis algorithm compared to a brute

force reconstruction. The number of particles used is 1, 000 for the genealogical particle

analysis simulation and 10, 000 for the brute force simulation.

confidence in the correctness of these estimates.

For the example of a deterministic chaotic system that we have studied we have

not yet used the fluctuation path approach, since this would require information on the

dynamics to the rare event that we a priori do not possess. This lack of knowledge

can be improved by iterating the estimation procedure, where one uses estimates

of an initial brute force simulation to estimate the fluctuation path, after which an

genealogical particle analysis simulation based on this path can be used to estimate

a higher fluctuation path, which can be used for a next iteration of the algorithm.

However, the results of the straightforward implementation of the rare event simulation

already shows significant improvements compared to brute force estimation.
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