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Abstract

In this paper we address the use of rare event computation techniques
to estimate small over-threshold probabilities of observables in determin-
istic dynamical systems. We demonstrate that the genealogical particle
analysis algorithms can be successfully applied to a toy model of atmo-
spheric dynamics, the Lorenz ’96 model. We furthermore use the Ornstein-
Uhlenbeck system to illustrate a number of implementation issues. We
also show how a time-dependent objective function based on the fluctua-
tion path to a high threshold can greatly improve the performance of the
estimator compared to a fixed-in-time objective function.

1 Introduction
Rare events may have a huge impact on the dynamics of geophysical tur-
bulent flows and the climate. In bistability situations, a rare transition
can drastically change the structure of the flow, like for instance the bista-
bility of the Kuroshio current [1, 2] or a change of polarity of the Earth
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magnetic field due to the turbulent dynamics of the Earth metal core [3].
Rare events can also be extremely important because of their impact on
society, ecosystems or the economy. There are many such examples in cli-
mate dynamics, for example extreme droughts, heat waves, rainfalls and
storms [4]. The probability and the impact of these events is likely to
change in the future due to a changing climate [4]. The magnitudes of
possible changes are however still uncertain [5].

On the one hand, for climate dynamics, there is a lack of sufficient
reliable empirical data [6]. How could one assess faithfully the probability
of events with recurrence times longer than one decade with only one or
two century long reliable data? In the last decade, many methods have
been developed to extract the most information possible from this too
short time-series. For instance extreme value statistics [7, 8] has interest-
ingly allowed to extrapolate from the information available from empirical
observation [9, 10].

Another approach would be to critically study and understand the
dynamics of rare events produced by complex climate models. This second
approach seems to be the only available one for events with a recurrence
time longer than decades or centuries. However, the current scientific state
of the art does not yet allow to obtain many results by following this route.
The first critical issue to improve the situation is a sampling problem.
Indeed, if one wants to study events with century or millennial recurrence
time and assess the reliability of the model dynamics to produce those
events, a direct numerical simulation would require to have model runs
of at least hundreds of thousands of years long in order to get reliable
statistics on both the probability of and the dynamics leading to these
events. As it is not always reasonable to trade computational length with
model complexity, especially for the turbulent part which is responsible
for most of the fluctuations, it is clear that we are facing an extremely
difficult scientific challenge.

Is there a way to produce reliable statistics of specific rare events of a
given model, without having to rely on prohibitively long direct numerical
simulations? The same issue has been faced in many other scientific fields
and has led to the development of some interesting approaches. Indeed,
many of the complex systems studied in different branches of science fea-
ture events that are very rare but nevertheless very relevant due to their
high impact. Take for example buffer overflows in digital communication
networks, the insolvency of an insurer or bank, collisions in planetary sys-
tems, the dynamics of phase transitions in condensed matter, the long
time dynamics of complex molecules in chemistry or biology, to name
but a few. In recent years a number of promising algorithms have been
developed to tackle these problems [11, 12, 13, 14]. These rare event simu-
lation algorithms can drastically reduce the error made on the estimation
of small probabilities.

Generally speaking, the objective of the algorithms is to make rare
events less rare, either by altering the dynamics (importance sampling) or
by targeted killing and cloning of an ensemble of realizations (genealogical
particle analysis or interacting particle algorithms). Upon estimation the
intervention of the algorithm is then taken into account to obtain an
estimate for quantities of the original system.
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Within the class of genealogical particle analysis algorithms, a num-
ber of different strategies exist. A first crucial difference is the type
of quantity one aims at estimating. One can be interested in the dis-
tribution of first entrance time to a set or to sample transition paths
[15, 16, 17, 18], the probability of a rare event [19, 20, 21] or expectation
values of long time averages such as the scaled cumulant generation func-
tion [22, 23, 24, 25, 26, 27] as it appears in large deviation theory. For
these different aims again different algorithms exist, for example geneolog-
ical algorithms with fixed [19, 20] versus variable [21] particle numbers,
minimum action algorithms [18], or milestoning [28]. These algorithms
have already been applied to a wide range of systems, for example perco-
lation problems [29], in complex chemistry [30], polymer and biomolecule
dynamics [31, 32, 33, 34], magnetism [35, 36], Burger turbulence [37, 38].

The aim of this work is to make a first step in the application of those
approaches to climate dynamics problems. Climate dynamics problems
have specificities that make past approaches not directly adaptable. First,
climate dynamics are clearly non equilibrium problems (without time re-
versal symmetry or detailed balance), therefore only non-equilibrium ap-
proaches can be considered. Second, the phenomenology of geophysical
turbulent flows is dominated by large scale synoptic scales and is rather
different from other complex dynamics, for instance molecular dynamics.
And third, most climate models are deterministic models, or sometimes
include a stochasticity that does not affect directly the synoptic scales.

The aim of this paper is to consider the latter specificity of many cli-
mate model. We address the following question: can rare event algorithms
based on genealogical particle analysis be used effectively and efficiently
for deterministic dynamics? Most algorithms rely on a Markov assump-
tion, which is verified for deterministic models. However at the cloning
stage, a new trajectory is branched from another one in order to produce
a new ensemble member. For a strictly deterministic system, the offspring
trajectory will not be different from its parent. To ensure separation of
the two trajectories, one has therefore to add either a very small noise
on the overall dynamics or a small change on the initial condition to the
offspring trajectory and rely on the dynamics chaoticity. A key issue is
then to verify a posteriori that the noise is small enough not to distort the
measured statistics and probabilities. A test using different decreasing
noise strengths and checking for stability should therefore be used.

In order to perform the first study of the effectiveness of these ap-
proaches for chaotic deterministic dynamics, we have chosen to study the
simplest chaotic system with many degrees of freedom, and of relevance for
climate dynamics: the Lorenz ’96 model [39, 40]. We have also chosen the
conceptually simplest and most robust genealogical algorithm that allows
to sample invariant measure or transition probabilities: the genealogical
particle analysis algorithm. We give a detailed heuristic presentation of
the algorithm and a benchmark on the simple Ornstein-Uhlenbeck process
in section 4.

The genealogical particle analysis algorithms explore the statistics of
solutions of the dynamical systems by running an ensemble of realizations,
interrupting the ensemble simulation at given times and killing ensemble
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members that do not perform well as measured by a weight or objective
function and cloning the ones with a high weight. This selective procedure
explains the terminology genealogical particle analysis. The individual
realizations are also sometimes referred to as particles. The design of a
good objective function is then arguably the main design issue one faces
when using genealogical particle analysis algorithms. Other choices that
have to be made are the number and timing of interactions and the number
of particles to use. We will address these practical issues in a detailed
study of the genealogical particle analysis algorithms on the Ornstein-
Uhlenbeck process. This process is easy to simulate numerically and allows
for analytic expressions to be derived; it is therefore well suited for the
purpose of illustration and tests.

Another aim of this paper is to propose a systematic approach and
procedure to get reliable results and error estimates. We propose to build
the tail of the PDF of interest by gluing together pieces of results obtained
for different cloning parameter by a systematic study of the most reliable
one, through an empirical estimate of the algorithm variance. Moreover,
we propose a procedure to test empirically this class of algorithms against
the real dynamics. Indeed, for a model like the Lorenz ’96 model, we have
no theoretical results that can serve as a benchmark.

The paper is organized as follows. In Section 2 we discuss how the
need for rare event simulation techniques arises, what the objective of
such algorithms is (making rare events typical) and how this goal can be
achieved for stochastic processes by implementing a genealogical parti-
cle analysis simulation. In Section 3 we present a brief discussion of the
theory of large deviations and what it can say about the way in which
rare events are reached by a process. This theory can be used to im-
plement a more efficient rare event sampling method. In Section 4 we
proceed by implementing the genealogical particle analysis simulation to
the Ornstein-Uhlenbeck system. We discuss in depth the selection of the
parameters in the algorithm. In Section 5 we then present the imple-
mentation of the genealogical particle analysis simulation on a chaotic
deterministic dynamical system. Finally, we present our conclusions in
Section 6.

2 Rare event computation for Markov dy-
namics
In sections 2.1 and 2.2 we present a classical discussion of the inefficiency
of brute force Monte Carlo simulation for estimating small probabilities.
This motivates the need for rare event computation techniques. We intro-
duce the genealogical particle analysis algorithm and the related theory
in Section 2.3.
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2.1 Motivation
The goal of rare event computation techniques is to make the numerical
estimation of small probabilities more efficient. The necessity of using
such techniques is demonstrated by the sampling of the tail of a dis-
tribution P using independent samples identically distributed according
to the distribution P . Say one wants to estimate a small probability
γA = P (X ∈ A)� 1 by means of a brute force Monte Carlo estimate

γ̂A =
1

N

N∑
i=1

1A(Xi) (1)

The estimator γ̂A is an unbiased estimator of γA since the expectation
value of γ̂A is clearly γA. When the number of samples N is large enough
for γ̂A to follow a central limit theorem, the statistical error of the es-
timator can be quantified by its variance V ar(γ̂A) = V ar(1A(X))/N .
Furthermore

V ar(1A(X)) = E((1A(X)− γA)2)

= E(1A(X))− γ2
A = γA − γ2

A

≈ γA (2)

when γA is small. The relative error of the estimator RE being pro-
portional to the standard deviation divided by the estimated quantity,
we have RE ∼ 1√

γAN
. The relative error quickly becomes large as γA

goes to zero for fixed sample size N . Fortunately there exist methods for
estimating small probabilities more efficiently.

2.2 Importance sampling
The main ingredient of rare event computation techniques is a sampling
from a modified distribution together with an adapted estimator to coun-
teract this change of measure. This method to lower the estimator vari-
ance of a rare event probability is termed importance sampling. Again the
example of the sampling from independent identically distributed random
variables provides valuable insights.

Say we want to estimate

γA =

ˆ
dXρ(X)1A(X)� 1

where ρ is the density for our random variable X. Instead of doing a
straightforward sampling of X as in (1), assume we can sample from a
modified measure ρ̃ for which ρ̃(X) > 0 whenever X ∈ A and ρ(X) > 0.
In such a case, the probability we want to estimate can be rewritten as

γA =

ˆ
dXρ̃(X)

ρ(X)

ρ̃(X)
1A(X)

= Ẽ(L(X)1A(X))

L(X) :=
ρ(X)

ρ̃(X)
whenever 1A(X)ρ(X) > 0
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and we can therefore estimate γA using the estimator

γ̃A =
1

N

N∑
i=1

L(X̃i)1A(X̃i) (3)

on samples X̃i distributed according to ρ̃.
The variance for such an estimator is

Ṽ ar(L(X)1A(X)) = Ẽ(L2(X)1A(X))− γ2
A = E(L(X)1A(X))− γ2

A

If we could take ρ̃ as the conditional measure with ρ̃(X) = ρ(X)/γA for
X ∈ A and zero elsewhere, such that L(X) = 1A(X)γA, this would result
in a zero variance estimator. This estimator is however not practically
implementable, since for this we would need to know the value of γA,
which is the value we seek to calculate.

This calculation demonstrates some important points however. First
of all, it shows that a change of measure can indeed reduce the variance
of the estimator. Although the ideal change of measure is not feasible in
practice, a change of measure that is in a sense close to it should also give
a substantial variance reduction. This modified measure should therefore
have most of its weight on the set of interest A. On the other hand, this
also implies that one needs to have some understanding of the shape of
the set A and the distribution on it to construct an efficient importance
sampling.

2.2.1 Skewing a normal distribution

To illustrate how a change of measure can provide significant variance
reductions, even if the modified measure is not the ideal conditional mea-
sure, we discuss an example for normally distributed random variables.
This example will also be useful to illustrate and validate our rare event
algorithm for dynamical systems.

Say we want to estimate the probability of the rare event A = {x > a}
for a normally distributed random variable x ∼ N0,1 with zero average and
standard deviation equal to one. Assume that we can skew the distribu-
tion with an exponential function ρ̃(X) = ρ(X) exp(CX)/E(exp(CX)) =

1√
2π

exp
[
− (X−C)2

2

]
which constitutes of a shift of the average by C. Since

L(X) = E
(
eCX

)
/ exp(CX) = exp

(
−CX + C2/2

)
, the variance of the

terms in the importance sampling estimator is now

Ṽ ar(L(X)1A(X)) = P−c,1(x > a)eC
2

− γ2
A (4)

where Pµ,σ denotes probabilities under a normal distribution with mean
µ and variance σ. The standard deviation, the square root of the variance
(4), is plotted for a = 2 in Figure (1). The standard deviation has a single
minimum, which is obtained for a value of C which is close to C = 2, for
which the mean of the tilted value coincides with the threshold. This basic
example illustrates how importance sampling can lower dramatically the
estimator variance.
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Figure 1: The ratio of the standard deviation to estimated probability of an
exponentially tilted gaussian importance sampling estimator for a threshold
a = 2 with N = 1

2.3 Genealogical particle analysis algorithm
The motivation for rare event simulation and the discussion of importance
sampling have shown that it is necessary to make rare events less rare.
This concept can be applied to stochastic processes such as the paths
followed by either stochastic dynamics or chaotic deterministic dynamics.
In those cases the objective is to alter the probability of certain paths that
are connected to the rare event one wants to study.

Two different strategies are employed to alter the path sampling in
stochastic dynamical systems. The first one is to alter the dynamical
equations of the system [41]. By tuning a parameter of the added forcing
term, one can then attempt to decrease the variance of the rare event
estimator. A second strategy exists in calculating an ensemble of realiza-
tions of the stochastic system in parallel and manipulating the ensemble
members at a finite number of selection times so as to bias the population.

Here we will use the second strategy, by employing a variant of the
so called genealogical particle analysis algorithms. The selections applied
to the ensemble consist of dynamical trajectories, called particles, being
copied and killed depending on weight factor asigned to every ensemble
member. This strategy has the advantage of not altering the dynamical
trajectories themselves, such that their dynamics can be studied a poste-
riori.

Extensive analysis of the convergence of genealogical particle analysis
algorithms can be found for example in [13, 14]. In the following sections,
we perform a simpler calculation, assuming a mean field approximation,
to demonstrate the evolution of the expected particle distributions in an
interactive particle system. The validity of this mean field approximation
for large particle number is the subject of the complete proofs given in
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Algorithm 1 Non-interacting weighted particle system
1. Initiate M particles in configuration x0, ξi,0 = x0 for 1 6 i 6 N0 = M

2. For every time step k ∈ {1, . . . , n}
(a) Propagate ξi,tk−1

under the dynamics, resulting in ζi,tk distributed
according to P (2)(ζi,tk |ξi,tk−1

,∆tk) with ∆tk = tk − tk−1

(b) Calculate weights Wi,k for particle i:

Wi,k(ζi,tk , ξi,tk−1
) := exp(V (ζi,tk)− V (ξi,tk−1

))

for a suitably chosen weight function V
(c) Generate a new particle distribution ξj,tk consisting of Ni,k copies of

particle with configuration ζi,tkwhere Ni,k is chosen at random such
that E(Ni,k) = Wi,k (note that Ntk =

∑
iNi,k)

3. Finally, for any F , calculate 1
M Σ

Ntn
i=1 F (ξi,tn) to estimate E0,tn(FeV )e−V (x0)

(for γA take F (x) = 1A(x)exp(V (x0)− V (x)))

[13, 14]. Before going to a truly interacting particle algorithm in Section
2.3.3, we first get some insight by looking at an algorithm where particles
are reweighted, but by a factor depending only on the evolution of the
particle itself, in Section 2.3.1.

2.3.1 A non-interacting genealogical particle analysis

We calculate rare events of a continuous time Markov chain. P (2)(y|x,∆t)
denotes the transition probabilities from configuration x to y over a time
interval ∆t. We are interested in the probability of being in a set of
configurations A at a time t = tn, given that it started in configuration
x0 at time t = 0. Nt denotes the number of particles at time t, whereas
{ξi,t}16i6Nt denote the particle configuration at time t. E0,t denotes
expectation values under the original Markov dynamics P (2) at time t.
The algorithm to generate the particles is described in the box “Algorithm
1”.

Note that the random number Ni,k generated in step 2c can be zero,
such that particles can be killed as well as cloned (when Ni,k > 1).
A way to generate the random number described in step 2c is to take
Ni,k = bWi,k + uc where u is uniformly distributed on [0, 1] and bxc is the
floor of x (the largest integer smaller than x). The rare event probability
can be obtained by taking as observable F (x) = 1Ae

−V eV (x0) such that
E0,tn(FeV )e−V (x0) = E0,tn(1A).

2.3.2 Unbiased estimator

We first show that Algorithm 1 provides an unbiased estimator for the
quantity E0(FeV )e−V (x0), i.e. the algorithm results in a random estimate
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whose mean equals the quantity to be estimated:

E1

(
1

M
Σ
Ntn
i=1 F (ξi,tn)

)
= E0,tn(FeV )e−V (x0)

where E1 is the expectation over the random variables in the algorithm.
Write N(x, t) the particle number at configuration x, N(x, t)dx is the

number of particles with x 6 xi,t 6 x+ dx:

N(x, tk−1) = Σ
Ntk−1

i=1 δ(x− ξi,tk−1)

According the algorithm 1, if a particle sits at ξi,tk−1 at time step k − 1,
Ni,k copies are created of ζi,tk at the next time step. Hence, the particle
number at the next time step will be

N(x, tk) = Σ
Ntk−1

i=1 Ni,kδ(x− ζi,tk ) (5)

One step in the algorithm involves the generation of two random variables,
the updated particle configuration ζi,tk , which is conditioned on ξi,tk−1 ,
and the number of particle copies Ni,tk , which depends on both ζi,tk
and ξi,tk−1 . The expectation value of functions depending on the particle
configurations ξi,tk at step k can therefore be expressed as the expectation
value

Eξi,tk (•) = Eξi,tk−1
(Eζi,tk |ξi,tk−1

(ENi,tk
|ζi,tk ,ξi,tk−1

(•)))

Applying this expression to Eq. 5 and using the probabilities for the up-
dated particle configurations P (ζi,tk |ξi,tk−1) = P (2)(ζi,tk |ξi,tk−1 ,∆tk) and
that the number of particle copies ENi,tk

|ζi,tk ,ξi,tk−1
(Ni,k) = Wi,k(ζi,tk , ξi,tk−1),

we have

E1(N(x, tk)) = Eξi,tk−1
(Eζi,tk |ξi,tk (Σ

Ntk−1

i=1 Wi,k(ζi,tk , ξi,tk−1)δ(x− ζi,tk )))

= Eξi,tk−1

(
Σ
Nk∆t
i=1

ˆ
dyP (2)(y, ξi,tk−1 ,∆t)Wi,k(y, ξi,tk−1)δ(x− y)

)
= Eξi,tk−1

(
Σ
Nk∆t
i=1 P (2)(x, ξi,tk−1 ,∆t)Wi,k(x, ξi,tk−1)

)
= Eξi,tk−1

(ˆ
dzP (2)(x, z,∆t)Wi(z, x)Σ

Nk∆t
i=1 δ(z − xi,k∆t)

)
=

ˆ
dzP (2)(x, z,∆t)Wi(z, x)E1(N(z, tk−1))

=

ˆ
dzP (2)(x, z,∆t)eV (x)−V (z)E1(N(z, tk−1))

This equation relates the expected particle density at step k to the density
at step k−1. By iteration we can relate the density at step k to the density
at the start of the algorithm, which is Mδ(x− x0):

E1(N(x, k∆t)) =

ˆ
dxk−1 . . . dx1dzP

(2)(x, xk−1, t) . . . P
(2)(x1, z, t)e

V (x)−V (z)Mδ(z − x0)

= MP (2)(x, x0, k∆t)eV (x)−V (x0)

9



t

x

Figure 2: Schematic representation of the genealogical particle analysis

The expectation value of the quantity calculated at the end of the algo-
rithm in step 3 is therefore

E1

(
1

M
ΣNn∆t
i=1 A(xi,n∆t)

)
=

1

M
E1

(ˆ
dxΣNn∆t

i=1 δ(x− xi,n∆t)A(x)

)
=

1

M

ˆ
dxE1(N(x, n∆t))A(x)

=

ˆ
dxA(x)eV (x)−V (x0)P (2)(x, x0, n∆t)

= E0(AeV )e−V (x0)

Note that the expected total particle number E1(N(k∆t)) =
´
dxE1(N(x, tk)) =

M
´
dxP (2)(x, x0, k∆t)eV (x)−V (x0) is in general not preserved over time.

The particle number can strongly increase, which entails a large numerical
cost. The solution to this problem is to renormalize the weights calculated
in step 2b of the algorithm, hence introducing an interaction between the
ensemble members. We discuss this new algorithm in the next section.
As we will see, the interaction complicates the algorithm analysis.

2.3.3 Interacting particles

We now add interaction to the weights of the particle system, so as to
control the particle number. A similar analysis as in the previous section
can still be carried out, if one assumes that the number of particles used in
algorithm is large enough, such that averages over particle configurations
can be replaced by an expectation value under the law of large numbers
(mean field approximation). The corresponding algorithm is described in
the box "Algorithm 2". By applying the algorithm to a function F (x) =
1A(x)exp(V (x0) − V (x)) with 1A the indicator function of the set A,
estimates γ̆A of the probability γA can be obtained.
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Algorithm 2 Interacting genealogical particle analysis
1. Initiate M particles in configuration x0, ξi0 = x0 for 1 6 i 6 N0 = M

2. For every time step k ∈ {1, . . . , n}
(a) Propagate ξi,tk−1

under the dynamics, resulting in ζi,tk distributed
according to P (2)(ζi,tk |ξi,tk−1

,∆tk) with ∆tk = tk − tk−1

(b) Calculate weights for particle i:

W̄i,k =
Wi,k(ζi,tk , ξi,tk−1

)

Zk

Zk =
1

Ntk

ΣiWi,k(ζi,tk , ξi,tk−1
)

(c) Store the value of the normalizing factor Zk

(d) Generate a new particle distribution ξj,tk consisting of Ni,k copies of
particle with configuration ζi,tkwhere Ni,k is chosen at random such
that E(Ni,k) = W̄i,k

3. Finally calculate 1
M Σ

Ntn
i=1 F (ξi,tn)

∏n−1
k=1 Zk to estimate E0(FeV )e−V (x0) (for

γA take F (x) = 1A(x)exp(V (x0)− V (x)))

We now again perform an analysis of the evolution of the expected
particle distribution in Algorithm 2. For simplicity of the derivation we
assume that the number of particles Nk∆t in the algorithm is large, such
that by the law of large numbers,

Zk =
1

Ntk
ΣiWi,k(ζi,tk , ξi,tk−1) ≈ Ek(W ) (6)

=

ˆ
dxdy

E(N(x, tk))

E(N(tk))
P (2)(y, x)W (y, x)(7)

Using this estimate and the same reasoning as for the non-interacting
particle algorithm, we have for the expected particle distribution that

E(N(x, tk+1)) ≈
ˆ
dyP (2)(x, y)

W (x, y)

Ek(W )
E(N(y, tk)) (8)

The expectation value of W in the denominator can be substituted using
Eq. 6. The particle number is now constant:

E(N(tk)) =

ˆ
dxE(N(x, tk+1)) = E(N(tk−1)) = . . . = E(N(0)) = M

Therefore we have

Ek(W (1)) =

ˆ
dxdyP (2)(x, y)W (x, y)

E(N(x, tk))

M

Inserting this into 8, we have

E(N(x, tk+1)) ≈ M

´
dyP (2)(x, y)W (x, y)E(N(y, tk))´
dxdyP (2)(x, y)W (x, y)E(N(y, tk))

11



Therefore by iteration

1

M
ΣNi=1A(xi,tn) =

´
dxdxn−1 . . . dx1A(x)P (2)(x, xn−1) . . . P (2)(x1, x0)W (x, xn−1) . . .W (x1, x0)´

dxdxn−1 . . . dx1P (2)(x, xn−1) . . . P (2)(x1, x0)W (x, xn−1) . . .W

=
E(A(xn)W (xn, xn−1) . . .W (x1, x0))

E(W (xn, xn−1) . . .W (x1, x0))
=
E(A(xn)W (xn, xn−1) . . .W (x1, x0))

Zn

To get the expectation value E(AeV ) from the calculated value E(AeV )

E(eV )
,

we need to have an estimate of E(eV ). We can obtain such an esti-
mate through Πn

k=1
1
Ntk

ΣiW (ζi,tk , ξi,tk−1). By substituting W into the

last equation, the sum 1
Ntk

ΣiW (ζi,tk , ξi,tk−1) ≈ 1
M

ΣW (ζi,tk , ξi,tk−1) esti-

mates Zk+1

Zk
.

1

M
ΣiW (ζi,tk , ξi,tk−1) ≈ Ek(W (x, y)P (2)(x, y)e−V (x))

Ek(e−V (x))

=
Ek+1(e−V (x))

Ek(e−V (x))

The product over k gives Zn
Z0

= Zn.
The above reasoning can also be used to show that path dependent

quantities (such as E[x(τ)|x(T ) > a] for τ < T ) can be estimated from
the ancestral paths of the particle system.

2.3.4 Time-dependent weighting

The weighting function W (x, y) = exp(V (x)− V (y)) results in a particle
distribution tilted by exp(V (x)) at all times. More flexibility can be ob-
tained by using time-dependent weighting, for example with a weighting
function of the form

W (t, x, y) = exp(Vt(x)− Vt−1(y)) (9)

This way the telescoping canceling is preserved in products of weights
that appear in the calculation of the tilted measure. For example,

W (t, x, y)W (t− 1, y, z) = eVt(x)−Vt−1(y)eVt−1(y)−Vt−2(z)

= exp(Vt(x)− Vt−2(z))

The result is again a particle distribution tilted by exp(Vt(x)) at time t,
as with the time-independent weight function. However, paths up to the
final time will have different weights, which can make a large difference in
the algorithm performance, as we will demonstrate in Section 4.2.4.

3 Fluctuation paths and the weighting func-
tion
The ideal change of measure discussed in suggests to make the rare event
that is the least rare the most probable one under the reweighted dynam-
ics. This rationale extends not only to the distribution of the system at
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the final time, but also to the entire path up to the final time. This means
that variance can be reduced if the least unlikely path leading to a high
threshold is made more likely under the particle system dynamics.

For stochastic differential equations, in the weak noise limit, the least
unlikely path from an attractor can be calculated from Freidlin-Wentzell
type large deviation theory and is called a fluctuation path (also some-
times an instanton). The particle system dynamics can be made to more
closely follow the fluctuation path by using the time-dependent weighting
discussed in . Even if the final distribution is the same as the one with
a constant weighting, there is still a variance reduction since less parti-
cles are killed, increasing the independence of the particle and thus the
effective particle number.

3.1 Fluctuation paths
The probability of a given path in a stochastic differential equation with
small noise,

dXε = b(Xε)dt+
√
εdW,

can be estimated using the Freidlin-Wentzell large deviation theory. The
theory determines the probability of seeing a path that is close to a spec-
ified continuous function in the limit of ε going to zero. It roughly states
that

lim
ε→0

ε logP [Xε ∈ F ] = − inf
ω∈F

I(ω)

where F is any closed subset of the set of continuous trajectories and the
rate functional I is called the action. The action is given by

I(ω) =
1

2

ˆ T

0

dt|ω̇(t)− b(ω(t))|2 =

ˆ T

0

dtL[ω,
∂ω

∂t
] (10)

The distribution of paths leading to rare fluctuations then concen-
trates around action minima as ε decreases, with given constraints. If
the set of paths F contains the evolution along the deterministic dynam-
ics ẋ = b(x), this path will obviously minimize the above action, hence
the need for constraints to obtain more interesting results. For example,
in the simple case were the deterministic dynamics ẋ = b(x) has a sin-
gle attractor x0, the distribution of the paths conditioned on X(0) = A
concentrate close to the minima of the action

´ 0

−∞ dtL[ω, ∂ω
∂t

] with the
boundary conditions X(−∞) = x0 and X(0) = A. Such a path is called
a fluctuation path leading to A (it is also sometimes called an instanton,
but instanton usually rather refers to those fluctuation paths that connect
attractors to saddle points).

4 Rare event simulation for a stochastic
process: the Ornstein-Uhlenbeck process
We now illustrate some of the practical issues arising when implementing
a genealogical particle analysis algorithm for rare event estimation. We
start off with a stochastic process for which we can calculate explicitly all
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of the probabilities that we want to estimate, for pedagogical reasons, and
so that we can compare the numerical results to the analytic expressions.

4.1 Description of the Ornstein-Uhlenbeck pro-
cess
We consider the Ornstein-Uhlenbeck process

dx = −λxdt+ σdW (11)

As the transition probabilities P (x(t)|x(0)) are Gaussian, a Gaussian dis-
tribution remains Gaussian in the Ornstein-Uhlenbeck process. Using the
Itô formula, one can derive that the meanm(t) = E(x(t)) and the variance
v(t) = E((x(t)−m(t))2) evolve according to the equations

ṁ = −λm
v̇ = σ2 − 2λv (12)

which can be easily solved explicitly.
The probability that x exceeds a certain threshold a at a time t, given

that the process started at x(0) = 0 at time zero can be calculated explic-
itly as

P (x(t) > a|x(0) = 0) =

ˆ ∞
a

dxNm(t),v(t)(x), (13)

where m and v solve (12). We consider in the following the estimation of
this probability through a genealogical particle analysis algorithm.

4.2 Algorithm implementation
Let us assume we seek to estimate a low probability γA, for instance
γA = P (x(t) ∈ A|x(0) = 0). We denote M the number of particles for
each realization of the algorithm. Then each independent realization i
of the algorithm, with M particle each, will give an estimate γ̆A,i. Ac-
cording to a theorem discussed in [19], asymptotically for large M , the
random number γ̆A,i is distributed according to a Gaussian distribution
with standard deviation σA(M) = σA/

√
M and a corresponding relative

error RE(M) = σA(M)/γA. The value of the estimator relative error
RE(M) is essential as it quantifies the relative error one should expect for
each realization of the algorithm, and thus the quality of the result. How
the estimator relative error RE(M) depends on the number of selections,
on their timing, and the type observables are critical questions that we
analyze in this section.

4.2.1 Number of particles

The result in [19] proves the existence of the central limit theorem, but
does not give a value for the estimator variance RE(M). In order to
get an estimate of RE(M), we compute it empirically by performing K
independent algorithm realization and using the estimator

RE(M) '

√√√√ 1

K

K∑
i=1

(γ̆A,i − γA)2/γA. (14)
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Figure 3: (a) The estimator variance RE =
√

1
K

∑K
i=1(γ̆A,i − γA)2/γA where

A = [a,+∞] for different values of the threshold a and number of particles M .
RE is estimated from K = 50 independent runs of the genealogical particle
analysis algorithm. The weight function is exp(C∆x) with C = 4. For compar-
ison: the brute force Monte Carlo estimator variance with 512 particles for a
threshold a = 2 is 0.95. (b) The estimator variance for a fixed threshold a = 2
for different numbers of particles M . A 1/

√
M function is fitted and shown as

the dashed line.

In this formula the value of γA will be either the theoretical value when
it is available, for instance for the Ornstein-Uhlenbeck process, or the es-
timated value of the probability by averaging γ̆A,i over K realizations. In
the following, by an abuse of notation, RE denotes either the theoretical
estimator variance of the estimator variance evaluated from (14), which
one should be clear from the context.

We first study the estimator variance RE for the Ornstein–Uhlenbeck
case. We first test whether or not the regime of the central limit theorem
has been reached by changing the number of particles M , and verifying
whether RE (14) reduces by the corresponding

√
M factor. Figure 3a

shows the expected decrease in relative error as the number of particles is
increased for a range of thresholds a (see eq. (13)). The inverse square root
behavior of the error with increasing number of particles is demonstrated
for a fixed threshold in Figure 3b. The parameters are specified in the
figure captions.

We study how the estimator variance RE depends on the other nu-
merical parameters in the following sections.
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4.2.2 Number of selections and their timing

Since little theoretical analysis has been performed on the optimal number
of selection steps, this is the most heuristic choice to be made. Some nu-
merical analysis of this issue has been performed in [42]. For the problem
they investigate, changing the number of selections, and using equidistant
in time selections, the estimator variance clearly shows a minimum for a
certain number of selections.

This result can be interpreted as follows. One does not want to per-
form selections too often, as cloning particles increases their correlations
and reduces the effective number of independent particles, thus increasing
the estimator variance. If not performing selections frequently enough
however, the particle distribution relaxes to the unbiased particle mea-
sure, leading to the poor brute force Monte-Carlo variance. This can be
seen in Figure 4: for low thresholds, importance sampling is useless and a
small number of selections has the lowest estimator variance RE. Due to
the large time between selections, the particles have relaxed to the parti-
cle measure of brute force Monte Carlo simulations and therefore have a
similar estimator variance. For higher thresholds, for instance for a > 1.8,
it becomes advantageous to kill a larger number of particles in order to
obtain a more skewed final particle distribution, in order to lower the vari-
ance. For the threshold value a = 2 the optimal number of interactions
among the values in the figure is N = 16. For higher thresholds there is a
small reduction in error by increasing the number of selections, although
increasing the number of selections further beyond N = 64 results in an
overall increase of error.

Figure 4 also illustrates the huge estimator variance improvement for
the genealogical particle analysis algorithm compared with Monte-Carlo
sampling, as soon as a ≥ 2.

Besides the number of selections, there also seems to be little theo-
retical understanding of the optimal timing for selections. One strategy
to selection timing is to calculate on-the-fly a criterion on the distribu-
tion of particle weights (such as the squared coefficient of variation or
entropy) and only perform selection if a fixed threshold is exceeded. The
convergence of such adaptive selection strategies is discussed in [43].

4.2.3 Estimating a range of over-threshold probabilities

In the following the weight function exp(C∆x) is used. From the point
of view of the estimator variance RE (14), to each value of the threshold
a corresponds an optimal value of C, denoted C∗(a), or equivalently for
each value of C the estimator variance has a minimum for a given value
of a, denoted a∗(C). For instance Figure 4 shows that the value C = 4
is optimal for a ' 2.5. In simple cases, we expect C∗(a) to increase
monotonically with a.

There is an optimal value of a for each value of C, however the estimate
is good for a range of thresholds around this optimum. When instead of
a particular over-threshold probability one is interested in the tail of the
complete distribution probability, one can perform a number of genealog-
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Figure 4: The estimator variance RE =
√

1
K

∑K
i=1(γ̆A,i − γA)2/γA where A =

[a,+∞] with different numbers of selection steps, with M = 1, 000 particles
each. The estimator variance for brute force Monte Carlo is shown as the blue
dashed line. The weight function is exp(C∆x) with C = 4.

ical particle analysis simulations each with different value of C, and select
for each threshold the value corresponding to the lowest estimator vari-
ance RE. Figure 5 illustrates how the tail of P (a) = P (x(t) ≥ a|x(0) = 0)
can be estimated this way, for the Ornstein-Uhlenbeck process. For large
values of the threshold (above a ≈ 4.6) all estimates have a high error
and the highest value of C is chosen by default. As can be seen on this
figure the agreement with the theoretical value is astonishingly good up
to probabilities as low as 10−10. Using this strategy, we can accurately
estimate the tail of the over-threshold distribution down to probabilities
below 10−10, with relative error lower than one.

4.2.4 Selections along the fluctuation paths

We have discussed in Section 2.3.4 that a time-dependent weighting func-
tion can be used. That way the algorithm distribution will correspond to
different weights all along the path, but still lead to the same exponentially
tilted final particle distribution. Furthermore, in Section 3.1 we have dis-
cussed how for small noises, most of the paths leading to a rare event will
concentrate around fluctuation paths that minimize the action functional.
The aim of this section is to demonstrate the interest to use fluctuation
paths in order to define time-dependent weighting functions in order to
increase the efficiency of the genealogical particle analysis algorithm.

For the Ornstein-Uhlenbeck process, since it is linear, taking limits
of higher thresholds is equivalent to taking a weak-noise limit through a
rescaling of the x coordinate. Hence, for fixed noise intensity σ paths start-
ing at x0 = 0 conditioned on reaching the final threshold a will concentrate
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Figure 5: (a) The estimator variance RE for different weight factors C for a
range of thresholds. The brute force error is computed as

√
γA − γ2A/(

√
MγA).

(b) The estimated over-threshold probability P (a) compared to the analytic
result. For each value of the threshold a, the estimate corresponding to the
value of C with lowest estimator variance is chosen.

around the fluctuation paths in the limit a → ∞. The action 10 for the
Ornstein-Uhlenbeck process (11) is given by I [X] =

´ T
0
dτ(Ẋ + λX)2.

Taking as boundary conditions X(0) = 0 and X(T ) = a the fluctuation
paths are easily compute. They are Xf (t) = a sinhλt

sinhλT
.

As we explain now, by taking the potential function W (t, x, y) =
exp(C(tk)x−C(tk−1)y) with a weight parameter C(tk) dependent on the
time of selection time tk, we can control µ̃(tk) the mean particle position
attk by fixing C(tk). The expected particle distribution for the Ornstein-
Uhlenbeck process tilted with this weighting function after the selection
at tk is

exp (C(tk)x)N0,ν(tk)(x)/

ˆ
dx exp (C(tk)x)N0,ν(tk)(x)

as discussed in Section 2.3.4. The corresponding expected mean particle
position is therefore µ̃(tk) = C(tk)v(tk) where v(t) = (1− exp(−2t))/2 is
the variance of the Ornstein-Uhlenbeck process at time t (the solution of
Eq. 12 with ν(0) = 0). Choosing C(tk) = Xf (tk)/ν(tk), µ̃(t) followsXf (t)
and the algorithm particle distribution closely follows the fluctuation path
leading to the threshold a.

Figure 6 shows the effect of using a weight function based on a fluctu-
ation path versus an exponential weight function. The bottom two plots
show how using the fluctuation path significantly decreases the fraction of
particles that are killed during the selection steps (N (−)

k ) to the number
of particles at that time step (Nk). This is also illustrated on the top two
plots. They show all final positions with their dynamics from the initial
state, hence paths that have been killed during the process are not shown.
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We call these paths the ancestral paths. As is clearly seen on the top left
plot, only few trajectory from the initial stage of dynamics are ancestors
of the final positions. This is clearly not the case for the top right plot.
The algorithm ran with a weight based on a fluctuation path has thus a
much large number of ancestors. This richer ancestral tree results in a
decreased estimator error for the over-threshold probabilities, as is clearly
demonstrated in Figure 7.

Note that both the exponential weighting function and the weighting
based on the fluctuation path, the paths reaching the threshold follow the
fluctuation path. Other paths reaching the threshold are so rare that few
of them are generated, even if they are more likely to survive selection
in the case of exponential weighting. Note that the killed paths tend to
have a negative change in position before being killed. The higher target
path in the exponential makes for a higher average dissipative force −x on
the particles, leading to a great discrepancy between the actual particle
distribution and the target distribution at selection times.

5 Genealogical particle analysis algorithm
for a deterministic dynamical system: the
Lorenz ’96 model
The Lorenz ’96 model is a deterministic dynamical system that is often
used as a toy model in the meteorology community. It was proposed by
Lorenz as part of a study on error growth and predictability for chaotic
dynamical systems [39, 40].

A crucial difference between the famous Lorenz ’63 model and the less
well-known Lorenz ’96 model is that the latter has a large number of de-
grees of freedom. Indeed macroscopic variables of deterministic systems
with a large number of degrees of freedom often behave qualitatively sim-
ilar to solutions of stochastic differential equations with much less degrees
of freedom. Such results can be proven for some specific types of models
(separation of time scale, independence, ...).

It is believed however that similar results remain true for a wide range
of models and observables even though mathematical proofs are out of
reach. If this conjecture is correct, then the sampling of rare events
through genealogical particle analysis algorithms should work for macro-
scopic variables of deterministic systems with a large number of degrees
of freedom. In this section, we demonstrate empirically, through numer-
ical simulation, that genealogical particle analysis algorithms can indeed
sample very efficiently the tail of the energy distribution for the Lorenz
’96 model.

5.1 Description of the model
The Lorenz ’96 model consists of L variables xi on a ring i ∈ {0, .., L−1},
with dynamics

ẋi = xi−1(xi+1 − xi−2) +R− xi
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Figure 6: Ancestral paths (top), the final portion of killed paths, plotted only
between tk−1 and tk if the path is killed at tk (middle) and the fraction of the
number of particles killed N

(−)
k to the total number of particles Nk (bottom)

for genealogical particle analysis algorithms with either exponential weighting
with C = 6.0 (left) and weighting based on the fluctuation path (right) for the
fluctuation path ending at a = 3.0 at the final time T = 2. The dashed black
lines in the top plots show the fluctuation path. The dash-dotted line in the
top left plot shows the mean of the target particle distributions after selection
(equals Cv(t)). The average number of particles for both simulations isM = 104

and the number of selections steps is 32. For graphical purposes a randomly
selected sample of 2% of the ancestral and killed paths are shown in the first
two rows
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Figure 7: The over-threshold probability P (x > a) as estimated by the ge-
nealogical particle analysis algorithm either with an exponential weight (blue
long-dashed line) or a weight based on fluctuation paths (red medium-dashed
line). The two short-dashed lines, at equal distance from the estimated averages,
correspond to a 2 standard deviation interval of the estimator. The full line is
the analytic result. Both implementations use the same number of particles
N = 1e4 and the 32 selections steps and have roughly the same computational
cost.
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Figure 8: Over-threshold probability estimated from a brute force simulation
and estimator variance RE =

√
γa − γ2a/(

√
Mγa) of the energy E for the Lorenz

’96 system with R = 28 and M = 105.

where indices i are in ZL, i.e. the index i is identified with i mod L if i /∈
{0, .., L− 1}. The dynamics ẋi = xi−1(xi+1 − xi−2) conserves the energy
E = 1

2L

∑L
i=1 x

2
i , while R is a forcing and −xi a linear dissipation. The

dynamics is chaotic for R ≥ 8 [39, 40]. We will estimate the probability
of reaching a certain energy threshold after a time t, starting from the
zero vector x0,i = 0∀i. Throughout the article we will use a number of
variables L = 32 and a forcing R = 28 = 256.

Figure 8 shows a plot of the over-threshold probabilities of the en-
ergy of the Lorenz ’96 system, estimated through a brute force Monte-
Carlo simulation. Given that we have finite computer resources at our
disposal, assume we can generate at most M = 105 independent mea-
surements of the energy. If the maximal relative error that we are willing
to tolerate is for example 0.5 then since RE =

√
γa − γ2

a/(
√
Mγa) ≈

1/(
√
Mγa) the lowest probability that we can estimate is approximately

γa = 1/M(RE)2 = 4.10−5. From Figure 8 we can deduce that the cor-
responding highest energy threshold obtainable lies around an energy
threshold Et = 1785. Beyond this threshold the use of rare event al-
gorithms becomes necessary.

5.2 Algorithm implementation
We use the following settings for the genealogical particle analysis simu-
lation. The initial condition is set to xi = 0. The total integration time
per realization is T = 1, 27. The standard deviation of the estimator√

1
K

∑K
i=1(γ̆A,i − γA)2 is estimated from K = 10 independent runs of the

algorithm and the truth γA is taken from a long brute force Monte Carlo
simulation. The number of interaction is set to 64.
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5.2.1 Weight function

For simplicity, we have employed an exponential weight function W =
exp(C∆E) where ∆E is the change in energy between two interactions.
This choice doesn’t require any a priori knowledge of the dynamics and is
easy to implement. This weight function is almost certainly not optimal,
however, but as we shall show it already gives good results.

For the value of the forcing parameter R = 28 the distribution of
the energy values is close to a Gaussian distribution. One can therefore
estimate the mean µE and the variance σ2

E from a brute force Monte Carlo
simulation and use these values along with the reasoning of Section 2.2.1
to determine an appropriate value of the exponential weighting factor C
in the weighting function W = exp(C∆E). One can then choose a value
C = ∆µE/σ

2
E where ∆µE is the required change of the mean energy of

the final particle distribution.
The values of C in the weighting function W = exp(C∆E) for the

calculations presented in this section are taken as Cr = r/(2σE) with
r ∈ {1, 2, 3, , 4} and σE being the standard deviation of the energy so as
to increase the shifts of the mean energy ∆µE by σE/2.

5.2.2 Noise perturbation

For deterministic dynamical systems, in order for two trajectories to have
different dynamics after selection, a small perturbation can be added. This
can be achieved by adding for example a weak Brownian perturbation at
all times, or by adding a small instantaneous perturbation to offspring at
the selection times. The former approach provides a simpler mathematical
framework. Indeed the study of the noise effect would amount to the
study of the stochastic differential equation properties in the weak noise
limit, independent of the genealogical particle analysis algorithm. By
contrast the latter approach intertwines the random perturbation with
the genealogical particle analysis algorithm effects and is therefore more
complicated to analyze. The latter approach, however, has the practical
advantage of being computationally simpler. In this study, as we will
proceed purely empirically, we have opted for the latter approach. The
clones are perturbed by ε ~N0,1 where ~N0,1 is a standard L-dimensional
Gaussian random variable, i.e. the noise acts independently on all of the
variables.

The small noise perturbation invariably adds an error to the estimates
of the tail probabilities. To obtain a rough upper bound on the strength
of the perturbation that can be added without significantly perturbing
the tail, we first perform a brute force simulation with the added noise for
different noise strengths and verify that the tail probabilities do not change
significantly compared to the sampling error of the brute force calculation.
A set of independent realizations is performed like in the brute force Monte
Carlo approach, the only difference being that at the selection times tk the
same noise perturbations is added as in the genealogical particle analysis
simulation. No selection is performed however in these run. This way we
can estimate the effect of the noise on the final time particle distribution.
The first plot of Figure 9b shows that below a perturbation strength of
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Figure 9: (a) The over-threshold probability P (E > a) of the energy E of
the Lorenz ’96 system with perturbations of varying strengths ε at times tk,
without performing killing and cloning (b) The over-threshold probability of
the energy of the Lorenz ’96 system, as estimated from two realizations of the
genealogical particle analysis algorithm with different perturbing noise strength
ε upon cloning.

ε = 0.87 and for thresholds higher than a = 1600, the noise does not
have a significant effect on the over-threshold probabilities. More complex
schemes of noise perturbation could be implemented to assure that the
perturbed trajectory remains close to the attractor, for example by storing
a configuration at a time point before tk, add a small perturbation to it
and evolve it up to tk to have the perturbation relax towards the attractor.

Furthermore, after performing the genealogical particle analysis algo-
rithm, we check that the perturbing noise intensity ε is small enough by
decreasing ε and checking that the estimates of the over-threshold tail
statistics are consistent. Figure 9b shows that for ε = 0.1 the results
remain stable upon halving the noise intensity.

5.2.3 Estimating the tail of the energy distribution

We use for the Lorenz ’96 model the procedure described in Section 4.2.3:
we increase the values of the weight parameter C and use for each thresh-
old value the best estimate from the point of view of the empirical esti-
mator variance. The result is shown in Figure 10. As there is no analytic
expression for the energy distribution tail of the Lorenz ’96 system, we use
a very long brute force Monte Carlo estimation as comparison. The es-
timator variance markedly decreases when using the genealogical particle
analysis algorithm. When constructing the over-threshold probability, we
see that the tail can be reliably reproduced when compared to the much
longer brute force calculation.

The improvements in efficiency from using a rare event simulation
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Figure 10: (a) The empirical relative error RE for different weight factors C, for
a range of energy thresholds a, for the Lorenz ’96 model. The number of particles
is M = 1, 000. The brute force Monte Carlo relative error (in blue) is estimated
with the same number of realizations M as

√
γ̂a − γ̂2a/(γ̂a

√
M) (b) The over-

threshold probability tail as estimated from the genealogical particle analysis
algorithm compared to a brute force reconstruction. The number of particles
used is 1, 000 for the genealogical particle analysis simulation and 10, 000 for
the brute force simulation.
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scheme can be quantitatively estimated from Figure 10. The plot of the
empirical relative error shows how for a threshold around a = 1800 a brute
force Monte Carlo calculation yields a relative error of 0.5, whereas the
genealogical particle analysis simulation yields a relative error of approxi-
mately 0.05. A reduction in relative error by a factor 10 is achieved. Since
the brute force Monte Carlo error scales as 1/

√
M , a similar reduction by

a raw increase of processing power would requireM to increase by a factor
of 100. For higher thresholds and with more fine tuning of the selection
process, a much larger reduction is likely to be achievable.

6 Conclusion
In this paper we have addressed the use of rare event computation tech-
niques to estimate small over-threshold probabilities of observables in de-
terministic dynamical systems. We have demonstrated that the genealog-
ical particle analysis algorithms can be successfully applied to a toy model
of atmospheric dynamics, the Lorenz ’96 model as presented in Section 5.1.
We have furthermore used the Ornstein-Uhlenbeck system to illustrate a
number of implementation issues.

The example of the Ornstein-Uhlenbeck has illustrated the importance
of the choice of the objective function for the performance of the ge-
nealogical particle analysis algorithm estimator. We have shown how a
time-dependent objective function based on the fluctuation path to a high
threshold can greatly improve the performance of the estimator compared
to a fixed-in-time objective function. Furthermore we have discussed how
the number of particles and the number of selection steps influence the
performance of the estimator.

For the deterministic chaotic system a complication arises in that a
stochastic perturbation needs to be added to the system to make identical
clones of one parent diverge and explore the system’s path space. We
have demonstrated in this example how the estimates of the rare event
simulation are stable for small perturbations and agree with results from
brute force Monte Carlo estimations. We therefore can have confidence
in the correctness of these estimates.

For the example of a deterministic chaotic system that we have stud-
ied we have not yet used the fluctuation path approach, since this would
require information on the dynamics to the rare event that we a priori
do not possess. This lack of knowledge can be improved by iterating the
estimation procedure, where one uses estimates of an initial brute force
simulation to estimate the fluctuation path, after which an genealogical
particle analysis simulation based on this path can be used to estimate a
higher fluctuation path, which can be used for a next iteration of the algo-
rithm. However, the results of the straightforward implementation of the
rare event simulation already shows significant improvements compared
to brute force estimation.
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