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Abstract The construction of integrity bases for invariant and covariant polynomials

built from a set of three dimensional vectors under the SO(3) and O(3) symmetries

is presented. This paper is a follow–up to our previous work that dealt with a set of

two dimensional vectors under the action of the SO(2) and O(2) groups [G. Dhont

and B. I. Zhilinskiı́, J. Phys. A: Math. Theor., 46, 455202 (2013)]. The expressions of

the Molien generating functions as one rational function are a useful guide to build

integrity bases for the rings of invariants and the free modules of covariants. The

structure of the non–free modules of covariants is more complex. In this case, we

write the Molien generating function as a sum of rational functions and show that

its symbolic interpretation leads to the concept of generalized integrity basis. The

integrity bases and generalized integrity bases for O(3) are deduced from the SO(3)
ones. The results are useful in quantum chemistry to describe the potential energy or

multipole moment hypersurfaces of molecules. In particular, the generalized integrity

bases that are required for the description of the electric and magnetic quadrupole

moment hypersurfaces of tetratomic molecules are given for the first time.
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1 Introduction

The concept of symmetry pervades many branches of physics and has been formal-

ized by the mathematical framework of group theory [1,2]. In particular, the irre-

ducible representations of a compact Lie group G classify the different ways a set

of objects can transform among themselves under the action of the elements g of

the group. We define as invariant an object that is unmodified under the elements

of the symmetry group G, i.e. that follows the one dimensional totally symmetric

representation Γ0 of the group. An irreducible representation Γ 6= Γ0 of dimension n

corresponds to a set of n Γ –covariants which transform according to the n× n rep-

resentation matrix D(Γ ) (g) of the element g. Group theory gives methods to build

symmetry–adapted objects, however the projector and shift operators [3] are ineffi-

cient tools because the resulting expressions are sometimes redundant or null. Invari-

ant theory [4–7] takes care of the algebraic structure in order to produce powerful

methods to construct invariants and covariants.

Concretely, given a representation V of G (associated for example to SO(3) acting

on the coordinates of a set of vectors), the action of G extends to the corresponding

algebra A of polynomials. An integrity basis (for invariants) is then a set of poly-

nomials that generates the algebra A0 of invariant polynomials. This algebra A0 is

Cohen–Macaulay, that is, it is a finitely generated, free module over a polynomial

subalgebra: it can be written A0 =
n⊕

i=1

C[g1, . . . ,gm] · fi. The gi are called primary in-

variants and form an h.s.o.p. (homogeneous system of parameters), the fi are called

secondary invariants. The decomposition and the h.s.o.p. are not unique but the choice

of the h.s.o.p. does not matter for our forthcoming considerations. To each irreducible

representation Γ 6=Γ0 is associated a finitely generated A0–module of covariants, AΓ .

If it is free over C[g1, . . . ,gm], AΓ is called a Cohen–Macaulay module. When G is

finite, all the AΓ are Cohen–Macaulay and the notion of integrity basis for covari-

ants generalizes immediately: it splits into the h.s.o.p. (invariant polynomials) and a

family of covariant polynomials that generate freely AΓ as a C[g1, . . . ,gm]–module.

The concept of integrity basis has been leveraged in molecular physics [8–14],

solid state physics [15,16], physics of deformable bodies [17–20], high energy physics

[21], quantum information [22–24], and general multivariate interpolation [25]. In

recent years, the combination of computer algebraic techniques with artificial intelli-

gence tools to derive primary invariants and fit symmetry–adapted quantum mechan-

ical quantities has been a field of particularly active research [26–28].

When G is continuous, the Cohen–Macaulay property does not hold in general

for AΓ [29]. The existence of such non–free modules over an h.s.o.p. is one of the

noteworthy features unseen when dealing with finite point groups that we want to

point out; it requires the introduction of the notion of generalized integrity basis. We

investigate this phenomenon in detail in the present article.

The present work on the invariants and covariants built from the coordinates of N

vectors of the three dimensional space under the SO(3) and O(3) groups stems from

three previous articles [30–32], where the action of the SO(2) and O(2) groups on the

coordinates of a set of vectors of the plane was considered. These papers put forward

the problem we mentioned of dealing with non–free modules of covariants over an
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h.s.o.p. that occasionally arises when working with continuous groups. As in our

previous paper [30], the Molien function [33] plays a central role in the conception

of the integrity bases and their generalization.

Section 2 introduces the setting and presents explicit integrity bases for the rings

of invariants and free modules of covariants that are met when dealing with one, two

or three vectors. The simplest case of a non–free module occurs for three vectors

and irreducible representation L = 2 and is detailed in Section 3, where we explic-

itly define and construct the corresponding generalized integrity basis appropriate to

the representation of the electric and magnetic quadrupole moment hypersurfaces of

tetratomic molecules. We then show that non–free modules are not uncommon. Sec-

tion 4 presents two conjectures suggested by the results of the two precedent sections,

one related to free modules, the other one to non–free modules. They are of practi-

cal importance to derive useful bases in the perspective of fitting symmetry–adapted

quantum mechanical quantities.

2 Integrity bases for rings of invariants and free modules of covariants

2.1 Context and Molien generating functions

In a polyatomic molecule with N +1 nuclei, it is always possible to define N relative

vectors that are invariant under any translation [34]. These relative vectors can be

Jacobi vectors, Radau vectors [35] or simply differences of the vector positions of

two nuclei, ri − r j. From now on, by vector we mean one of these relative vectors.

Each value of the angle of rotation ω ∈ [0,π ] defines an equivalence class of the

SO(3) group, with all the rotations of the same angle but different rotation axes n̂

belonging to the same class. The character of the class for the (2L+ 1)–dimensional

irreducible representation (L), L ∈N, of SO(3) is given by [36]:

χ (L) (ω) =
sin

[
(2L+ 1) ω

2

]

sin ω
2

.

The three coordinates of one vector span the irreducible representation (1) of SO(3)
and the 3N coordinates of the N vectors span the reducible representation (1)⊕·· ·⊕ (1)

︸ ︷︷ ︸

N times

,

called from now on the initial representation. The group SO(3) acts diagonally on the

direct sum of the various symmetric tensor powers of this representation or, equiva-

lently, on polynomials in the coordinates. The Molien generating function associated

to a given irreducible representation (L) (called the final representation) is then the

formal power series in a variable λ where the coefficient of λ n is the multiplicity of

(L) in the SO(3)–module of degree n polynomials in the coordinates.

The Molien generating function for computing the number of linearly indepen-

dent invariants (i.e. ”(0)–covariants”) or (L)–covariants (L > 0) of a given degree

built from N vectors is given by

gSO(3) (N,L;λ ) =
1

2π2

∫ π

0

∫ 2π

0

∫ π

0

χ (L) (ω)

det(13N −λ D(ω , n̂))
sinθdθdϕ sin2 ω

2
dω ,

(1)
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where 13N is the 3N × 3N identity matrix and D(ω , n̂) is the 3N × 3N representation

matrix of the rotation. The angles θ and ϕ give the orientation of the rotation axis

n̂. The evaluation of the integral (1) is derived in Appendix A. Collins and Parsons

determined the Molien generating function for the invariants with a parametrization

of the rotations based on Euler angles [37]. Our approach with the rotation angle ω
and rotation axis n̂, while giving the same result for the invariants, is more amenable

to a generalization for covariants because our parametrization gives a straightforward

integral over the single variable ω while calculations would not be so direct using the

Euler angles.

It is remarkable that the Molien generating function for SO(3) can be written as

the difference between Molien generating functions for SO(2) that were determined

in Ref. [30]:

gSO(3) (N,L;λ ) =
1

(1−λ )N

(
gSO(2) (N,L;λ )− gSO(2) (N,L+ 1;λ )

)
,

=
1

(1−λ )N

{
1

π

∫ π

0

cos(Lω) dω

(1− 2λ cosω +λ 2)N
− 1

π

∫ π

0

cos [(L+ 1)ω ] dω

(1− 2λ cosω +λ 2)N

}

,

where gSO(2) (N,L;λ ) is the generating function for the number of covariants with

irreducible representation (L) of SO(2) that can be built from N two dimensional

vectors.

2.2 Extension to the O(3) group

The matrix representation of the inversion operation for the problem of N vectors

is −13N . Denoting the irreducible representations of O(3) by (Lε ), L ∈ N, ε = ±1,

the corresponding Molien functions for N vectors under the O(3) group are obtained

through:

gO(3) (N,Lε ;λ ) =
1

2

[
gSO(3) (N,L;λ )+ εgSO(3) (N,L;−λ )

]
.

2.3 Integrity bases for the ring of invariants and free modules of covariants

2.3.1 One vector

The Molien function for the initial representation (1) resulting from the three coordi-

nates x1 = (x1,y1,z1) of one vector is

gSO(3) (1,L;λ ) =
λ L

1−λ 2
. (2)

The formal expansion of this generating function gives λ L+λ L+2+ · · ·, which means

that we can built one set of 2L+ 1 (L)–covariants of degree p ≥ L when p− L is

even. Formula (2) indicates that the polynomials belonging to the free module of

(L)–covariants can be univoquely built from one primary invariant of degree 2 and
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one set of (2L+ 1) secondary (L)–covariants of degree L. The primary invariant is of

course the scalar product Q1,1 = x2
1 + y2

1 + z2
1. The (2L+ 1) secondary (L)–covariants

are naturally chosen as the real solid harmonics ỸL,M (x1,y1,z1). Appendix B gives

the expressions of the real solid harmonics for L up to 3.

2.3.2 Two vectors

The six coordinates (x1,x2) of two vectors span the reducible six–dimensional rep-

resentation (1)⊕ (1). The coupling according to formula (31) of the generating func-

tions for one vector, given in (2), produces the Molien function for two vectors in the

two variables λ1 and λ2:

gSO(3) (2,L;λ1,λ2) =

L

∑
i=0

λ i
1λ L−i

2 +λ1λ2

L−1

∑
i=0

λ i
1λ L−i−1

2

(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

,

with the convention that the second term in the numerator is zero for L = 0. If we do

not distinguish between the two vectors, we can set λ1 = λ2 = λ to get the Molien

function as

gSO(3) (2,L;λ ) =
(L+ 1)λ L +Lλ L+1

(1−λ 2)3
. (3)

The coefficients L+ 1 and L in the numerators are always non–negative, suggesting

that the expression (3) of the Molien function can be used to construct the integrity

basis for the invariants and for any (L)–covariants.

The Molien generating function for the ring of invariants (L = 0) specializes to

gSO(3) (2,0;λ1,λ2) =
1

(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The ring of invariant is well–known [38] and the integrity basis consists in the 3

scalar products Q1,1 = x2
1 + y2

1 + z2
1, Q2,2 = x2

2 + y2
2 + z2

2, Q1,2 = x1x2 + y1y2 + z1z2 as

the primary polynomials of degree 2 and 1 as the secondary polynomial of degree

0. The totally invariant quantities such as potential energy hypersurfaces of triatomic

molecules can be expanded as polynomials in these three primary polynomials.

For L = 1, the Molien generating function in two variables is

gSO(3) (2,1;λ1,λ2) =
λ1 +λ2 +λ1λ2

(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The three primary polynomials are chosen to be identical to the three scalar products

Q1,1, Q2,2 and Q1,2 chosen for the ring of invariants. The two sets of (1)–covariants

of degree 1 are taken as

√
4π
3

Ỹ1,M (xi) with i ∈ {1,2} and M ∈ {1,0,−1}. The set of

(1)–covariants of degree 2 can be chosen as their cross–product:





f1,1 (x1,x2)
f1,0 (x1,x2)

f1,−1 (x1,x2)



=





y1z2 − z1y2

x1y2 − y1x2

z1x2 − x1z2



 .
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(The subscripts of the f –symbols are respectively L and M.)

The electric dipole moment function, µel, transforms as the irreducible represen-

tation (1−) of the group O(3). The Molien generating function is:

gO(3)

(
2,1−;λ1,λ2

)
=

λ1 +λ2
(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The cross–products do not enter the integrity basis because they are invariant with

respect to the inversion operation. Therefore, the components µel
M , M ∈ {1,0,−1} of

the electric dipole moment function of an ABC molecule have the form:

µel
M (x1,x2)=Pel

1 (Q1,1,Q2,2,Q1,2)×
√

4π

3
Ỹ1,M (x1)+Pel

2 (Q1,1,Q2,2,Q1,2)×
√

4π

3
Ỹ1,M (x2) ,

(4)

where Pel
1 and Pel

2 are two polynomials in the three primary invariants Q1,1, Q2,2,

and Q1,2. Thus, only two polynomials in three variables need to be fitted with re-

spect to quantum chemistry data to determine the dipole moment surface functions.

In contrast, the magnetic dipole moment function, µmag, transforms as the irreducible

representation (1+) of the group O(3), so its components have the form

µ
mag
M (x1,x2) = P

mag
1 (Q1,1,Q2,2,Q1,2)× f1,M (x1,x2) ,

where P
mag
1 is a polynomial in the three primary invariants.

For L = 2, the Molien generating function in the two variables is:

g
(1)
SO(3)

(2,2;λ1,λ2) =
λ 2

1 +λ1λ2 +λ 2
2 +λ 2

1 λ2 +λ1λ 2
2(

1−λ 2
1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The two sets of (2)–covariants of degree 2 corresponding to the polynomials λ 2
1 and

λ 2
2 in the numerator are chosen as

√
4π
5

Ỹ2,M (xi), i ∈ {1,2}, M ∈ {2,1,0,−1,−2}.

The last set of (2)–covariants of degree 2, corresponding to the polynomial λ1λ2, is

chosen as:










f
(2)
2,2 (x1,x2)

f
(2)
2,1 (x1,x2)

f
(2)
2,0 (x1,x2)

f
(2)
2,−1 (x1,x2)

f
(2)
2,−2 (x1,x2)











:=










√
3

2
(x1x2 − y1y2)√

3
2
(x1z2 + z1x2)

1
2
(2z1z2 − x1x2 − y1y2)√

3
2
(y1z2 + z1y2)√

3
2
(x1y2 + y1x2)










.

The two sets of (2)–covariants of degree three, corresponding to the polynomials

λ 2
1 λ2 and λ1λ 2

2 can be constructed by substituting one set of coordinates in the last

expression by the (L = 1)–cross–product covariant,











f
(3,1)
2,2 (x1,x2)

f
(3,1)
2,1 (x1,x2)

f
(3,1)
2,0 (x1,x2)

f
(3,1)
2,−1 (x1,x2)

f
(3,1)
2,−2 (x1,x2)











:=










√
3

2
(x1(y1z2 − z1y2)− y1(z1x2 − x1z2))√

3
2
(x1(x1y2 − y1x2)+ z1(y1z2 − z1y2))

1
2
(2z1(x1y2 − y1x2)− x1(y1z2 − z1y2)− y1(z1x2 − x1z2))√

3
2
(y1(x1y2 − y1x2)+ z1(z1x2 − x1z2))√

3
2
(x1(z1x2 − x1z2)+ y1(y1z2 − z1y2))










,



Action of the SO(3) and O(3) groups on a set of vectors 7

and











f
(3,2)
2,2 (x1,x2)

f
(3,2)
2,1 (x1,x2)

f
(3,2)
2,0 (x1,x2)

f
(3,2)
2,−1 (x1,x2)

f
(3,2)
2,−2 (x1,x2)











:=










√
3

2
((y1z2 − z1y2)x2 − (z1x2 − x1z2)y2)√

3
2
((y1z2 − z1y2)z2 +(x1y2 − y1x2)x2)

1
2
(2(x1y2 − y1x2)z2 − (y1z2 − z1y2)x2 − (z1x2 − x1z2)y2)√

3
2
((z1x2 − x1z2)z2 +(x1y2 − y1x2)y2)√

3
2
((y1z2 − z1y2)y2 +(z1x2 − x1z2)x2)










.

(The superscripts of the f –symbols are respectively the degree of the covariant and

an integer index when there are several secondary covariants of the same degree.)

The electric quadrupole moment function, qel, transforms as the irreducible rep-

resentation (2+) of the group O(3). Its components have the form

qel
M (x1,x2) = Pel

1 (Q1,1,Q2,2,Q1,2)×
√

4π

5
Ỹ2,M (x1)+Pel

2 (Q1,1,Q2,2,Q1,2)×
√

4π

5
Ỹ2,M (x2)

+Pel
3 (Q1,1,Q2,2,Q1,2)× f

(2)
2,M (x1,x2) , (5)

while its magnetic counterpart, qmag, transforms as the irreducible representation

(2−) and its components have the form

q
mag
M (x1,x2)=P

mag
1 (Q1,1,Q2,2,Q1,2)× f

(3,1)
2,M (x1,x2)+P

mag
2 (Q1,1,Q2,2,Q1,2)× f

(3,2)
2,M (x1,x2) .

(6)

2.3.3 Three vectors

The nine components of the three vectors span the reducible initial representation

(1)⊕ (1)⊕ (1) and the Molien generating function in the form of a single rational

function with one variable λ is:

g
(a)
SO(3) (3,L;λ ) =

N
(a)

SO(3)
(3,L;λ )

(1−λ 2)6
, (7)

with the numerator

N
(a)

SO(3)
(3,L;λ ) =

(L+ 2)(L+ 1)

2
λ L+(L+2)Lλ L+1−(L+1)(L−1)λ L+3− L(L− 1)

2
λ L+4.

(8)

The coefficients in the numerator (8) are all non–negative if L = 0 or L = 1, while

negative coefficients appear for L ≥ 2. This means that the symbolic interpretation of

the numerator coefficients as the amount in the integrity basis of (L)–covariants of

each degree does not hold anymore. Instead, the first negative coefficient indicates the

number of syzygies of lowest degree and diagnoses the fact that the (L)–component

of the ring of polynomials over the ring of primary invariants is not a free module.

We shall expect to be able to construct an integrity basis for L = 0 and L = 1, but the

cases with L ≥ 2 require more consideration.
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The Molien generating function for the invariant polynomials (L = 0) is

g
(a)
SO(3)

(3,0;λ1,λ2,λ3)=
1+λ1λ2λ3

(
1−λ 2

1

)(
1−λ 2

2

)(
1−λ 2

3

)
(1−λ1λ2)(1−λ1λ3)(1−λ2λ3)

.

The 6 primary invariant polynomials of degree 2 are chosen as the 6 scalar products

Qi, j := xix j + yiy j + ziz j for 1 ≤ i ≤ j ≤ 3 [38]. The secondary invariant of degree

zero is the polynomial constant 1 and the secondary invariant of degree three is the

determinant

∣
∣
∣
∣
∣
∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣
∣
∣
∣
∣
∣

. The determinant transforms as the irreducible representation

(0−) of the group O(3). The potential energy hypersurfaces of tetratomic molecules

being totally symmetrical under the O(3) group, they can be expanded as polynomials

in the primary invariant polynomials only.

The Molien generating function for L = 1 is

g
(a)
SO(3)

(3,1;λ1,λ2,λ3)=
λ1 +λ2 +λ3 +λ1λ2 +λ1λ3 +λ2λ3

(
1−λ 2

1

)(
1−λ 2

2

)(
1−λ 2

3

)
(1−λ1λ2)(1−λ1λ3)(1−λ2λ3)

.

The three sets of (1)–covariants of degree 1 are taken as

√
4π
3

Ỹ1,M (xi), i ∈ {1,2,3}.

The three sets of (1)–covariants of degree 2 are the cross–products f1,M (x1,x2),
f1,M (x1,x3), and f1,M (x2,x3). The electric dipole moment function of a tetratomic

molecule should thus be expanded according to the form:

µel
M (x1,x2,x3) = Pel

1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×
√

4π

3
Ỹ1,M (x1)

+Pel
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×

√

4π

3
Ỹ1,M (x2)

+Pel
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×

√

4π

3
Ỹ1,M (x3) ,

where Pel
1 , Pel

2 , and Pel
3 are polynomials in the 6 primary invariants Qi, j. Similarly, the

magnetic dipole moment function is written as:

µ
mag
M (x1,x2,x3) = P

mag
1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)× f1,M (x2,x3)

+P
mag
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)× f1,M (x1,x3)

+P
mag
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)× f1,M (x1,x2) .

3 Generalized integrity bases for non–free modules

3.1 The simplest case: the N = 3, L = 2 non–free module

We present the need to introduce generalized integrity bases with the simplest possi-

ble example: the non–free module for three vectors and L = 2. When the three rep-

resentations associated with the three vectors are distinguished by the three variables
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λi, the numerator of the Molien function is:

N
(a)

SO(3)
(3,2;λ1,λ2,λ3) = λ 2

1 +λ 2
2 +λ 2

3 +λ1λ2 +λ1λ3 +λ2λ3+

λ 2
1 λ2 +λ 2

1 λ3 +λ1λ 2
2 +λ1λ 2

3 +λ 2
2 λ3 +λ2λ 2

3 + 2λ1λ2λ3

−λ 2
1 λ 2

2 λ3 −λ 2
1 λ2λ 2

3 −λ1λ 2
2 λ 2

3 −λ 2
1 λ 2

2 λ 2
3 . (9)

As discussed in Section 2.3.3, the negative coefficients in this numerator make it not

suitable for an interpretation of the generating function in term of an integrity basis.

However, its symbolic interpretation in term of generators and syzygies suggests the

existence of 6 sets of (2)–covariant generators of degree 2 and 8 sets of (2)–covariant

generators of degree 3. These generators are involved in three syzygies of degree 5

and one syzygy of degree 6.

The Molien generating function (7) for three vectors does not admit a symbolic

interpretation in term of an integrity basis for L ≥ 2 when written as a single rational

function. It can nevertheless be recast as a sum of two rational functions where all the

coefficients in the numerators are now positive coefficients for L ≥ 2:

g
(b)
SO(3)

(3,L;λ )=
(2L+ 1)λ L+(2L+ 1)λ L+1

(1−λ 2)6
+

L(L−1)
2

λ L +(L+ 1)(L− 1)λ L+1+ L(L−1)
2

λ L+2

(1−λ 2)5
.

(10)

The denominators in the two rational functions are different. While the leftmost ra-

tional function suggests 6 primary invariants of degree 2 as in the L = 0 or L = 1

cases, the second rational function points to only five primary invariants of degree 2

to be selected among the 6 chosen for the first rational function. The symbolic in-

terpretation of the first rational function specifies that only 2L+ 1 sets of secondary

(L)–covariants of degree L and 2L+ 1 sets of secondary (L)–covariants of degree

L+ 1 should be used to generate a free module M
R1
1 over the ring R1 generated by

the six primary invariants. However, the free module M
R1
1 is only a submodule of

the module of all the (L)–covariant polynomials in the coordinates (x1,x2,x3). The

second rational function of g
(b)
SO(3) (3,L;λ ) indicates that a second module M

R2
2 is

needed, with L(L− 1)/2 sets of (L)–covariants of degree L, (L+ 1)(L− 1) sets of

(L)–covariants of degree L+1 and L(L− 1)/2 sets of (L)–covariants of degree L+2.

The module M
R2
2 should be free over a subring R2 (R1 spanned by only five primary

invariants.

We now propose a generalized integrity basis for the non–free module of (2)–
covariants in three vectors, whose Molien generating function is:

g
(b)
SO(3)

(3,2;λ ) =
5λ 2 + 5λ 3

(1−λ 2)6
+

λ 2 + 3λ 3+λ 4

(1−λ 2)5
. (11)

The six primary invariants associated with the first rational function are chosen as the

L = 0 or L = 1 cases, i.e. {Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3}. For 1 ≤ i ≤ j ≤ 3, we

define the D
i, j
2,M’s as:

D
i, j
2,M = f

(2)
2,M (xi,x j) .
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The 6 D
i, j
2,M’s are the secondary (2)–covariants of degree 2 that we are looking for.

Next, we construct a similar expression by substituting (x j,y j,z j) with a (L = 1)–
covariant of degree 2:











f
(3)
2,2 (xi,x j,xk)

f
(3)
2,1 (xi,x j,xk)

f
(3)
2,0 (xi,x j,xk)

f
(3)
2,−1 (xi,x j,xk)

f
(3)
2,−2 (xi,x j,xk)











=










√
3

2
(xi (y jzk − z jyk)− yi (z jxk − x jzk))√

3
2
(xi (x jyk − y jxk)+ zi (y jzk − z jyk))

1
2
(2zi (x jyk − y jxk)− xi (y jzk − z jyk)− yi (z jxk − x jzk))√

3
2
(yi (x jyk − y jxk)+ zi (z jxk − x jzk))√

3
2
(xi (z jxk − x jzk)+ yi (y jzk − z jyk))










.

However, only 8 can be linearly independent, since ∀ i, j,k ∈{1,2,3} and M ∈{2,1,0,−1,−2}:

f
(3)
2,M (xi,x j,xk)+ f

(3)
2,M (xi,xk,x j) = 0,

and

f
(3)
2,M (xi,x j,xk)+ f

(3)
2,M (x j,xk,xi)+ f

(3)
2,M (xk,xi,x j) = 0.

To shorten the notation, we define T
i, j,k

2,M = f
(3)
2,M (xi,x j,xk). For a given i and M, we

retain only those T
i, j,k

2,M with j < k, and for i, j,k all distinct, we decide to discard

T
2,1,3

2,M = T
1,2,3

2,M +T
3,1,2
2,M . (12)

This means that we select

T
1,1,2

2,M ,T 1,1,3
2,M ,T 1,2,3

2,M ,T 2,1,2
2,M ,T 2,2,3

2,M ,T 3,1,2
2,M ,T 3,1,3

2,M ,T 3,2,3
2,M ,

as the 8 linearly independent T
i, j,k

2,M .

The three syzygies of degree 5 are found to be, by solving linear systems of

equations:

Q2,3T
1,1,2

2,M −Q2,2T
1,1,3

2,M −Q1,3T
2,1,2

2,M −Q1,1T
2,2,3

2,M +Q1,2(2T
1,2,3

2,M +T
3,1,2

2,M ) = 0,(13)

Q1,3T
2,2,3

2,M +Q3,3T
2,1,2

2,M −Q1,2T
3,2,3

2,M +Q2,2T
3,1,3

2,M −Q2,3(2T
3,1,2

2,M +T
1,2,3

2,M ) = 0,(14)

Q1,1T
3,2,3

2,M +Q2,3T
1,1,3

2,M −Q1,2T
3,1,3

2,M −Q3,3T
1,1,2

2,M +Q1,3(2T
3,1,2

2,M −T
2,1,3

2,M ) = 0.(15)

The last one can be rewritten by using the relation (12) as

Q1,1T
3,2,3

2,M +Q2,3T
1,1,3

2,M −Q1,2T
3,1,3

2,M −Q3,3T
1,1,2

2,M +Q1,3(T
3,1,2

2,M −T
1,2,3

2,M ) = 0. (16)

Similarly, the syzygy of degree 6 is found to be:

(Q2
2,3 −Q2,2Q3,3)D

1,1
2,M +(Q2

1,3 −Q1,1Q3,3)D
2,2
2,M +(Q2

1,2 −Q1,1Q2,2)D
3,3
2,M+

2
(

(Q1,2Q3,3 −Q1,3Q2,3)D
1,2
2,M +(Q1,3Q2,2 −Q1,2Q2,3)D

1,3
2,M +(Q1,1Q2,3 −Q1,2Q1,3)D

2,3
2,M

)

= 0.

(17)

There is some arbitrariness in the choice of the primary invariant to be removed

from the ring of invariants R1 = C [Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3] to define the sub-

ring R2 ( R1 of the second submodule M
R2
2 . Let us remove Q2,3, so that R2 is the
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subring of R1 generated by {Q1,1,Q2,2,Q3,3,Q1,2,Q1,3}. It is then convenient to elim-

inate the secondary covariant D
1,1
2,M of degree 2 from M

R1
1 and to choose D

1,1
2,M and

covariant Q2,3 ×D
1,1
2,M of degree 4 as secondary covariants for M

R2
2 , because rela-

tion (17) allows one to reexpress Q2
2,3 ×D

1,1
2,M in terms of elements of either the M

R1
1

or the M
R2
2 module, whatever choice of degree 3 secondary covariant partitioning

is made. In fact, the same is true for any product (Qn
2,3 × D

1,1
2,M) with n > 1 by a

repeated use of the syzygy (17). It remains to select the three secondary covariants

of order 3 to exclude from M
R1
1 and to include in M

R2
2 . A natural choice is T

1,1,2
2,M ,

(2T
3,1,2

2,M + T
1,2,3

2,M ) and T
1,1,3

2,M , since Q2,3T
1,1,2

2,M , Q2,3(2T
3,1,2

2,M + T
1,2,3

2,M ) and Q2,3T
1,1,3

2,M ,

are easily re–expressed with terms either in M
R1
1 or in M

R2
2 , by means of the syzy-

gies (13), (14) and (16) respectively. The 5 secondary covariants of degree 2 and the

5 secondary covariants of degree 3 spanning M
R1
1 can be chosen to be D

1,2
2,M, D

1,3
2,M,

D
2,2
2,M, D

2,3
2,M, D

3,3
2,M, T

1,2,3
2,M , T

2,1,2
2,M , T

2,2,3
2,M , T

3,1,3
2,M , and T

3,2,3
2,M .

With this choice, the electric quadrupole moment components have the form:

qel
M (x1,x2,x3) = Pel

1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D
1,2
2,M

+Pel
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

1,3
2,M

+Pel
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

2,2
2,M

+Pel
4 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

2,3
2,M

+Pel
5 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

3,3
2,M

+Pel
6 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×D

1,1
2,M

+Pel
7 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×Q2,3D

1,1
2,M. (18)

Meanwhile, the magnetic dipole moment function is expressed as:

q
mag
M (x1,x2,x3) = P

mag
1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

1,2,3
2,M

+P
mag
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

2,1,2
2,M

+P
mag
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

2,2,3
2,M

+P
mag
4 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

3,1,3
2,M

+P
mag
5 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

3,2,3
2,M

+P
mag
6 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×T

1,1,2
2,M

+P
mag
7 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)× (2T

3,1,2
2,M +T

1,2,3
2,M )

+P
mag
8 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×T

1,1,3
2,M . (19)

These expansions are new and useful, for they are as compact as possible.
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Table 1 Choice as a function of L of the Molien generating function g
(x)
SO(3)

(N,L;λ) for N = 3, 4 or 5

vectors suitable for a symbolic interpretation in term of an integrity basis (x = a) or a generalized integrity

basis (x 6= a) .

N = 3 N = 4 N = 5

L algebraic structure x L algebraic structure x L algebraic structure x

0 ring a 0 ring a 0 ring a

1 free module a 1 free module a 1−3 free module a

2−∞ non–free module b 2 free module a or b 4 non–free module b

3−4 non–free module b 5−6 non–free module c

5−16 non–free module c 7−10 non–free module d

17−∞ non–free module d 11−14 non–free module e

15−81 non–free module f

82−∞ non–free module g

3.2 Other non–free modules

The generalized integrity basis for the non–free module with three vectors and L = 2

presented in Section 3.1 corresponds to a decomposition of the non–free module into

two free submodules. The first submodule is a module on the ring of six primary

invariants while the second submodule is a module on a subring of five primary in-

variants only. This algebraic structure can be inferred from the Molien generating

function written as a sum of two rational functions. The decomposition of a non–

free module into a sum of free modules on subrings of the ring of primary invariants

may have more than two terms when considering higher values of N. Appendix C

holds the Molien generating functions for four vectors amenable to a symbolic in-

terpretation in term of an integrity basis or a generalized integrity basis. It suggests

a decomposition in three rational functions whenever L ≥ 3 (forms g
(b)
SO(3)

(4,L;λ ),

g
(c)
SO(3) (4,L;λ ) and g

(d)
SO(3) (4,L;λ )). Appendix D, for five vectors, suggests a decom-

position of the Molien generating functions in four rational functions whenever L ≥ 4

(forms g
(b)
SO(3)

(5,L;λ ) to g
(g)
SO(3)

(5,L;λ )). It is noteworthy that the suitable expression

when dealing with a non–free module depends on the specific value of L. Table 1

states the Molien generating function that is to be used for a given value of L as a

guide in the construction of the integrity basis or generalized integrity basis.

The generalized integrity bases are not unique, since, as we have seen, there is

some arbitrariness in the choice of the generators of the primary invariant subrings

and of the covariant generators of the modules on these subrings (although some

choices are more practical than others).
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4 Two conjectures on the Molien generating function for the action of the

orthogonal group on a set of three dimensional vectors

4.1 First conjecture

According to our observations described in Section 2 and the expressions of the

Molien generating function for four vectors (appendix C) and five vectors (appendix D),

our first conjecture deals with free modules:

Conjecture 1. The generating Molien function for the action of the orthogonal

group on a set of three dimensional vectors can be written as a single rational func-

tion with non–negative coefficients in the numerator for all L if N ∈ {1,2} and for

0 ≤ L ≤ N − 2 if N ≥ 3:

gSO(3) (N,L;λ ) =
∑

nmax(N,L)
n=0 cn

N,Lλ L+n

(1−λ 2)3N−3
.

This function admits a symbolic interpretation in term of an integrity basis with 3N−
3 primary polynomials of degree 2 and cn

N,L secondary polynomials of degree L+ n,

0 ≤ n ≤ nmax (N,L).

In particular, the relevant covariant modules for the electric or magnetic dipole

moment hypersurface corresponds to the L = 1 irreducible representation of SO(3)
and will always be a free module over an h.s.o.p..

The case L = 0 corresponds to the ring of invariant polynomials R under the

action of the compact SO(3) group. We have seen that it is a finitely generated, free

module over the algebra R[g1, . . . ,gm] for a suitable maximal set of homogeneous,

algebraically independent, invariant polynomials, {g1, . . . ,gm}, the primary invariants

[39,40]. That is to say, there exists a finite set of secondary invariants { f1, . . . , fp}
such that,

R = R[g1, ...,gm] f1 ⊕·· ·⊕R[g1, ...,gm] fp.

This relationship constitutes an Hironaka decomposition of R. The conjecture holds in

that case as a consequence of Ref. [38]: the Molien function for invariant polynomials

can be cast in the form of a single rational function. This corresponds to the fact that

one can choose a h.s.o.p. with 3N − 3 primary or denominator invariant polynomials

of degree 2 and cn
N,0 secondary or numerator invariant polynomials of degree n with

0 ≤ n ≤ nmax (N,0).

If the module of (L)–covariants (L > 0) is Cohen–Macaulay, that is, free over

a suitable h.s.o.p., the situation is similar to the ring of invariant polynomials: the

generating Molien function is a single rational function and the primary polynomials

can be chosen to be the same as the ones for L = 0. It is suited to an interpretation

in term of integrity basis as the terms of the numerator correspond to the secondary

covariants.
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4.2 Second conjecture

4.2.1 Statement

We formulate our second conjecture based on the results of Section 3. It corresponds

to the case where the module of (L)–covariants is not free over an h.s.o.p., which is

known to happen, see Ref. [41].

Conjecture 2. For any number N of three dimensional vectors and any final rep-

resentation L ≥ N − 1 of SO(3), the Molien function gSO(3) (N,L;λ ) can be cast in

the form of a sum of N − 1 rational functions:

gSO(3) (N,L;λ ) =
N−1

∑
l=1

N l
N,L (λ )

(1−λ 2)3N−2−l
, (20)

with the N − 1 numerator polynomials N l
N,L (λ ) =

nmax(N,L,l)

∑
n=0

c
l,n
N,Lλ L+n having only

non–negative coefficients c
l,n
N,L. The exponents on λ in the numerator polynomials

start at L, since (L)–covariants built from vectors are at least of total degree L.

We already proposed to interpret this situation by introducing generalized in-

tegrity bases in our previous work on SO(2) [30]. The non–free module of (L)–
covariants is then decomposed as a sum of N−1 submodules. The structure of the lth

submodule is described by the lth rational function, 1 ≤ l ≤ N − 1. Each submodule

is a direct sum of free modules on rings of invariants generated by 3N−2− l primary

invariants. In the cases we investigated, the decomposition has a stronger property: it

is free by using a single set of primary invariants, that is to say, the primary invariants

of the (l + 1)th submodule can be chosen within those of the lth one. The number

of linearly independent, secondary covariants of degree L+ n generating those free

modules is given by c
l,n
N,L. The set of primary invariants and secondary (L)–covariants

associated with the lth rational function is an integrity basis for the lth submodule.

The set of the integrity bases for all the N − 1 submodules defines a generalized in-

tegrity basis. Our conjecture is closely related to the conjecture 5.1 of Stanley in Ref.

[42], which has a more general scope.

4.2.2 Heuristic for the rewriting of the Molien generating function in a form suitable

for its symbolic interpretation in term of a generalized integrity basis

It is desirable to have for a given pair (N,L) an heuristic that algorithmically deter-

mines the numerators in the sum of expression (20) by starting with the Molien gener-

ating function written as a single rational function with numerator N
(a)

SO(3) (N,L;λ ). If

for the value of L considered, the numerator N
(a)

SO(3)
(N,L;λ ) has only non–negative

coefficients, then the form is suitable for an interpretation in term of integrity basis

and we can start the construction of the integrity basis. Otherwise we perform a mod-

ified polynomial long division of the numerator by 1−λ 2. The modification is in the

halt criterion: the division process is stopped not when the degree of the remainder
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r1 is less than 2 as one would do in the usual polynomial division, but when the co-

efficients of the remainder r1 become all non–negative for the value of L considered.

Then the numerator is rewritten as:

N
(a)

SO(3)
(N,L;λ ) = r1 +

(
1−λ 2

)
q1.

The remainder r1 serves as the numerator of the first (l = 1) rational function in the

right–hand side of (20). If all the coefficients in the quotient q1 are non–negative for

the value of L considered, the division stops and the final form of the Molien function

is then:

g
(b)
SO(3)

(N,L;λ ) =
r1

(1−λ 2)3N−3
+

q1

(1−λ 2)3N−4
.

If at least one coefficient in the quotient q1 is negative, the modified polynomial

division procedure is applied to q1. The quotient q1 is decomposed as q1 = r2 +(
1−λ 2

)
q2 and the new remainder r2 with non–negative coefficients will constitute

the numerator of the second (l = 2) rational function. The modified polynomial divi-

sion is repeated until the quotient has also only non–negative coefficients.

For example, the single rational function (7) with its numerator (8) is suitable for

N = 3 and L ∈ {0,1}. For L ≥ 2, we obtain by the modified polynomial division of

the numerator (8):

(L+ 2)(L+ 1)

2
λ L +(L+ 2)Lλ L+1− (L+ 1)(L− 1)λ L+3− L(L− 1)

2
λ L+4

= (1−λ 2)

(
L(L− 1)

2
λ L +(L+ 1)(L− 1)λ L+1+

L(L− 1)

2
λ L+2

)

+(2L+ 1)λ L+(2L+ 1)λ L+1.

(21)

The remainder (2L+ 1)λ L +(2L+ 1)λ L+1 has only non–negative coefficients and

is the numerator of the first rational function we are seeking for. All the coefficients

of the quotient
L(L−1)

2
λ L + (L+ 1)(L− 1)λ L+1 + L(L−1)

2
λ L+2 are non–negative for

L ≥ 2. This quotient is the numerator of the second fraction. This procedure gives

again the expression (10) of the Molien function written as a sum of two rational

functions with non–negative coefficients in the numerators.

For N = 4, all the coefficients of the numerator N
(a)

SO(3)
(4,L;λ ) of (33) are non–

negative for L < 3. For L ≥ 3, we obtain by the modified polynomial division of the
initial numerator:

(L+3)(L+2)(L+1)

6
λ L +

(L+3)(L+2)L

2
λ L+1 +

(L+3)(L+2)(L+1)

6
λ L+2 − (L+3)(L−2)(5L+4)

6
λ L+3

− (L+3)(L−2)(5L+1)

6
λ L+4 +

L(L−1)(L−2)

6
λ L+5 +

(L+1)(L−1)(L−2)

2
λ L+6 +

L(L−1)(L−2)

6
λ L+7

= (1−λ 2)

(
(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3 − (L+1)(L−1)(L−2)

2
λ L+4

− L(L−1)(L−2)

6
λ L+5

)

+
(L+3)(L+2)(L+1)

6
λ L +4(2L+1)λ L+1 − (L3 +6L2 −37L−18)

6
λ L+2 (22)

= (1−λ 2)

(
(L3 +6L2 −37L−18)

6
λ L +

(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3

− (L+1)(L−1)(L−2)

2
λ L+4 − L(L−1)(L−2)

6
λ L+5

)

+4(2L+1)λ L +4(2L+1)λ L+1. (23)
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For L ∈ {3,4}, the division stops at (22), where all coefficients of the remainder are

non–negative, whereas for larger values of L the coefficient−
(
L3 + 6L2 − 37L− 18

)
/6

of λ L+2 is negative in the remainder of (22) and one must stop a step later at (23).
Let us consider first the cases L = 3 and L = 4. The quotient has negative coefficients

and must be divided again by (1−λ 2),

(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3 − (L+1)(L−1)(L−2)

2
λ L+4 − L(L−1)(L−2)

6
λ L+5

= (1−λ 2)

(
L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)

6
λ L+3

)

+2(L−2)(2L+1)λ L+1

− (L−2)(L2 −16L−9)

6
λ L+2. (24)

Both remainder and quotient have non–negative coefficients for L ∈ {3,4}, so we

stop here and obtain again the numerators of the second and third fractions of g
(b)
SO(3)

(4,L;λ )

in (34).

For L > 4, we have to divide the quotient of (23) by (1−λ 2),

(L3 +6L2 −37L−18)

6
λ L +

(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3

− (L+1)(L−1)(L−2)

2
λ L+4 − L(L−1)(L−2)

6
λ L+5

= (1−λ 2)

(
L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)

6
λ L+3

)

+
(L3 +6L2 −37L−18)

6
λ L

+2(L−2)(2L+1)λ L+1 − (L−2)(L2 −16L−9)

6
λ L+2 (25)

= (1−λ 2)

(
(L−2)(L2 −16L−9)

6
λ L +

L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)

6
λ L+3

)

+2(L−3)(2L+1)λ L +2(L−2)(2L+1)λ L+1 . (26)

For 5 ≤ L ≤ 16 the division stops at (25), when all coefficients of the remainder

are non–negative. For larger values of L, the coefficient of λ L+2 is negative in the

remainder of (25) and the division must continue up to (26). In both cases, the quo-

tient has only non–negative coefficients, so the remainders and quotients of Eqs. (25)

and (26) gives the numerators of the second and third fractions of g
(c)
SO(3)

(4,L;λ ) and

g
(d)
SO(3)

(4,L;λ ) in Eqs. (35) and (36).

4.2.3 Construction of a generalized integrity basis

The heuristic presented in Section 4.2.2 provides an essential help in the construction

of the generalized integrity basis of a non–free module. To the sum in the right–hand

side of (20) corresponds a decomposition of the non–free module in a sum of N − 1

submodules M
Rl

l over a ring Rl:

M =⊕N−1
l=1 M

Rl

l . (27)

The number and degrees of the secondary covariants which are the basis of each free

submodule M
Rl

l in the decomposition (27) are given by the successive remainders of

the divisions by
(
1−λ 2

)
and the last quotient with only positive coefficients. To find
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the successive sets of syzygies, it is enough to solve linear systems in the primary

invariant ring and its successively selected subrings. The numbers of independent

syzygies to write and their degrees are given by the negative coefficients in the ex-

pressions of the numerator N
(a)

SO(3)
(N,L,λ ) and its successive quotients by (1−λ 2)

appearing while following the heuristic of Section 4.2.2. For example, for N = 4,

L = 3, Eq. (33) tells us that there will be 19 syzygies of degree 6 and 16 of degree

7 to be used in order to select R2 and the 20 secondary covariants of degree 3, 28

secondary covariants of degree 4 and 8 secondary covariants of degree 5 of M
R1
1

according to the remainder in (22). This first set of syzygies is to be obtained by

solving a linear system in R1. Then, the quotient of (22) tells us that a second set of

2 syzygies of degree 6, 4 of degree 7 and 1 of degree 8 is to be obtained by solving

linear systems in the subring R2, previously selected. Finally, the remainder in (24),

tells us that there are 14 secondary covariants of degree 4 and 8 of degree 5 to be

chosen for M
R2
2 , and the quotient in (24) that, once R3 has been selected, there will

be 3 secondary covariants of degree 4, 4 of degree 5 and 1 of degree 6 to be found for

M
R3
3 .

Since the SN permutation group action on vector indices preserves partial de-

grees, one can take advantage of the Molien functions with distinguished represen-

tation arguments to obtain information about the partial degrees of the variables in

these syzygies. This reduces significantly the size of the linear systems to be solved.

For example, in the N = 3 and L = 2 case, the syzygy of order 6 is found to be of

partial degrees n1 = n2 = n3 = 2 from the last term in (9). We however have not

systematically reported such detailed expressions for N > 2 because the closed for-

mulas are not polynomial. For example, for N = 3, we have obtained the following

numerator

N
(a)

SO(3)
(3,L;λ1,λ2,λ3)

=
1

(λ1 −λ2)(λ1 −λ3) (λ2 −λ3)

[
λ2λ3

(
−λ 1+L

3 −λ2λ 1+L
3 +λ 1+L

2 (1+λ3)
)

+λ 3
1 λ2λ3

(
−λ 1+L

3 −λ2λ 1+L
3 +λ 1+L

2 (1+λ3)
)

+λ 2+L
1

(
−λ3 (1+λ3)−λ 3

2 λ3 (1+λ3)+λ2

(
1+λ 3

3

)
+λ 2

2

(
1+λ 3

3

))

+λ1

(
λ 2+L

3 +λ 3
2 λ 2+L

3 −λ 2+L
2

(
1+λ 3

3

))
+λ 2

1

(
λ 2+L

3 +λ 3
2 λ 2+L

3 −λ 2+L
2

(
1+λ 3

3

))]

(28)

which we only managed to simplify into interpretable polynomial expressions such

as (9), when L takes specific values. Such interpretable detailed expressions are use-

ful to provide the partial degrees of the secondary covariants of the modules, after

division by the factor in the denominator corresponding to the primary invariant ex-

cluded from the next subring in the decomposition: for example, if the invariant Q2,3

is excluded one has to divide by (1−λ2λ3).
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5 Conclusion

Expressions of the Molien generating function for the action of the SO(3) group on a

set of three dimensional vectors have been given. Such expressions are useful guides

for the construction of invariant and covariant (possibly generalized) integrity bases.

The extension to the O(3) group is direct. When the module of covariants is non–

free over an h.s.o.p., an heuristic has been proposed to transform the Molien function

written as a single rational function into a form amenable to a symbolic interpretation

in term of a generalized integrity basis. The same heuristic can guide step by step the

construction of such a generalized integrity basis. Within this approach, the non–free

module is decomposed as a direct sum of submodules. Each submodule is associated

with a rational function indicating the numbers of primary invariants and secondary

covariants, the former decreasing in the consecutive rational functions.

The case of the invariant (”L = 0 covariants”) module is always free [29]. In

quantum physics, an integrity basis can be useful to express SO(3)–totally invariant

observables such as the so–called potential energy (hyper)surface (PES) in quantum

chemistry [13], when it is not possible or appropriate to separate out rotational from

internal coordinates. This is the case of very floppy molecules such as CH+
5 , in order

to use its full symmetry group [43]. Note that PES are actually O(3)–totally invari-

ant, but for polyatomic molecules of four atoms and more, it is more practical to

parametrize them by using coordinates that are SO(3)– but not O(3)–invariants, such

as dihedral angles.

We have conjectured that the module of L = 1 covariants will always be free as

well. We have provided explicit integrity bases up to N = 3. In quantum physics,

these integrity bases can be useful to express observables such as a dipole moment

hypersurface, used in theoretical spectroscopy to calculate dipolar transition intensi-

ties. If there is a finite group action on the vector variables in addition to the SO(3)
action, we can take advantage of it too as was argued in Ref. [13] for the particular

case of invariants. For example, for N = 2, related to the case of a triatomic molecule

ABC, if the origin of the two vectors is A and if atoms B and C are equivalent, then

the action of the permutation group S2 on the vectors
−→
AB = x1 êx + y1 êy + z1 êz and

−→
AC = x2 êx + y2 êy + z2 êz can be exploited to simplify the expression of the physical

observables such as the dipole moment surface functions. In this particular case, we

deduce for example that the polynomials of (4) must satisfy Pel
1 (Q1,1,Q2,2,Q1,2) =

Pel
2 (Q2,2,Q1,1,Q1,2).

The (L= 2)–case is useful in molecular physics and chemistry to expand quadrupole

moments. Since the first detection of the electric quadrupole spectrum in molecular

hydrogen [44], most of the experimental data dealt with homonuclear diatomics until

recently. The combination of accurate variational calculations and sensitive spectro-

scopic experiments make now possible the detection of electric quadrupole infrared

transitions in triatomic molecules such as water [45,46] and carbon dioxide [47]. One

of the main achievement of this work has been to provide compact expansions for

quadrupole moment hypersurfaces, which take full advantage of the structure of the

non–free covariant module through the use of a generalized integrity basis. However,

the elimination of some primary invariants breaks the permutational symmetry of the
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subrings used for the modules M R2

2 , M R3

3 , . . ., of the decomposition of the mod-

ule of covariants. So, unfortunately in such a case, further permutational symmetry

adaptation may be unpractical in general.
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A Determination of the Molien generating function

A.1 Expression via an integral

In an active transformation, a rotation of angle ω around a rotation axis whose direction is given by

the unit vector n̂ = nx êx + ny êy + nz êz transforms the vector r = x êx + yêy + z êz into the vector r′ =
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x′ êx + y′ êy + z′ êz. The initial and final coordinates are related by [48]:





x′

y′

z′



= R(ω , n̂)





x

y

z



 , R(ω , n̂) = 13 +N sinω +N2 (1− cos ω) ,

where 13 is the 3×3 identity matrix and N is the 3×3 matrix defined as:

N =





0 −nz ny

nz 0 −nx

−ny nx 0



 .

Using spherical coordinates to give the orientation of the rotation axis n̂ gives nx = sinθ cosϕ , ny =
sinθ sinϕ and nz = cosθ . The 3N × 3N block matrix representation D(ω , n̂) of the rotation operation

is:

D(ω , n̂) =








R(ω , n̂) 0 · · · 0

0 R(ω , n̂) · · · 0

.

.

.
.
.
.

. . . 0

0 0 · · · R(ω , n̂)







,

and one easily finds that

det(13N −λD(ω , n̂)) =
[
(1−λ)(1−2λ cosω +λ 2)

]N
.

The Molien function (1) then reduces to

gSO(3) (N,L;λ) =
2

π

1

(1−λ)N

∫ π

0

sin
[
(2L+1) ω

2

]
sin ω

2

(1−2λ cosω +λ 2)N
dω . (29)

The integral in (29) can be evaluated by the use of the product–to–sum identity sin [(2L+1)ω/2]sin(ω/2)=
{cos (Lω)− cos [(L+1)ω ]}/2 and the tabulated formula of Ref. [49]:

∫ π

0

cosnxdx

(1−2acos x+a2)m

=
a2m+n−2π

(1−a2)2m−1

m−1

∑
k=0

(
m+n−1

k

)(
2m− k−2

m−1

)(
1−a2

a2

)k

, a2 < 1. (30)

A.2 Recursive formula for two or more vectors

The Molien generating function for N ≥ 2 can be determined from formula (29). There is however an other

approach, which gives more insight in the forthcoming construction of the integrity bases. According to the

triangular conditions of the theory of angular momentum, the coupling of a set of (L1)–covariants with a

set of (L2)–covariants generates one set of (L)–covariants, with |L1 −L2| ≤ L ≤ L1 +L2. Correspondingly

the Molien generating function for N1 +N2 vectors and final representation (L) can be computed from the

Molien generating functions for N1 and N2 vectors, see equation (43) of Ref. [7]:

gSO(3) (N1 +N2,L;λ1 ,λ2) =
∞

∑
L1=0

∞

∑
L2=0

∆ (L1,L2,L)gSO(3) (N1,L1;λ1)gSO(3) (N2,L2;λ2) , (31)

where ∆ (L1,L2,L) = 1 if |L1 −L2| ≤ L ≤ L1 +L2 and 0 otherwise.
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B Complex and real solid harmonics

The complex solid harmonics are homogeneous polynomials of degree l in x, y, and z. Their expression is

given by [50]:

Yl,m (x) =

√

2l +1

4π
(l +m)!(l −m)!∑

k

(−x− iy)k+m (x− iy)k
zl−2k−m

22k+m (k+m)!k!(l −m−2k)!
,

where x is the triplet of coordinates (x,y,z). The complex solid harmonics are complex–valued functions

for m 6= 0 and satisfy the property

Yl,m (x)∗ = (−1)m
Yl,−m (x) .

Biedenharn and Louck define in Ref. [48] the real solid harmonics Ȳl,m through the linear combinations

of complex solid harmonics [51]:

Ȳl,m (x) = − 1√
2

[
Yl,m (x)+(−1)m

Yl,−m (x)
]
,

Ȳl,0 (x) = Yl,0 (x) ,

Ȳl,−m (x) =
i√
2

[
Yl,m (x)− (−1)m

Yl,−m (x)
]
,

with m ∈ {l, l −1, · · · ,1}.

Other linear combinations of complex solid harmonics exist in the litterature. Steinborn [52] or Blanco

et al. [53] use:

Ỹl,m (x) =
(−1)m

√
2

[
Yl,m (x)+(−1)m

Yl,−m (x)
]
,

Ỹl,0 (x) = Yl,0 (x) ,

Ỹl,−m (x) =
(−1)m

i
√

2

[
Yl,m (x)− (−1)m

Yl,−m (x)
]
,

with m ∈ {l, l −1, · · · ,1}. The two definitions of real solid harmonics are identical except for m even

where the two definitions give expressions with opposite sign. In the main text, we use Ỹl,m as real solid

harmonics. Their expression for up to L = 3 are given below:

√
4πỸ0,0 (x) = 1

√

4π

3





Ỹ1,1 (x)
Ỹ1,0 (x)
Ỹ1,−1 (x)



=





x

z

y





√

4π

5









Ỹ2,2 (x)
Ỹ2,1 (x)
Ỹ2,0 (x)
Ỹ2,−1 (x)
Ỹ2,−2 (x)









=









√
3

2

(
x2 − y2

)

√
3xz

1
2

(
2z2 − x2 − y2

)

√
3yz√
3xy









√

4π

7













Ỹ3,3 (x)
Ỹ3,2 (x)
Ỹ3,1 (x)
Ỹ3,0 (x)
Ỹ3,−1 (x)
Ỹ3,−2 (x)
Ỹ3,−3 (x)













=















√
10
4

x
(
x2 −3y2

)

√
15
2

z
(
x2 − y2

)

√
6

4

(
4z2 − x2 − y2

)
x

1
2

z
(
2z2 −3x2 −3y2

)

√
6

4

(
4z2 − x2 − y2

)
y√

15xyz√
10
4

y
(
3x2 − y2

)
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C Molien generating function for four vectors

The Molien generating function for four vectors can be written as a single rational function:

g
(a)
SO(3)

(4,L;λ) =
N

(a)
SO(3)

(4,L;λ)

(1−λ 2)9
, (32)

with its numerator equal to:

N
(a)

SO(3)
(4,L;λ) =

(L+3)(L+2)(L+1)

6
λ L +

(L+3)(L+2)L

2
λ L+1

+
(L+3)(L+2)(L+1)

6
λ L+2 − (L+3)(L−2)(5L+4)

6
λ L+3

− (L+3)(L−2)(5L+1)

6
λ L+4 +

L(L−1)(L−2)

6
λ L+5

+
(L+1)(L−1)(L−2)

2
λ L+6 +

L(L−1)(L−2)

6
λ L+7. (33)

The Molien generating function (32) has non–negative coefficients in its numerator for L ∈ {0,1,2}.

Negative coefficients appear for L ≥ 3. However, the Molien function can be rewritten as Eq. (34), which

has only non–negative coefficients in the numerator for L ∈ {2,3,4},

g
(b)
SO(3)

(4,L;λ)

=
(L+3)(L+2)(L+1)

6
λ L +4(2L+1)λ L+1 +(− 1

6
L3 −L2 + 37

6
L+3)λ L+2

(1−λ 2)9

+
2(L−2)(2L+1)λ L+1 − (L−2)(L2−16L−9)

6
λ L+2

(1−λ 2)8

+
L(L−1)(L−2)

2
λ L+1 + (L+1)(L−1)(L−2)

2
λ L+2 + L(L−1)(L−2)

6
λ L+3

(1−λ 2)7
, (34)

as (35), which has only non–negative coefficients in the numerator for L between 5 and 16,

g
(c)
SO(3)

(4,L;λ)

=
4(2L+1)λ L +4(2L+1)λ L+1

(1−λ 2)9

+
( 1

6
L3 +L2 − 37

6
L−3)λ L +2(L−2)(2L+1)λ L+1 − (L−2)(L2−16L−9)

6
λ L+2

(1−λ 2)8

+
L(L−1)(L−2)

2
λ L+1 + (L+1)(L−1)(L−2)

2
λ L+2 + L(L−1)(L−2)

6
λ L+3

(1−λ 2)7
, (35)

and as Eq. (36), which has only non–negative coefficients in the numerator for L ≥ 17,

g
(d)
SO(3)

(4,L;λ)

=
4(2L+1)λ L +4(2L+1)λ L+1

(1−λ 2)9

+
2(L−3)(2L+1)λ L +2(L−2)(2L+1)λ L+1

(1−λ 2)8

+
(L−2)(L2−16L−9)

6
λ L + L(L−1)(L−2)

2
λ L+1 + (L+1)(L−1)(L−2)

2
λ L+2 + L(L−1)(L−2)

6
λ L+3

(1−λ 2)7
.

(36)



Action of the SO(3) and O(3) groups on a set of vectors 23

D Molien generating function for five vectors

The Molien generating function for five vectors can be written as a single rational function:

g
(a)
SO(3)

(5,L;λ) =
N

(a)
SO(3)

(5,L;λ)

(1−λ 2)12
, (37)

with the numerator equal to:

N
(a)

SO(3)
(5,L;λ) =

(L+4)(L+3)(L+2)(L+1)

24
λ L +

(L+4)(L+3)(L+2)L

6
λ L+1

+
(L+4)(L+3)(L+2)(L+1)

8
λ L+2 − (L+4)(L+3)(L2 −3L− 5

2
)

3
λ L+3

− (L+4)(L+3)(L−3)(7L+2)

12
λ L+4 − (L+4)(L−3)(2L+1)

2
λ L+5

+
(L+4)(L−2)(L−3)(7L+5)

12
λ L+6 +

(L−2)(L−3)(L2 +5L+ 3
2
)

3
λ L+7

−L(L−1)(L−2)(L−3)

8
λ L+8 − (L+1)(L−1)(L−2)(L−3)

6
λ L+9

−L(L−1)(L−2)(L−3)

24
λ L+10. (38)

The six next alternative expressions of the Molien generating function are written as a sum over four

rational functions:

g
(x)
SO(3)

(5,L;λ)

=
N

(x),1
SO(3)

(5,L;λ)

(1−λ 2)
12

+
N

(x),2
SO(3)

(5,L;λ)

(1−λ 2)
11

+
N

(x),3
SO(3)

(5,L;λ)

(1−λ 2)
10

+
N

(x),4
SO(3)

(5,L;λ)

(1−λ 2)
9

, x ∈ {b,c,d,e, f ,g} ,

and provide for any value of L at least one expression with only non–negative coefficients in the numera-

tors. An heuristic to derive these numerators is presented in section 4.2.2.

D.0.1 Numerators of the Molien generating function (b)

N
(b),1

SO(3)
(5,L;λ)

=
(L+4)(L+3)(L+2)(L+1)

24
λ L +20(2L+1)λ L+1

+(− 1

24
L4 − 5

12
L3 − 35

24
L2 +

455

12
L+19)λ L+2

N
(b),2

SO(3)
(5,L;λ)

= (
1

6
L4 +

3

2
L3 +

13

3
L2 −36L−20)λ L+1

− (L−3)(L3 +13L2 −406L−208)

24
λ L+2

− (L−3)(L3 +12L2 −58L−30)

6
λ L+3

N
(b),3

SO(3)
(5,L;λ)

= − (L−2)(L−3)(L2 −81L−40)

24
λ L+2 − (L−2)(L−3)(L2 −10L−6)

6
λ L+3

N
(b),4

SO(3)
(5,L;λ)
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=
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4

D.0.2 Numerators of the Molien generating function (c)

N
(c),1

SO(3)
(5,L;λ)

=
(L+4)(L+3)(L+2)(L+1)

24
λ L +20(2L+1)λ L+1

+(− 1

24
L4 − 5

12
L3 − 35

24
L2 +

455

12
L+19)λ L+2

N
(c),2

SO(3)
(5,L;λ)

= 5(2L+1)(2L−7)λ L+1 − (L−3)(L3 +13L2 −406L−208)

24
λ L+2

N
(c),3

SO(3)
(5,L;λ)

=
(L−3)(L3 +12L2 −58L−30)

6
λ L+1

− (L−2)(L−3)(L2 −81L−40)

24
λ L+2

− (L−2)(L−3)(L2 −10L−6)

6
λ L+3

N
(c),4

SO(3)
(5,L;λ)

=
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4

D.0.3 Numerators of the Molien generating function (d)

N
(d),1

SO(3)
(5,L;λ)

= 20(2L+1)λ L +20(2L+1)λ L+1

N
(d),2

SO(3)
(5,L;λ)

= (
1

24
L4 +

5

12
L3 +

35

24
L2 − 455

12
L−19)λ L +5(2L+1)(2L−7)λ L+1

− (L−3)(L3 +13L2 −406L−208)

24
λ L+2

N
(d),3

SO(3)
((L) ;Γ5;λ)

=
(L−3)(L3 +12L2 −58L−30)

6
λ L+1 − (L−2)(L−3)(L2 −81L−40)

24
λ L+2

− (L−2)(L−3)(L2 −10L−6)

6
λ L+3

N
(d),4

SO(3)
(5,L;λ)

=
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4
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D.0.4 Numerators of the Molien generating function (e)

N
(e),1

SO(3)
(5,L;λ)

= 20(2L+1)λ L +20(2L+1)λ L+1

N
(e),2

SO(3)
(5,L;λ)

= (
1

24
L4 +

5

12
L3 +

35

24
L2 − 455

12
L−19)λ L +5(2L+1)(2L−7)λ L+1

− (L−3)(L3 +13L2 −406L−208)

24
λ L+2

N
(e),3

SO(3)
(5,L;λ)

= (L−3)(2L−7)(2L+1)λ L+1 − (L−2)(L−3)(L2 −81L−40)

24
λ L+2

N
(e),4

SO(3)
(5,L;λ)

=
(L−2)(L−3)(L2 −10L−6)

6
λ L+1 +

L(L−1)(L−2)(L−3)

4
λ L+2

+
(L+1)(L−1)(L−2)(L−3)

6
λ L+3 +

L(L−1)(L−2)(L−3)

24
λ L+4

D.0.5 Numerators of the Molien generating function ( f )

N
( f ),1

SO(3)
(5,L;λ)

= 20(2L+1)λ L +20(2L+1)λ L+1

N
( f ),2

SO(3)
(5,L;λ)

= 5(2L+1)(2L−9)λ L +5(2L+1)(2L−7)λ L+1

N
( f ),3

SO(3)
(5,L;λ)

=
(L−3)(L3 +13L2 −406L−208)

24
λ L +(L−3)(2L+1)(2L−7)λ L+1

− (L−2)(L−3)(L2 −81L−40)

24
λ L+2

N
( f ),4

SO(3)
(5,L;λ)

=
(L−2)(L−3)(L2 −10L−6)

6
λ L+1 +

L(L−1)(L−2)(L−3)

4
λ L+2

+
(L+1)(L−1)(L−2)(L−3)

6
λ L+3 +

L(L−1)(L−2)(L−3)

24
λ L+4

D.0.6 Numerators of the Molien generating function (g)

N
(g),1

SO(3)
(5,L;λ)

= 20(2L+1)λ L +20(2L+1)λ L+1

N
(g),2

SO(3)
(5,L;λ)

= 5(2L+1)(2L−9)λ L +5(2L+1)(2L−7)λ L+1
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N
(g),3

SO(3)
(5,L;λ)

= 2(L−3)(L−6)(2L+1)λ L +(L−3)(2L+1)(2L−7)λ L+1

N
(g),4

SO(3)
(5,L;λ)

=
(L−2)(L−3)(L2 −81L−40)

24
λ L +

(L−2)(L−3)(L2 −10L−6)

6
λ L+1

+
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4
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