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The construction of integrity bases for invariant and covariant polynomials built from a

set of three dimensional vectors under the SO(3) and O(3) symmetries is presented. This

paper is a follow–up to our previous work that dealt with a set of two dimensional vectors

under the action of the SO(2) and O(2) groups [G. Dhont and B. I. Zhilinskiı́, J. Phys. A:

Math. Theor., 46, 455202 (2013)]. The expressions of the Molien generating functions as

one rational function are a useful guide to build integrity bases for the rings of invariants

and the free modules of covariants. The structure of the non–free modules of covariants is

more complex. In this case, we write the Molien generating function as a sum of rational

functions and show that its symbolic interpretation leads to the concept of generalized

integrity basis. The integrity bases and generalized integrity bases for O(3) are deduced

from the SO(3) ones. The results are useful in quantum chemistry to describe the potential

energy or multipole moment hypersurfaces of molecules. In particular, the generalized

integrity bases that are required for the description of the electric and magnetic quadrupole

moment hypersurfaces of tetratomic molecules are given for the first time.
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I. INTRODUCTION

The concept of symmetry pervades many branches of physics and has been formalized by the

mathematical framework of group theory.1,2 In particular, the irreducible representations of a com-

pact Lie group G classify the different ways a set of objects can transform among themselves under

the action of the elements g of the group. We define as invariant an object that is unmodified under

the elements of the symmetry group G, i.e. that follows the one dimensional totally symmetric

representation Γ0 of the group. An irreducible representation Γ 6= Γ0 of dimension n corresponds

to a set of n Γ–covariants which transform according to the n× n representation matrix D(Γ) (g)

of the element g. Group theory gives methods to build symmetry–adapted objects, however the

projector and shift operators3 are inefficient tools because the resulting expressions are sometimes

redundant or null. Invariant theory4–7 takes care of the algebraic structure in order to produce

powerful methods to construct invariants and covariants.

Concretely, given a representation V of G (associated for example to SO(3) acting on the coor-

dinates of a set of vectors), the action of G extends to the corresponding algebra A of polynomials.

An integrity basis (for invariants) is then a set of polynomials that generates the algebra A0 of

invariant polynomials. This algebra A0 is Cohen–Macaulay, that is, it is a finitely generated, free

module over a polynomial subalgebra: it can be written A0 =
n⊕

i=1

C[g1, . . . ,gm] · fi. The gi are

called primary invariants and form an h.s.o.p. (homogeneous system of parameters), the fi are

called secondary invariants. The decomposition and the h.s.o.p. are not unique but the choice

of the h.s.o.p. does not matter for our forthcoming considerations. To each irreducible represen-

tation Γ 6= Γ0 is associated a finitely generated A0–module of covariants, AΓ. If it is free over

C[g1, . . . ,gm], AΓ is called a Cohen–Macaulay module. When G is finite, all the AΓ are Cohen–

Macaulay and the notion of integrity basis for covariants generalizes immediately: it splits into the

h.s.o.p. (invariant polynomials) and a family of covariant polynomials that generate freely AΓ as a

C[g1, . . . ,gm]–module.

The concept of integrity basis has been leveraged in molecular physics,8–14 solid state physics,15,16

physics of deformable bodies,17–20 high energy physics,21 quantum information,22–24 and general

multivariate interpolation.25 In recent years, the combination of computer algebraic techniques

with artificial intelligence tools to derive primary invariants and fit symmetry–adapted quantum

mechanical quantities has been a field of particularly active research.26–28

When G is continuous, the Cohen–Macaulay property does not hold in general for AΓ.29 The
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existence of such non–free modules over an h.s.o.p. is one of the noteworthy features unseen when

dealing with finite point groups that we want to point out; it requires the introduction of the notion

of generalized integrity basis. We investigate this phenomenon in detail in the present article.

The present work on the invariants and covariants built from the coordinates of N vectors of

the three dimensional space under the SO(3) and O(3) groups stems from three previous articles,

Refs. 30–32, where the action of the SO(2) and O(2) groups on the coordinates of a set of vectors

of the plane was considered. These papers put forward the problem we mentioned of dealing

with non–free modules of covariants over an h.s.o.p. that occasionally arises when working with

continuous groups. As in our previous paper, see Ref. 30, the Molien function33 plays a central

role in the conception of the integrity bases and their generalization.

Section II introduces the setting and presents explicit integrity bases for the rings of invariants

and free modules of covariants that are met when dealing with one, two or three vectors. The sim-

plest case of a non–free module occurs for three vectors and irreducible representation L = 2 and

is detailed in Section III, where we explicitly define and construct the corresponding generalized

integrity basis appropriate to the representation of the electric and magnetic quadrupole moment

hypersurfaces of tetratomic molecules. We then show that non–free modules are not uncommon.

Section IV presents two conjectures suggested by the results of the two precedent sections, one

related to free modules, the other one to non–free modules. They are of practical importance to

derive useful bases in the perspective of fitting symmetry–adapted quantum mechanical quantities.

II. INTEGRITY BASES FOR RINGS OF INVARIANTS AND FREE MODULES OF

COVARIANTS

A. Context and Molien generating functions

In a polyatomic molecule with N + 1 nuclei, it is always possible to define N relative vectors

that are invariant under any translation.34 These relative vectors can be Jacobi vectors, Radau

vectors35 or simply differences of the vector positions of two nuclei, ~ri −~r j. From now on, by

vector we mean one of these relative vectors.

Each value of the angle of rotation ω ∈ [0,π ] defines an equivalence class of the SO(3) group,

with all the rotations of the same angle but different rotation axes n̂ belonging to the same class.

The character of the class for the (2L+1)–dimensional irreducible representation (L), L ∈ N, of
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SO(3) is given by:36

χ(L) (ω) =
sin

[
(2L+1) ω

2

]

sin ω
2

.

The three coordinates of one vector span the irreducible representation (1) of SO(3) and the 3N

coordinates of the N vectors span the reducible representation (1)⊕·· ·⊕ (1)
︸ ︷︷ ︸

N times

, called from now

on the initial representation. The group SO(3) acts diagonally on the direct sum of the various

symmetric tensor powers of this representation or, equivalently, on polynomials in the coordinates.

The Molien generating function associated to a given irreducible representation (L) (called the

final representation) is then the formal power series in a variable λ where the coefficient of λ n is

the multiplicity of (L) in the SO(3)–module of degree n polynomials in the coordinates.

The Molien generating function for computing the number of linearly independent invariants

(i.e. ”(0)–covariants”) or (L)–covariants (L > 0) of a given degree built from N vectors is given

by

gSO(3) (N,L;λ ) =
1

2π2

∫ π

0

∫ 2π

0

∫ π

0

χ(L) (ω)

det(13N −λD(ω, n̂))
sinθdθdϕ sin2 ω

2
dω, (1)

where 13N is the 3N × 3N identity matrix and D(ω, n̂) is the 3N × 3N representation matrix of

the rotation. The angles θ and ϕ give the orientation of the rotation axis n̂. The evaluation of

the integral (1) is derived in Appendix A. Collins and Parsons determined in Ref. 37 the Molien

generating function for the invariants with a parametrization of the rotations based on Euler angles.

Our approach with the rotation angle ω and rotation axis n̂, while giving the same result for the

invariants, is more amenable to a generalization for covariants because our parametrization gives a

straightforward integral over the single variable ω while calculations would not be so direct using

the Euler angles.

It is remarkable that the Molien generating function for SO(3) can be written as the difference

between Molien generating functions for SO(2) that were determined in Ref. 30:

gSO(3) (N,L;λ ) =
1

(1−λ )N

(
gSO(2) (N,L;λ )−gSO(2) (N,L+1;λ )

)
,

=
1

(1−λ )N

{
1

π

∫ π

0

cos(Lω) dω

(1−2λ cosω +λ 2)N
− 1

π

∫ π

0

cos [(L+1)ω] dω

(1−2λ cosω +λ 2)N

}

,

where gSO(2) (N,L;λ ) is the generating function for the number of covariants with irreducible

representation (L) of SO(2) that can be built from N two dimensional vectors.
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B. Extension to the O(3) group

The matrix representation of the inversion operation for the problem of N vectors is −13N . De-

noting the irreducible representations of O(3) by (Lε), L ∈ N, ε = ±1, the corresponding Molien

functions for N vectors under the O(3) group are obtained through:

gO(3) (N,Lε ;λ ) =
1

2

[
gSO(3) (N,L;λ )+ εgSO(3) (N,L;−λ )

]
.

C. Integrity bases for the ring of invariants and free modules of covariants

1. One vector

The Molien function for the initial representation (1) resulting from the three coordinates x1 =

(x1,y1,z1) of one vector is

gSO(3) (1,L;λ ) =
λ L

1−λ 2
. (2)

The formal expansion of this generating function gives λ L +λ L+2 + · · ·, which means that we can

built one set of 2L+1 (L)–covariants of degree p ≥ L when p−L is even. Formula (2) indicates

that the polynomials belonging to the free module of (L)–covariants can be univoquely built from

one primary invariant of degree 2 and one set of (2L+1) secondary (L)–covariants of degree L.

The primary invariant is of course the scalar product Q1,1 = x2
1 + y2

1 + z2
1. The (2L+1) secondary

(L)–covariants are naturally chosen as the real solid harmonics ỸL,M (x1,y1,z1). Appendix B gives

the expressions of the real solid harmonics for L up to 3.

2. Two vectors

The six coordinates (x1,x2) of two vectors span the reducible six–dimensional representation

(1)⊕ (1). The coupling according to formula (A3) of the generating functions for one vector,

given in (2), produces the Molien function for two vectors in the two variables λ1 and λ2:

gSO(3) (2,L;λ1,λ2) =

L

∑
i=0

λ i
1λ L−i

2 +λ1λ2

L−1

∑
i=0

λ i
1λ L−i−1

2

(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

,
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with the convention that the second term in the numerator is zero for L= 0. If we do not distinguish

between the two vectors, we can set λ1 = λ2 = λ to get the Molien function as

gSO(3) (2,L;λ ) =
(L+1)λ L +Lλ L+1

(1−λ 2)3
. (3)

The coefficients L+ 1 and L in the numerators are always non–negative, suggesting that the ex-

pression (3) of the Molien function can be used to construct the integrity basis for the invariants

and for any (L)–covariants.

The Molien generating function for the ring of invariants (L = 0) specializes to

gSO(3) (2,0;λ1,λ2) =
1

(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The ring of invariant is well–known38 and the integrity basis consists in the 3 scalar products

Q1,1 = x2
1 + y2

1 + z2
1, Q2,2 = x2

2 + y2
2 + z2

2, Q1,2 = x1x2 + y1y2 + z1z2 as the primary polynomials of

degree 2 and 1 as the secondary polynomial of degree 0. The totally invariant quantities such as

potential energy hypersurfaces of triatomic molecules can be expanded as polynomials in these

three primary polynomials.

For L = 1, the Molien generating function in two variables is

gSO(3) (2,1;λ1,λ2) =
λ1 +λ2 +λ1λ2

(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The three primary polynomials are chosen to be identical to the three scalar products Q1,1, Q2,2

and Q1,2 chosen for the ring of invariants. The two sets of (1)–covariants of degree 1 are taken as
√

4π
3

Ỹ1,M (xi) with i ∈ {1,2} and M ∈ {1,0,−1}. The set of (1)–covariants of degree 2 can be

chosen as their cross–product:








f1,1 (x1,x2)

f1,0 (x1,x2)

f1,−1 (x1,x2)








=








y1z2 − z1y2

x1y2 − y1x2

z1x2 − x1z2







.

(The subscripts of the f –symbols are respectively L and M.)

The electric dipole moment function, ~µel, transforms as the irreducible representation (1−) of

the group O(3). The Molien generating function is:

gO(3)

(
2,1−;λ1,λ2

)
=

λ1 +λ2
(
1−λ 2

1

)(
1−λ 2

2

)
(1−λ1λ2)

.
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The cross–products do not enter the integrity basis because they are invariant with respect to the

inversion operation. Therefore, the components µel
M , M ∈ {1,0,−1} of the electric dipole moment

function of an ABC molecule have the form:

µel
M (x1,x2) = Pel

1 (Q1,1,Q2,2,Q1,2)×
√

4π

3
Ỹ1,M (x1)+Pel

2 (Q1,1,Q2,2,Q1,2)×
√

4π

3
Ỹ1,M (x2) ,

(4)

where Pel
1 and Pel

2 are two polynomials in the three primary invariants Q1,1, Q2,2, and Q1,2. Thus,

only two polynomials in three variables need to be fitted with respect to quantum chemistry data to

determine the dipole moment surface functions. In contrast, the magnetic dipole moment function,

~µmag, transforms as the irreducible representation (1+) of the group O(3), so its components have

the form

µ
mag
M (x1,x2) = P

mag
1 (Q1,1,Q2,2,Q1,2)× f1,M (x1,x2) ,

where P
mag
1 is a polynomial in the three primary invariants.

For L = 2, the Molien generating function in the two variables is:

g
(1)
SO(3)

(2,2;λ1,λ2) =
λ 2

1 +λ1λ2 +λ 2
2 +λ 2

1 λ2 +λ1λ 2
2(

1−λ 2
1

)(
1−λ 2

2

)
(1−λ1λ2)

.

The two sets of (2)–covariants of degree 2 corresponding to the polynomials λ 2
1 and λ 2

2 in the

numerator are chosen as

√
4π
5

Ỹ2,M (xi), i ∈ {1,2}, M ∈ {2,1,0,−1,−2}. The last set of (2)–

covariants of degree 2, corresponding to the polynomial λ1λ2, is chosen as:












f
(2)
2,2 (x1,x2)

f
(2)
2,1 (x1,x2)

f
(2)
2,0 (x1,x2)

f
(2)
2,−1 (x1,x2)

f
(2)
2,−2 (x1,x2)













:=













√
3

2
(x1x2 − y1y2)

√
3

2
(x1z2 + z1x2)

1
2
(2z1z2 − x1x2 − y1y2)√

3
2
(y1z2 + z1y2)√

3
2
(x1y2 + y1x2)













.

The two sets of (2)–covariants of degree three, corresponding to the polynomials λ 2
1 λ2 and λ1λ 2

2

can be constructed by substituting one set of coordinates in the last expression by the (L = 1)–

cross–product covariant,












f
(3,1)
2,2 (x1,x2)

f
(3,1)
2,1 (x1,x2)

f
(3,1)
2,0 (x1,x2)

f
(3,1)
2,−1 (x1,x2)

f
(3,1)
2,−2 (x1,x2)













:=













√
3

2
(x1(y1z2 − z1y2)− y1(z1x2 − x1z2))√

3
2
(x1(x1y2 − y1x2)+ z1(y1z2 − z1y2))

1
2
(2z1(x1y2 − y1x2)− x1(y1z2 − z1y2)− y1(z1x2 − x1z2))√

3
2
(y1(x1y2 − y1x2)+ z1(z1x2 − x1z2))√

3
2
(x1(z1x2 − x1z2)+ y1(y1z2 − z1y2))













,

7



and












f
(3,2)
2,2 (x1,x2)

f
(3,2)
2,1 (x1,x2)

f
(3,2)
2,0 (x1,x2)

f
(3,2)
2,−1 (x1,x2)

f
(3,2)
2,−2 (x1,x2)













:=













√
3

2
((y1z2 − z1y2)x2 − (z1x2 − x1z2)y2)√

3
2
((y1z2 − z1y2)z2 +(x1y2 − y1x2)x2)

1
2
(2(x1y2 − y1x2)z2 − (y1z2 − z1y2)x2 − (z1x2 − x1z2)y2)√

3
2
((z1x2 − x1z2)z2 +(x1y2 − y1x2)y2)√

3
2
((y1z2 − z1y2)y2 +(z1x2 − x1z2)x2)













.

(The superscripts of the f –symbols are respectively the degree of the covariant and an integer

index when there are several secondary covariants of the same degree.)

The electric quadrupole moment function, qel, transforms as the irreducible representation (2+)

of the group O(3). Its components have the form

qel
M (x1,x2) = Pel

1 (Q1,1,Q2,2,Q1,2)×
√

4π

5
Ỹ2,M (x1)+Pel

2 (Q1,1,Q2,2,Q1,2)×
√

4π

5
Ỹ2,M (x2)

+Pel
3 (Q1,1,Q2,2,Q1,2)× f

(2)
2,M (x1,x2) , (5)

while its magnetic counterpart, qmag, transforms as the irreducible representation (2−) and its

components have the form

q
mag
M (x1,x2) = P

mag
1 (Q1,1,Q2,2,Q1,2)× f

(3,1)
2,M (x1,x2)+P

mag
2 (Q1,1,Q2,2,Q1,2)× f

(3,2)
2,M (x1,x2) .

(6)

3. Three vectors

The nine components of the three vectors span the reducible initial representation (1)⊕ (1)⊕
(1) and the Molien generating function in the form of a single rational function with one variable

λ is:

g
(a)
SO(3)

(3,L;λ ) =
N

(a)
SO(3)

(3,L;λ )

(1−λ 2)6
, (7)

with the numerator

N
(a)

SO(3)
(3,L;λ ) =

(L+2)(L+1)

2
λ L+(L+2)Lλ L+1−(L+1)(L−1)λ L+3− L(L−1)

2
λ L+4. (8)

The coefficients in the numerator (8) are all non–negative if L = 0 or L = 1, while negative coeffi-

cients appear for L ≥ 2. This means that the symbolic interpretation of the numerator coefficients

as the amount in the integrity basis of (L)–covariants of each degree does not hold anymore. In-

stead, the first negative coefficient indicates the number of syzygies of lowest degree and diagnoses
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the fact that the (L)–component of the ring of polynomials over the ring of primary invariants is

not a free module. We shall expect to be able to construct an integrity basis for L = 0 and L = 1,

but the cases with L ≥ 2 require more consideration.

The Molien generating function for the invariant polynomials (L = 0) is

g
(a)
SO(3)

(3,0;λ1,λ2,λ3) =
1+λ1λ2λ3

(
1−λ 2

1

)(
1−λ 2

2

)(
1−λ 2

3

)
(1−λ1λ2)(1−λ1λ3)(1−λ2λ3)

.

The 6 primary invariant polynomials of degree 2 are chosen as the 6 scalar products Qi, j :=

xix j + yiy j + ziz j for 1 ≤ i ≤ j ≤ 3, see Ref. 38. The secondary invariant of degree zero is the

polynomial constant 1 and the secondary invariant of degree three is the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The determinant transforms as the irreducible representation (0−) of the group O(3). The poten-

tial energy hypersurfaces of tetratomic molecules being totally symmetrical under the O(3) group,

they can be expanded as polynomials in the primary invariant polynomials only.

The Molien generating function for L = 1 is

g
(a)
SO(3)

(3,1;λ1,λ2,λ3) =
λ1 +λ2 +λ3 +λ1λ2 +λ1λ3 +λ2λ3

(
1−λ 2

1

)(
1−λ 2

2

)(
1−λ 2

3

)
(1−λ1λ2)(1−λ1λ3)(1−λ2λ3)

.

The three sets of (1)–covariants of degree 1 are taken as

√
4π
3

Ỹ1,M (xi), i∈ {1,2,3}. The three sets

of (1)–covariants of degree 2 are the cross–products f1,M (x1,x2), f1,M (x1,x3), and f1,M (x2,x3).

The electric dipole moment function of a tetratomic molecule should thus be expanded according

to the form:

µel
M (x1,x2,x3) = Pel

1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×
√

4π

3
Ỹ1,M (x1)

+Pel
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×

√

4π

3
Ỹ1,M (x2)

+Pel
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×

√

4π

3
Ỹ1,M (x3) ,

where Pel
1 , Pel

2 , and Pel
3 are polynomials in the 6 primary invariants Qi, j. Similarly, the magnetic

dipole moment function is written as:

µ
mag
M (x1,x2,x3) = P

mag
1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)× f1,M (x2,x3)

+P
mag
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)× f1,M (x1,x3)

+P
mag
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)× f1,M (x1,x2) .
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III. GENERALIZED INTEGRITY BASES FOR NON–FREE MODULES

A. The simplest case: the N = 3, L = 2 non–free module

We present the need to introduce generalized integrity bases with the simplest possible example:

the non–free module for three vectors and L = 2. When the three representations associated with

the three vectors are distinguished by the three variables λi, the numerator of the Molien function

is:

N
(a)

SO(3)
(3,2;λ1,λ2,λ3) = λ 2

1 +λ 2
2 +λ 2

3 +λ1λ2 +λ1λ3 +λ2λ3 +

λ 2
1 λ2 +λ 2

1 λ3 +λ1λ 2
2 +λ1λ 2

3 +λ 2
2 λ3 +λ2λ 2

3 +2λ1λ2λ3

−λ 2
1 λ 2

2 λ3 −λ 2
1 λ2λ 2

3 −λ1λ 2
2 λ 2

3 −λ 2
1 λ 2

2 λ 2
3 . (9)

As discussed in Section II C 3, the negative coefficients in this numerator make it not suitable for

an interpretation of the generating function in term of an integrity basis. However, its symbolic

interpretation in term of generators and syzygies suggests the existence of 6 sets of (2)–covariant

generators of degree 2 and 8 sets of (2)–covariant generators of degree 3. These generators are

involved in three syzygies of degree 5 and one syzygy of degree 6.

The Molien generating function (7) for three vectors does not admit a symbolic interpretation

in term of an integrity basis for L≥ 2 when written as a single rational function. It can nevertheless

be recast as a sum of two rational functions where all the coefficients in the numerators are now

positive coefficients for L ≥ 2:

g
(b)
SO(3)

(3,L;λ ) =
(2L+1)λ L +(2L+1)λ L+1

(1−λ 2)6
+

L(L−1)
2

λ L +(L+1)(L−1)λ L+1 + L(L−1)
2

λ L+2

(1−λ 2)5
.

(10)

The denominators in the two rational functions are different. While the leftmost rational function

suggests 6 primary invariants of degree 2 as in the L= 0 or L= 1 cases, the second rational function

points to only five primary invariants of degree 2 to be selected among the 6 chosen for the first

rational function. The symbolic interpretation of the first rational function specifies that only

2L+1 sets of secondary (L)–covariants of degree L and 2L+1 sets of secondary (L)–covariants

of degree L+ 1 should be used to generate a free module M
R1

1 over the ring R1 generated by

the six primary invariants. However, the free module M
R1

1 is only a submodule of the module

of all the (L)–covariant polynomials in the coordinates (x1,x2,x3). The second rational function

of g
(b)
SO(3)

(3,L;λ ) indicates that a second module M
R2

2 is needed, with L(L−1)/2 sets of (L)–

10



covariants of degree L, (L+1)(L−1) sets of (L)–covariants of degree L+1 and L(L−1)/2 sets

of (L)–covariants of degree L+2. The module M
R2

2 should be free over a subring R2 (R1 spanned

by only five primary invariants.

We now propose a generalized integrity basis for the non–free module of (2)–covariants in

three vectors, whose Molien generating function is:

g
(b)
SO(3) (3,2;λ ) =

5λ 2 +5λ 3

(1−λ 2)6
+

λ 2 +3λ 3 +λ 4

(1−λ 2)5
. (11)

The six primary invariants associated with the first rational function are chosen as the L = 0 or

L = 1 cases, i.e.
{

Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3

}
. For 1 ≤ i ≤ j ≤ 3, we define the D

i, j
2,M’s as:

D
i, j
2,M = f

(2)
2,M

(
xi,x j

)
.

The 6 D
i, j
2,M’s are the secondary (2)–covariants of degree 2 that we are looking for. Next, we

construct a similar expression by substituting
(
x j,y j,z j

)
with a (L = 1)–covariant of degree 2:













f
(3)
2,2

(
xi,x j,xk

)

f
(3)
2,1

(
xi,x j,xk

)

f
(3)
2,0

(
xi,x j,xk

)

f
(3)
2,−1

(
xi,x j,xk

)

f
(3)
2,−2

(
xi,x j,xk

)













=













√
3

2

(
xi

(
y jzk − z jyk

)
− yi

(
z jxk − x jzk

))

√
3

2

(
xi

(
x jyk − y jxk

)
+ zi

(
y jzk − z jyk

))

1
2

(
2zi

(
x jyk − y jxk

)
− xi

(
y jzk − z jyk

)
− yi

(
z jxk − x jzk

))

√
3

2

(
yi

(
x jyk − y jxk

)
+ zi

(
z jxk − x jzk

))

√
3

2

(
xi

(
z jxk − x jzk

)
+ yi

(
y jzk − z jyk

))













.

However, only 8 can be linearly independent, since ∀ i, j,k ∈ {1,2,3} and M ∈ {2,1,0,−1,−2}:

f
(3)
2,M

(
xi,x j,xk

)
+ f

(3)
2,M

(
xi,xk,x j

)
= 0,

and

f
(3)
2,M

(
xi,x j,xk

)
+ f

(3)
2,M

(
x j,xk,xi

)
+ f

(3)
2,M

(
xk,xi,x j

)
= 0.

To shorten the notation, we define T
i, j,k

2,M = f
(3)
2,M

(
xi,x j,xk

)
. For a given i and M, we retain only

those T
i, j,k

2,M with j < k, and for i, j,k all distinct, we decide to discard

T
2,1,3

2,M = T
1,2,3

2,M +T
3,1,2

2,M . (12)

This means that we select

T
1,1,2

2,M ,T 1,1,3
2,M ,T 1,2,3

2,M ,T 2,1,2
2,M ,T 2,2,3

2,M ,T 3,1,2
2,M ,T 3,1,3

2,M ,T 3,2,3
2,M ,

as the 8 linearly independent T
i, j,k

2,M .

11



The three syzygies of degree 5 are found to be, by solving linear systems of equations:

Q2,3T
1,1,2

2,M −Q2,2T
1,1,3

2,M −Q1,3T
2,1,2

2,M −Q1,1T
2,2,3

2,M +Q1,2(2T
1,2,3

2,M +T
3,1,2

2,M ) = 0, (13)

Q1,3T
2,2,3

2,M +Q3,3T
2,1,2

2,M −Q1,2T
3,2,3

2,M +Q2,2T
3,1,3

2,M −Q2,3(2T
3,1,2

2,M +T
1,2,3

2,M ) = 0, (14)

Q1,1T
3,2,3

2,M +Q2,3T
1,1,3

2,M −Q1,2T
3,1,3

2,M −Q3,3T
1,1,2

2,M +Q1,3(2T
3,1,2

2,M −T
2,1,3

2,M ) = 0. (15)

The last one can be rewritten by using the relation (12) as

Q1,1T
3,2,3

2,M +Q2,3T
1,1,3

2,M −Q1,2T
3,1,3

2,M −Q3,3T
1,1,2

2,M +Q1,3(T
3,1,2

2,M −T
1,2,3

2,M ) = 0. (16)

Similarly, the syzygy of degree 6 is found to be:

(Q2
2,3 −Q2,2Q3,3)D

1,1
2,M +(Q2

1,3 −Q1,1Q3,3)D
2,2
2,M +(Q2

1,2 −Q1,1Q2,2)D
3,3
2,M+

2
(

(Q1,2Q3,3 −Q1,3Q2,3)D
1,2
2,M +(Q1,3Q2,2 −Q1,2Q2,3)D

1,3
2,M +(Q1,1Q2,3 −Q1,2Q1,3)D

2,3
2,M

)

= 0.

(17)

There is some arbitrariness in the choice of the primary invariant to be removed from the

ring of invariants R1 = C [Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3] to define the subring R2 ( R1 of the

second submodule M
R2

2 . Let us remove Q2,3, so that R2 is the subring of R1 generated by

{Q1,1,Q2,2,Q3,3,Q1,2,Q1,3}. It is then convenient to eliminate the secondary covariant D
1,1
2,M of

degree 2 from M
R1

1 and to choose D
1,1
2,M and covariant Q2,3 ×D

1,1
2,M of degree 4 as secondary co-

variants for M
R2

2 , because relation (17) allows one to reexpress Q2
2,3 ×D

1,1
2,M in terms of elements

of either the M
R1

1 or the M
R2

2 module, whatever choice of degree 3 secondary covariant parti-

tioning is made. In fact, the same is true for any product (Qn
2,3 ×D

1,1
2,M) with n > 1 by a repeated

use of the syzygy (17). It remains to select the three secondary covariants of order 3 to exclude

from M
R1

1 and to include in M
R2

2 . A natural choice is T
1,1,2

2,M , (2T
3,1,2

2,M +T
1,2,3

2,M ) and T
1,1,3

2,M , since

Q2,3T
1,1,2

2,M , Q2,3(2T
3,1,2

2,M +T
1,2,3

2,M ) and Q2,3T
1,1,3

2,M , are easily re–expressed with terms either in M
R1

1

or in M
R2

2 , by means of the syzygies (13), (14) and (16) respectively. The 5 secondary covariants

of degree 2 and the 5 secondary covariants of degree 3 spanning M
R1

1 can be chosen to be D
1,2
2,M ,

D
1,3
2,M, D

2,2
2,M , D

2,3
2,M , D

3,3
2,M, T

1,2,3
2,M , T

2,1,2
2,M , T

2,2,3
2,M , T

3,1,3
2,M , and T

3,2,3
2,M .

With this choice, the electric quadrupole moment components have the form:

qel
M (x1,x2,x3) = Pel

1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D
1,2
2,M

+Pel
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

1,3
2,M

+Pel
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

2,2
2,M
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+Pel
4 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

2,3
2,M

+Pel
5 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×D

3,3
2,M

+Pel
6 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×D

1,1
2,M

+Pel
7 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×Q2,3D

1,1
2,M. (18)

Meanwhile, the magnetic dipole moment function is expressed as:

q
mag
M (x1,x2,x3) = P

mag
1 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

1,2,3
2,M

+P
mag
2 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

2,1,2
2,M

+P
mag
3 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

2,2,3
2,M

+P
mag
4 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

3,1,3
2,M

+P
mag
5 (Q1,1,Q1,2,Q1,3,Q2,2,Q2,3,Q3,3)×T

3,2,3
2,M

+P
mag
6 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×T

1,1,2
2,M

+P
mag
7 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)× (2T

3,1,2
2,M +T

1,2,3
2,M )

+P
mag
8 (Q1,1,Q1,2,Q1,3,Q2,2,Q3,3)×T

1,1,3
2,M . (19)

These expansions are new and useful, for they are as compact as possible.

B. Other non–free modules

The generalized integrity basis for the non–free module with three vectors and L = 2 presented

in Section III A corresponds to a decomposition of the non–free module into two free submodules.

The first submodule is a module on the ring of six primary invariants while the second submodule

is a module on a subring of five primary invariants only. This algebraic structure can be inferred

from the Molien generating function written as a sum of two rational functions. The decomposition

of a non–free module into a sum of free modules on subrings of the ring of primary invariants

may have more than two terms when considering higher values of N. Appendix C holds the

Molien generating functions for four vectors amenable to a symbolic interpretation in term of

an integrity basis or a generalized integrity basis. It suggests a decomposition in three rational

functions whenever L≥ 3 (forms g
(b)
SO(3)

(4,L;λ ), g
(c)
SO(3)

(4,L;λ ) and g
(d)
SO(3)

(4,L;λ )). Appendix D,

for five vectors, suggests a decomposition of the Molien generating functions in four rational

functions whenever L ≥ 4 (forms g
(b)
SO(3)

(5,L;λ ) to g
(g)
SO(3)

(5,L;λ )). It is noteworthy that the
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suitable expression when dealing with a non–free module depends on the specific value of L.

Table I states the Molien generating function that is to be used for a given value of L as a guide in

the construction of the integrity basis or generalized integrity basis.

TABLE I. Choice as a function of L of the Molien generating function g
(x)
SO(3) (N,L;λ ) for N = 3, 4 or 5

vectors suitable for a symbolic interpretation in term of an integrity basis (x = a) or a generalized integrity

basis (x 6= a) .

N = 3 N = 4 N = 5

L algebraic structure x L algebraic structure x L algebraic structure x

0 ring a 0 ring a 0 ring a

1 free module a 1 free module a 1−3 free module a

2−∞ non–free module b 2 free module a or b 4 non–free module b

3−4 non–free module b 5−6 non–free module c

5−16 non–free module c 7−10 non–free module d

17−∞ non–free module d 11−14 non–free module e

15−81 non–free module f

82−∞ non–free module g

The generalized integrity bases are not unique, since, as we have seen, there is some arbi-

trariness in the choice of the generators of the primary invariant subrings and of the covariant

generators of the modules on these subrings (although some choices are more practical than oth-

ers).

IV. TWO CONJECTURES ON THE MOLIEN GENERATING FUNCTION FOR THE

ACTION OF THE ORTHOGONAL GROUP ON A SET OF THREE DIMENSIONAL

VECTORS

A. First conjecture

According to our observations described in Section II and the expressions of the Molien gen-

erating function for four vectors (appendix C) and five vectors (appendix D), our first conjecture

deals with free modules:

14



Conjecture 1. The generating Molien function for the action of the orthogonal group on a

set of three dimensional vectors can be written as a single rational function with non–negative

coefficients in the numerator for all L if N ∈ {1,2} and for 0 ≤ L ≤ N −2 if N ≥ 3:

gSO(3) (N,L;λ ) =
∑

nmax(N,L)
n=0 cn

N,Lλ L+n

(1−λ 2)
3N−3

.

This function admits a symbolic interpretation in term of an integrity basis with 3N − 3 primary

polynomials of degree 2 and cn
N,L secondary polynomials of degree L+n, 0 ≤ n ≤ nmax (N,L).

In particular, the relevant covariant modules for the electric or magnetic dipole moment hy-

persurface corresponds to the L = 1 irreducible representation of SO(3) and will always be a free

module over an h.s.o.p..

The case L = 0 corresponds to the ring of invariant polynomials R under the action of the

compact SO(3) group. We have seen that it is a finitely generated, free module over the algebra

R[g1, . . . ,gm] for any maximal set of homogeneous, algebraically independent, invariant polyno-

mials, {g1, . . . ,gm}, the primary invariants.39,40 That is to say, there exists a finite set of secondary

invariants { f1, . . . , fp} such that,

R = R[g1, ...,gm] f1 ⊕·· ·⊕R[g1, ...,gm] fp.

This relationship constitutes an Hironaka decomposition of R. The conjecture holds in that case

as a consequence of Ref. 38: the Molien function for invariant polynomials can be cast in the

form of a single rational function. This corresponds to the fact that one can choose a h.s.o.p. with

3N−3 primary or denominator invariant polynomials of degree 2 and cn
N,0 secondary or numerator

invariant polynomials of degree n with 0 ≤ n ≤ nmax (N,0).

If the module of (L)–covariants (L > 0) is Cohen–Macaulay, that is, free over an arbitrary

h.s.o.p., the situation is similar to the ring of invariant polynomials: the generating Molien function

is a single rational function and the primary polynomials can be chosen to be the same as the ones

for L = 0. It is suited to an interpretation in term of integrity basis as the terms of the numerator

correspond to the secondary covariants.
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B. Second conjecture

1. Statement

We formulate our second conjecture based on the results of Section III. It corresponds to the

case where the module of (L)–covariants is not free over an h.s.o.p., which is known to happen,

see Ref. 41.

Conjecture 2. For any number N of three dimensional vectors and any final representation

L ≥ N −1 of SO(3), the Molien function gSO(3) (N,L;λ ) can be cast in the form of a sum of N −1

rational functions:

gSO(3) (N,L;λ ) =
N−1

∑
l=1

N l
N,L (λ )

(1−λ 2)
3N−2−l

, (20)

with the N − 1 numerator polynomials N l
N,L (λ ) =

nmax(N,L,l)

∑
n=0

c
l,n
N,Lλ L+n having only non–negative

coefficients c
l,n
N,L. The exponents on λ in the numerator polynomials start at L, since (L)–covariants

built from vectors are at least of total degree L.

We already proposed to interpret this situation by introducing generalized integrity bases in

our previous work on SO(2).30 The non–free module of (L)–covariants is then decomposed as

a sum of N − 1 submodules. The structure of the lth submodule is described by the lth rational

function, 1 ≤ l ≤ N − 1. Each submodule is a direct sum of free modules on rings of invariants

generated by 3N −2− l primary invariants. In the cases we investigated, the decomposition has a

stronger property: it is free by using a single set of primary invariants, that is to say, the primary

invariants of the (l + 1)th submodule can be chosen within those of the lth one. The number

of linearly independent, secondary covariants of degree L+ n generating those free modules is

given by c
l,n
N,L. The set of primary invariants and secondary (L)–covariants associated with the lth

rational function is an integrity basis for the lth submodule. The set of the integrity bases for all

the N−1 submodules defines a generalized integrity basis. Our conjecture is closely related to the

conjecture 5.1 of Stanley in Ref. 42, which has a more general scope.
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2. Heuristic for the rewriting of the Molien generating function in a form suitable for its

symbolic interpretation in term of a generalized integrity basis

It is desirable to have for a given pair (N,L) an heuristic that algorithmically determines the

numerators in the sum of expression (20) by starting with the Molien generating function written

as a single rational function with numerator N
(a)

SO(3) (N,L;λ ). If for the value of L considered,

the numerator N
(a)

SO(3)
(N,L;λ ) has only non–negative coefficients, then the form is suitable for

an interpretation in term of integrity basis and we can start the construction of the integrity ba-

sis. Otherwise we perform a modified polynomial long division of the numerator by 1−λ 2. The

modification is in the halt criterion: the division process is stopped not when the degree of the

remainder r1 is less than 2 as one would do in the usual polynomial division, but when the co-

efficients of the remainder r1 become all non–negative for the value of L considered. Then the

numerator is rewritten as:

N
(a)

SO(3)
(N,L;λ ) = r1 +

(
1−λ 2

)
q1.

The remainder r1 serves as the numerator of the first (l = 1) rational function in the right–hand

side of (20). If all the coefficients in the quotient q1 are non–negative for the value of L considered,

the division stops and the final form of the Molien function is then:

g
(b)
SO(3)

(N,L;λ ) =
r1

(1−λ 2)
3N−3

+
q1

(1−λ 2)
3N−4

.

If at least one coefficient in the quotient q1 is negative, the modified polynomial division procedure

is applied to q1. The quotient q1 is decomposed as q1 = r2 +
(
1−λ 2

)
q2 and the new remainder

r2 with non–negative coefficients will constitute the numerator of the second (l = 2) rational func-

tion. The modified polynomial division is repeated until the quotient has also only non–negative

coefficients.

For example, the single rational function (7) with its numerator (8) is suitable for N = 3 and

L ∈ {0,1}. For L ≥ 2, we obtain by the modified polynomial division of the numerator (8):

(L+2)(L+1)

2
λ L +(L+2)Lλ L+1 − (L+1)(L−1)λ L+3 − L(L−1)

2
λ L+4

= (1−λ 2)

(
L(L−1)

2
λ L +(L+1)(L−1)λ L+1 +

L(L−1)

2
λ L+2

)

+(2L+1)λ L +(2L+1)λ L+1.

(21)

The remainder (2L+1)λ L+(2L+1)λ L+1 has only non–negative coefficients and is the numerator

of the first rational function we are seeking for. All the coefficients of the quotient
L(L−1)

2
λ L +
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(L+ 1)(L− 1)λ L+1 +
L(L−1)

2
λ L+2 are non–negative for L ≥ 2. This quotient is the numerator of

the second fraction. This procedure gives again the expression (10) of the Molien function written

as a sum of two rational functions with non–negative coefficients in the numerators.

For N = 4, all the coefficients of the numerator N
(a)

SO(3)
(4,L;λ ) of (C2) are non–negative for

L < 3. For L ≥ 3, we obtain by the modified polynomial division of the initial numerator:

(L+3)(L+2)(L+1)

6
λ L +

(L+3)(L+2)L

2
λ L+1 +

(L+3)(L+2)(L+1)

6
λ L+2 − (L+3)(L−2)(5L+4)

6
λ L+3

− (L+3)(L−2)(5L+1)

6
λ L+4 +

L(L−1)(L−2)

6
λ L+5 +

(L+1)(L−1)(L−2)

2
λ L+6 +

L(L−1)(L−2)

6
λ L+7

= (1−λ 2)

(
(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3 − (L+1)(L−1)(L−2)

2
λ L+4

−L(L−1)(L−2)

6
λ L+5

)

+
(L+3)(L+2)(L+1)

6
λ L +4(2L+1)λ L+1 − (L3 +6L2 −37L−18)

6
λ L+2 (22)

= (1−λ 2)

(
(L3 +6L2 −37L−18)

6
λ L +

(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3

− (L+1)(L−1)(L−2)

2
λ L+4 − L(L−1)(L−2)

6
λ L+5

)

+4(2L+1)λ L +4(2L+1)λ L+1. (23)

For L ∈ {3,4}, the division stops at (22), where all coefficients of the remainder are non–negative,

whereas for larger values of L the coefficient −
(
L3 +6L2 −37L−18

)
/6 of λ L+2 is negative in

the remainder of (22) and one must stop a step later at (23). Let us consider first the cases L = 3

and L = 4. The quotient has negative coefficients and must be divided again by (1−λ 2),

(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3 − (L+1)(L−1)(L−2)

2
λ L+4 − L(L−1)(L−2)

6
λ L+5

= (1−λ 2)

(
L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)

6
λ L+3

)

+2(L−2)(2L+1)λ L+1

− (L−2)(L2 −16L−9)

6
λ L+2. (24)

Both remainder and quotient have non–negative coefficients for L ∈ {3,4}, so we stop here and

obtain again the numerators of the second and third fractions of g
(b)
SO(3)

(4,L;λ ) in (C3).

For L > 4, we have to divide the quotient of (23) by (1−λ 2),

(L3 +6L2 −37L−18)

6
λ L +

(L−2)(L2 +7L+4)

2
λ L+1 +

(L−2)(L2 +8L+3)

3
λ L+2 − L(L−1)(L−2)

3
λ L+3

− (L+1)(L−1)(L−2)

2
λ L+4 − L(L−1)(L−2)

6
λ L+5

= (1−λ 2)

(
L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)

6
λ L+3

)

+
(L3 +6L2 −37L−18)

6
λ L

+2(L−2)(2L+1)λ L+1 − (L−2)(L2 −16L−9)

6
λ L+2 (25)

= (1−λ 2)

(
(L−2)(L2 −16L−9)

6
λ L +

L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)

6
λ L+3

)

+2(L−3)(2L+1)λ L +2(L−2)(2L+1)λ L+1. (26)

For 5 ≤ L ≤ 16 the division stops at (25), when all coefficients of the remainder are non–negative.

For larger values of L, the coefficient of λ L+2 is negative in the remainder of (25) and the divi-

sion must continue up to (26). In both cases, the quotient has only non–negative coefficients, so
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the remainders and quotients of Eqs. (25) and (26) gives the numerators of the second and third

fractions of g
(c)
SO(3)

(4,L;λ ) and g
(d)
SO(3)

(4,L;λ ) in Eqs. (C4) and (C5).

3. Construction of a generalized integrity basis

The heuristic presented in Section IV B 2 provides an essential help in the construction of the

generalized integrity basis of a non–free module. To the sum in the right–hand side of (20) corre-

sponds a decomposition of the non–free module in a sum of N −1 submodules M
Rl

l over a ring

Rl:

M =⊕N−1
l=1 M

Rl

l . (27)

The number and degrees of the secondary covariants which are the basis of each free submodule

M
Rl

l in the decomposition (27) are given by the successive remainders of the divisions by
(
1−λ 2

)

and the last quotient with only positive coefficients. To find the successive sets of syzygies, it is

enough to solve linear systems in the primary invariant ring and its successively selected subrings.

The numbers of independent syzygies to write and their degrees are given by the negative coeffi-

cients in the expressions of the numerator N
(a)

SO(3)
(N,L,λ ) and its successive quotients by (1−λ 2)

appearing while following the heuristic of Section IV B 2. For example, for N = 4, L = 3, Eq. (C2)

tells us that there will be 19 syzygies of degree 6 and 16 of degree 7 to be used in order to select R2

and the 20 secondary covariants of degree 3, 28 secondary covariants of degree 4 and 8 secondary

covariants of degree 5 of M
R1

1 according to the remainder in (22). This first set of syzygies is to

be obtained by solving a linear system in R1. Then, the quotient of (22) tells us that a second set of

2 syzygies of degree 6, 4 of degree 7 and 1 of degree 8 is to be obtained by solving linear systems

in the subring R2, previously selected. Finally, the remainder in (24), tells us that there are 14

secondary covariants of degree 4 and 8 of degree 5 to be chosen for M
R2

2 , and the quotient in (24)

that, once R3 has been selected, there will be 3 secondary covariants of degree 4, 4 of degree 5 and

1 of degree 6 to be found for M
R3

3 .

Since the SN permutation group action on vector indices preserves partial degrees, one can

take advantage of the Molien functions with distinguished representation arguments to obtain in-

formation about the partial degrees of the variables in these syzygies. This reduces significantly

the size of the linear systems to be solved. For example, in the N = 3 and L = 2 case, the syzygy

of order 6 is found to be of partial degrees n1 = n2 = n3 = 2 from the last term in (9). We however

have not systematically reported such detailed expressions for N > 2 because the closed formulas
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are not polynomial. For example, for N = 3, we have obtained the following numerator

N
(a)

SO(3) (3,L;λ1,λ2,λ3)

=
1

(λ1 −λ2)(λ1 −λ3)(λ2 −λ3)

[
λ2λ3

(
−λ 1+L

3 −λ2λ 1+L
3 +λ 1+L

2 (1+λ3)
)

+λ 3
1 λ2λ3

(
−λ 1+L

3 −λ2λ 1+L
3 +λ 1+L

2 (1+λ3)
)

+λ 2+L
1

(
−λ3 (1+λ3)−λ 3

2 λ3 (1+λ3)+λ2

(
1+λ 3

3

)
+λ 2

2

(
1+λ 3

3

))

+λ1

(
λ 2+L

3 +λ 3
2 λ 2+L

3 −λ 2+L
2

(
1+λ 3

3

))
+λ 2

1

(
λ 2+L

3 +λ 3
2 λ 2+L

3 −λ 2+L
2

(
1+λ 3

3

))]
(28)

which we only managed to simplify into interpretable polynomial expressions such as (9), when

L takes specific values. Such interpretable detailed expressions are useful to provide the partial

degrees of the secondary covariants of the modules, after division by the factor in the denominator

corresponding to the primary invariant excluded from the next subring in the decomposition: for

example, if the invariant Q2,3 is excluded one has to divide by (1−λ2λ3).

V. CONCLUSION

Expressions of the Molien generating function for the action of the SO(3) group on a set of three

dimensional vectors have been given. Such expressions are useful guides for the construction of

invariant and covariant (possibly generalized) integrity bases. The extension to the O(3) group is

direct. When the module of covariants is non–free over an h.s.o.p., an heuristic has been proposed

to transform the Molien function written as a single rational function into a form amenable to

a symbolic interpretation in term of a generalized integrity basis. The same heuristic can guide

step by step the construction of such a generalized integrity basis. Within this approach, the non–

free module is decomposed as a direct sum of submodules. Each submodule is associated with

a rational function indicating the numbers of primary invariants and secondary covariants, the

former decreasing in the consecutive rational functions.

The case of the invariant (”L = 0 covariants”) module is always free.29 In quantum physics,

an integrity basis can be useful to express SO(3)–totally invariant observables such as the so–

called potential energy (hyper)surface (PES) in quantum chemistry,13 when it is not possible or

appropriate to separate out rotational from internal coordinates. This is the case of very floppy

molecules such as CH+
5 , in order to use its full symmetry group.43 Note that PES are actually

O(3)–totally invariant, but for polyatomic molecules of four atoms and more, it is more practical
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to parametrize them by using coordinates that are SO(3)– but not O(3)–invariants, such as dihedral

angles.

We have conjectured that the module of L = 1 covariants will always be free as well. We

have provided explicit integrity bases up to N = 3. In quantum physics, these integrity bases

can be useful to express observables such as a dipole moment hypersurface, used in theoretical

spectroscopy to calculate dipolar transition intensities. If there is a finite group action on the

vector variables in addition to the SO(3) action, we can take advantage of it too as was argued

in Ref. 13 for the particular case of invariants. For example, for N = 2, related to the case of a

triatomic molecule ABC, if the origin of the two vectors is A and if atoms B and C are equivalent,

then the action of the permutation group S2 on the vectors
−→
AB = x1 êx + y1 êy + z1 êz and

−→
AC =

x2 êx + y2 êy + z2 êz can be exploited to simplify the expression of the physical observables such

as the dipole moment surface functions. In this particular case, we deduce for example that the

polynomials of (4) must satisfy Pel
1 (Q1,1,Q2,2,Q1,2) = Pel

2 (Q2,2,Q1,1,Q1,2).

The (L = 2)–case can be useful in theoretical physics and chemistry to expand quadrupole

moments. One of the main achievement of this work has been to provide compact expansions

for quadrupole moment hypersurfaces, which take full advantage of the structure of the non–free

covariant module through the use of a generalized integrity basis. However, the elimination of

some primary invariants breaks the permutational symmetry of the subrings used for the modules

M R2

2 , M R3

3 , . . ., of the decomposition of the module of covariants. So, unfortunately in such a

case, further permutational symmetry adaptation may be unpractical in general.

ACKNOWLEDGMENTS

Financial support for the project Application de la Théorie des Invariants à la Physique
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Appendix A: Determination of the Molien generating function

1. Expression via an integral

In an active transformation, a rotation of angle ω around a rotation axis whose direction is

given by the unit vector n̂ = nx êx +ny êy +nz êz transforms the vector~r = x êx + y êy + z êz into the

vector~r′ = x′ êx + y′ êy + z′ êz. The initial and final coordinates are related by:44








x′

y′

z′








= R(ω, n̂)








x

y

z







, R(ω, n̂) = 13 +N sinω +N2 (1− cosω) ,

where 13 is the 3×3 identity matrix and N is the 3×3 matrix defined as:

N =








0 −nz ny

nz 0 −nx

−ny nx 0







.

Using spherical coordinates to give the orientation of the rotation axis n̂ gives nx = sinθ cosϕ ,

ny = sinθ sinϕ and nz = cosθ . The 3N ×3N block matrix representation D(ω, n̂) of the rotation

operation is:

D(ω, n̂) =











R(ω, n̂) 0 · · · 0

0 R(ω, n̂) · · · 0
...

...
. . . 0

0 0 · · · R(ω, n̂)











,

and one easily finds that

det(13N −λD(ω, n̂)) =
[
(1−λ )(1−2λ cosω +λ 2)

]N
.

The Molien function (1) then reduces to

gSO(3) (N,L;λ ) =
2

π

1

(1−λ )N

∫ π

0

sin
[
(2L+1) ω

2

]
sin ω

2

(1−2λ cosω +λ 2)N
dω. (A1)

The integral in (A1) can be evaluated by the use of the product–to–sum identity sin [(2L+1)ω/2]sin(ω/2)=

{cos(Lω)− cos [(L+1)ω]}/2 and the tabulated formula of Ref. 45:
∫ π

0

cosnxdx

(1−2acosx+a2)
m

=
a2m+n−2π

(1−a2)
2m−1

m−1

∑
k=0




m+n−1

k








2m− k−2

m−1





(
1−a2

a2

)k

, a2 < 1. (A2)
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2. Recursive formula for two or more vectors

The Molien generating function for N ≥ 2 can be determined from formula (A1). There is how-

ever an other approach, which gives more insight in the forthcoming construction of the integrity

bases. According to the triangular conditions of the theory of angular momentum, the coupling

of a set of (L1)–covariants with a set of (L2)–covariants generates one set of (L)–covariants, with

|L1 −L2| ≤ L ≤ L1 + L2. Correspondingly the Molien generating function for N1 +N2 vectors

and final representation (L) can be computed from the Molien generating functions for N1 and N2

vectors, see equation (43) of Ref. 7:

gSO(3) (N1 +N2,L;λ1,λ2) =
∞

∑
L1=0

∞

∑
L2=0

∆(L1,L2,L)gSO(3) (N1,L1;λ1)gSO(3) (N2,L2;λ2) , (A3)

where ∆(L1,L2,L) = 1 if |L1 −L2| ≤ L ≤ L1 +L2 and 0 otherwise.

Appendix B: Complex and real solid harmonics

The complex solid harmonics are homogeneous polynomials of degree l in x, y, and z. Their

expression is given by:46

Yl,m (x) =

√

2l+1

4π
(l+m)!(l −m)!∑

k

(−x− iy)k+m (x− iy)k
zl−2k−m

22k+m (k+m)!k!(l −m−2k)!
,

where x is the triplet of coordinates (x,y,z). The complex solid harmonics are complex–valued

functions for m 6= 0 and satisfy the property

Yl,m (x)∗ = (−1)m
Yl,−m (x) .

Biedenharn and Louck define in Ref. 44 the real solid harmonics Ȳl,m through the linear combina-

tions of complex solid harmonics:47

Ȳl,m (x) =− 1√
2

[
Yl,m (x)+(−1)m

Yl,−m (x)
]
,

Ȳl,0 (x) = Yl,0 (x) ,

Ȳl,−m (x) =
i√
2

[
Yl,m (x)− (−1)m

Yl,−m (x)
]
,

with m ∈ {l, l−1, · · · ,1}.
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Other linear combinations of complex solid harmonics exist in the litterature. Steinborn48 or

Blanco et al.49 use:

Ỹl,m (x) =
(−1)m

√
2

[
Yl,m (x)+(−1)m

Yl,−m (x)
]
,

Ỹl,0 (x) = Yl,0 (x) ,

Ỹl,−m (x) =
(−1)m

i
√

2

[
Yl,m (x)− (−1)m

Yl,−m (x)
]
,

with m ∈ {l, l−1, · · · ,1}. The two definitions of real solid harmonics are identical except for m

even where the two definitions give expressions with opposite sign. In the main text, we use Ỹl,m

as real solid harmonics. Their expression for up to L = 3 are given below:

√
4πỸ0,0 (x) = 1

√

4π

3








Ỹ1,1 (x)

Ỹ1,0 (x)

Ỹ1,−1 (x)








=








x

z

y








√

4π

5













Ỹ2,2 (x)

Ỹ2,1 (x)

Ỹ2,0 (x)

Ỹ2,−1 (x)

Ỹ2,−2 (x)













=













√
3

2

(
x2 − y2

)

√
3xz

1
2

(
2z2 − x2 − y2

)

√
3yz

√
3xy













√

4π

7



















Ỹ3,3 (x)

Ỹ3,2 (x)

Ỹ3,1 (x)

Ỹ3,0 (x)

Ỹ3,−1 (x)

Ỹ3,−2 (x)

Ỹ3,−3 (x)



















=



















√
10
4

x
(
x2 −3y2

)

√
15
2

z
(
x2 − y2

)

√
6

4

(
4z2 − x2 − y2

)
x

1
2
z
(
2z2 −3x2 −3y2

)

√
6

4

(
4z2 − x2 − y2

)
y

√
15xyz

√
10
4

y
(
3x2 − y2

)


















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Appendix C: Molien generating function for four vectors

The Molien generating function for four vectors can be written as a single rational function:

g
(a)
SO(3)

(4,L;λ ) =
N

(a)
SO(3)

(4,L;λ )

(1−λ 2)9
, (C1)

with its numerator equal to:

N
(a)

SO(3) (4,L;λ ) =
(L+3)(L+2)(L+1)

6
λ L +

(L+3)(L+2)L

2
λ L+1

+
(L+3)(L+2)(L+1)

6
λ L+2 − (L+3)(L−2)(5L+4)

6
λ L+3

−(L+3)(L−2)(5L+1)

6
λ L+4 +

L(L−1)(L−2)

6
λ L+5

+
(L+1)(L−1)(L−2)

2
λ L+6 +

L(L−1)(L−2)

6
λ L+7. (C2)

The Molien generating function (C1) has non–negative coefficients in its numerator for L ∈
{0,1,2}. Negative coefficients appear for L ≥ 3. However, the Molien function can be rewritten

as Eq. (C3), which has only non–negative coefficients in the numerator for L ∈ {2,3,4},

g
(b)
SO(3)

(4,L;λ )

=
(L+3)(L+2)(L+1)

6
λ L +4(2L+1)λ L+1+(−1

6
L3 −L2 + 37

6
L+3)λ L+2

(1−λ 2)9

+
2(L−2)(2L+1)λ L+1 − (L−2)(L2−16L−9)

6
λ L+2

(1−λ 2)8

+
L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)
2

λ L+2 +
L(L−1)(L−2)

6
λ L+3

(1−λ 2)7
, (C3)

as (C4), which has only non–negative coefficients in the numerator for L between 5 and 16,

g
(c)
SO(3)

(4,L;λ )

=
4(2L+1)λ L +4(2L+1)λ L+1

(1−λ 2)9

+
(1

6
L3 +L2 − 37

6
L−3)λ L +2(L−2)(2L+1)λ L+1− (L−2)(L2−16L−9)

6
λ L+2

(1−λ 2)8

+
L(L−1)(L−2)

2
λ L+1 +

(L+1)(L−1)(L−2)
2

λ L+2 +
L(L−1)(L−2)

6
λ L+3

(1−λ 2)7
, (C4)

and as Eq. (C5), which has only non–negative coefficients in the numerator for L ≥ 17,

g
(d)
SO(3)

(4,L;λ )
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=
4(2L+1)λ L +4(2L+1)λ L+1

(1−λ 2)9

+
2(L−3)(2L+1)λ L +2(L−2)(2L+1)λ L+1

(1−λ 2)8

+
(L−2)(L2−16L−9)

6
λ L +

L(L−1)(L−2)
2

λ L+1 +
(L+1)(L−1)(L−2)

2
λ L+2 +

L(L−1)(L−2)
6

λ L+3

(1−λ 2)7
.

(C5)

Appendix D: Molien generating function for five vectors

The Molien generating function for five vectors can be written as a single rational function:

g
(a)
SO(3)

(5,L;λ ) =
N

(a)
SO(3)

(5,L;λ )

(1−λ 2)
12

, (D1)

with the numerator equal to:

N
(a)

SO(3)
(5,L;λ ) =

(L+4)(L+3)(L+2)(L+1)

24
λ L +

(L+4)(L+3)(L+2)L

6
λ L+1

+
(L+4)(L+3)(L+2)(L+1)

8
λ L+2 − (L+4)(L+3)(L2 −3L− 5

2
)

3
λ L+3

−(L+4)(L+3)(L−3)(7L+2)

12
λ L+4 − (L+4)(L−3)(2L+1)

2
λ L+5

+
(L+4)(L−2)(L−3)(7L+5)

12
λ L+6 +

(L−2)(L−3)(L2 +5L+ 3
2
)

3
λ L+7

−L(L−1)(L−2)(L−3)

8
λ L+8 − (L+1)(L−1)(L−2)(L−3)

6
λ L+9

−L(L−1)(L−2)(L−3)

24
λ L+10. (D2)

The six next alternative expressions of the Molien generating function are written as a sum over

four rational functions:

g
(x)
SO(3)

(5,L;λ )

=
N

(x),1
SO(3) (5,L;λ )

(1−λ 2)
12

+
N

(x),2
SO(3) (5,L;λ )

(1−λ 2)
11

+
N

(x),3
SO(3) (5,L;λ )

(1−λ 2)
10

+
N

(x),4
SO(3) (5,L;λ )

(1−λ 2)
9

, x ∈ {b,c,d,e, f ,g} ,

and provide for any value of L at least one expression with only non–negative coefficients in the

numerators. An heuristic to derive these numerators is presented in section IV B 2.
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a. Numerators of the Molien generating function (b)

N
(b),1

SO(3) (5,L;λ )

=
(L+4)(L+3)(L+2)(L+1)

24
λ L +20(2L+1)λ L+1

+(− 1

24
L4 − 5

12
L3 − 35

24
L2 +

455

12
L+19)λ L+2

N
(b),2

SO(3)
(5,L;λ )

= (
1

6
L4 +

3

2
L3 +

13

3
L2 −36L−20)λ L+1

−(L−3)(L3 +13L2 −406L−208)

24
λ L+2

−(L−3)(L3 +12L2 −58L−30)

6
λ L+3

N
(b),3

SO(3) (5,L;λ )

=−(L−2)(L−3)(L2 −81L−40)

24
λ L+2 − (L−2)(L−3)(L2 −10L−6)

6
λ L+3

N
(b),4

SO(3)
(5,L;λ )

=
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4

b. Numerators of the Molien generating function (c)

N
(c),1

SO(3)
(5,L;λ )

=
(L+4)(L+3)(L+2)(L+1)

24
λ L +20(2L+1)λ L+1

+(− 1

24
L4 − 5

12
L3 − 35

24
L2 +

455

12
L+19)λ L+2

N
(c),2

SO(3) (5,L;λ )

= 5(2L+1)(2L−7)λ L+1 − (L−3)(L3 +13L2 −406L−208)

24
λ L+2

N
(c),3

SO(3)
(5,L;λ )

=
(L−3)(L3 +12L2 −58L−30)

6
λ L+1
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−(L−2)(L−3)(L2 −81L−40)

24
λ L+2

−(L−2)(L−3)(L2 −10L−6)

6
λ L+3

N
(c),4

SO(3)
(5,L;λ )

=
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4

c. Numerators of the Molien generating function (d)

N
(d),1

SO(3) (5,L;λ )

= 20(2L+1)λ L +20(2L+1)λ L+1

N
(d),2

SO(3)
(5,L;λ )

= (
1

24
L4 +

5

12
L3 +

35

24
L2 − 455

12
L−19)λ L +5(2L+1)(2L−7)λ L+1

−(L−3)(L3 +13L2 −406L−208)

24
λ L+2

N
(d),3

SO(3)
((L) ;Γ5;λ )

=
(L−3)(L3 +12L2 −58L−30)

6
λ L+1 − (L−2)(L−3)(L2 −81L−40)

24
λ L+2

−(L−2)(L−3)(L2 −10L−6)

6
λ L+3

N
(d),4

SO(3)
(5,L;λ )

=
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4

d. Numerators of the Molien generating function (e)

N
(e),1

SO(3)
(5,L;λ )

= 20(2L+1)λ L +20(2L+1)λ L+1

28



N
(e),2

SO(3)
(5,L;λ )

= (
1

24
L4 +

5

12
L3 +

35

24
L2 − 455

12
L−19)λ L +5(2L+1)(2L−7)λ L+1

−(L−3)(L3 +13L2 −406L−208)

24
λ L+2

N
(e),3

SO(3) (5,L;λ )

= (L−3)(2L−7)(2L+1)λ L+1 − (L−2)(L−3)(L2 −81L−40)

24
λ L+2

N
(e),4

SO(3)
(5,L;λ )

=
(L−2)(L−3)(L2 −10L−6)

6
λ L+1 +

L(L−1)(L−2)(L−3)

4
λ L+2

+
(L+1)(L−1)(L−2)(L−3)

6
λ L+3 +

L(L−1)(L−2)(L−3)

24
λ L+4

e. Numerators of the Molien generating function ( f )

N
( f ),1

SO(3) (5,L;λ )

= 20(2L+1)λ L +20(2L+1)λ L+1

N
( f ),2

SO(3)
(5,L;λ )

= 5(2L+1)(2L−9)λ L +5(2L+1)(2L−7)λ L+1

N
( f ),3

SO(3) (5,L;λ )

=
(L−3)(L3 +13L2 −406L−208)

24
λ L +(L−3)(2L+1)(2L−7)λ L+1

−(L−2)(L−3)(L2 −81L−40)

24
λ L+2

N
( f ),4

SO(3) (5,L;λ )

=
(L−2)(L−3)(L2 −10L−6)

6
λ L+1 +

L(L−1)(L−2)(L−3)

4
λ L+2

+
(L+1)(L−1)(L−2)(L−3)

6
λ L+3 +

L(L−1)(L−2)(L−3)

24
λ L+4

f. Numerators of the Molien generating function (g)

N
(g),1

SO(3)
(5,L;λ )

29



= 20(2L+1)λ L +20(2L+1)λ L+1

N
(g),2

SO(3)
(5,L;λ )

= 5(2L+1)(2L−9)λ L +5(2L+1)(2L−7)λ L+1

N
(g),3

SO(3)
(5,L;λ )

= 2(L−3)(L−6)(2L+1)λ L +(L−3)(2L+1)(2L−7)λ L+1

N
(g),4

SO(3)
(5,L;λ )

=
(L−2)(L−3)(L2 −81L−40)

24
λ L +

(L−2)(L−3)(L2 −10L−6)

6
λ L+1

+
L(L−1)(L−2)(L−3)

4
λ L+2 +

(L+1)(L−1)(L−2)(L−3)

6
λ L+3

+
L(L−1)(L−2)(L−3)

24
λ L+4
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