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On the Construction of Elliptic

Chudnovsky-Type Algorithms for

Multiplication in Large Extensions of Finite

Fields
Stéphane Ballet, Alexis Bonnecaze and Mila Tukumuli

Abstract

We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of

any finite field. In particular, using the symmetric version of the generalization of Randriambololona specialized on the

elliptic curves, we show that it is possible to construct such algorithms with low bilinear complexity. More precisely,

if we only consider the Chudnovsky-type algorithms of type symmetric elliptic, we show that the symmetric bilinear

complexity of these algorithms is in O(n(2q)log
∗
q (n)) where n corresponds to the extension degree, and log∗q(n) is the

iterated logarithm. Moreover, we show that the construction of such algorithms can be done in time polynomial in n.

Finally, applying this method we present the effective construction, step by step, of such an algorithm of multiplication

in the finite field F357 .

Index Terms

Multiplication algorithm, bilinear complexity, elliptic function field, interpolation on algebraic curve, finite field.

I. INTRODUCTION

A growing number of applications, such as asymmetric cryptography, make use of big integer arithmetic. In this

context, it is important to conceive and develop efficient arithmetic algorithms combined with an optimal imple-

mentation method. Accelerating basic arithmetic operations can provide efficient arithmetic algorithms and thus,

can make faster a protocol which executes a lot of multiplications. This situation typically occurs when considering

cryptographic protocols. In this paper, we only care about the multiplication operation. There exist numerous

multiplication algorithms in the literature, examples are Karatsuba’s algorithm for polynomial multiplication, Toom-

Cook’s algorithm for large integer multiplication, but also Strassen’s algorithm for matrix multiplication. We are

interested in multiplication algorithms in any extension of finite fields, in particular the focus is on the Chudnovsky-

Chudnovsky method [19]. This method, based on interpolation on algebraic curves defined over a finite field allows
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us to obtain multiplication algorithms with low bilinear complexity. Our objective is to construct explicitely such

multiplication algorithms for large finite extensions of finite fields. The Chudnovsky-Chudnovsky method and its

variants have been extensively studied these last years through the work of Shparlinsky, Tsfasmann, Vladut [28],

Baum and Shokrollahi [11], Ballet and Rolland [9], [10], Chaumine [17], Arnaud [1], Cenk-Ozbudak [16] and

Cascudo, Cramer, Xing and Yang [14], and recently Randriambololona [25]. Indeed, the studies on the subject

are of both theoretical and practical importance: theoretically, the bilinear complexity is linked to the tensor rank

and in practice, it is related to the number of gates in an electronic circuit. However, most of the work focused

on the improvement of the bounds on the bilinear complexity and the theoretical aspects of the Chudnovsky-type

algorithms (in particular the underlying geometry of Riemann-Roch spaces).

A. Multiplication algorithm and tensor rank

In this article, we focus on the construction of algorithms realizing the multiplication in extensions of finite fields

with a minimal number (called bilinear complexity) of two-variable multiplications (called bilinear multiplications)

without considering the other operations as multiplications by a constant (called scalar multiplications). Let us first

recall the notions of multiplication algorithm and associated bilinear complexity in terms of tensor rank as is done

in [25].

Definition I.1. Let K be a field, and E0, . . . , Es be finite dimensional k-vector spaces. A non zero element

t ∈ E0 ⊗ · · · ⊗ Es is said to be an elementary tensor, or a tensor of rank 1, if it can be written in the form

t = e0 ⊗ · · · ⊗ es for some ei ∈ Ei. More generally, the rank of an arbitrary t ∈ E0 ⊗ · · · ⊗ Es is defined as the

minimal length of a decomposition of t as a sum of elementary tensors.

Definition I.2. If

α : E1 × · · · × Es −→ E0

is an s-linear map, the s-linear complexity of α is defined as the tensor rank of the element

α̃ ∈ E0 ⊗ E∨1 ⊗ · · · ⊗ E∨s

where E∨i denotes the dual of Ei as vector space over K for any integer i, naturally deduced from α. In particular,

the 2-linear complexity is called the bilinear complexity.

Definition I.3. Let A be a finite-dimensional K-algebra. We denote by

µ(A/K)

the bilinear complexity of the multiplication map

mA : A×A −→ A

considered as a K-bilinear map.
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In particular, if A = Fqn and K = Fq , we let:

µq(n) = µ(Fqn/Fq).

More concretely, µ(A/K) is the smallest integer n such that there exist linear forms φ1, . . . , φn and ψ1, . . . , ψn : A −→

K, and elements w1, . . . , wn ∈ A, such that for all x, y ∈ A one has

xy = φ1(x)ψ1(y)w1 + · · ·+ φn(x)ψn(y)wn, (1)

since such an expression is the same thing as a decomposition

TM =

n∑
i=1

wi ⊗ φi ⊗ ψi ∈ A⊗A⊗A∨. (2)

for the multiplication tensor of A.

Definition I.4. We call multiplication algorithm of length n for A/K a collection of φi, ψi, wi that satisfy (1) or

equivalently a tensor decomposition

TM =

n∑
i=1

wi ⊗ φi ⊗ ψi ∈ A⊗A⊗A∨

for the multiplication tensor of A. Such an algorithm is said symmetric if φi = ψi for all i (this can happen only

if A is commutative).

Hence, when A is commutative, it is interesting to study the minimal length of a symmetric multiplication algorithm.

Definition I.5. If A is a finite-dimensional K-algebra. The symmetric bilinear complexity

µsym(A/K)

is the minimal length of a symmetric multiplication algorithm.

In particular, if A = Fqn and K = Fq , we let:

µsymq (n) = µsym(Fqn/Fq).

B. Known results

In their seminal papers, Winograd [33] and De Groote [21] have shown that µ(Fqn/Fq) ≥ 2n− 1, with equality

holding if and only if n ≤ 1
2q+ 1. Winograd have also proved [33] that optimal multiplication algorithms realizing

the lower bound belong to the class of interpolation algorithms. Later, generalizing interpolation algorithms on

the projective line over Fq to algebraic curves of higher genus over Fq , Chudnovsky and Chudnovsky provided a

method [19] which enabled to prove the linearity [2] of the bilinear complexity of multiplication in finite extensions

of a finite field. Moreover, they proposed the first known multiplication algorithm using interpolation to algebraic

function fields (of one variable) over Fq . This is the so-called Chudnovsky and Chudnovsky algorithm, also called

Chudnovsky algorithm to simplify. Then, several studies focused on the qualitative improvement of this algorithm
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(for example [9], [1], [16], [25]) as well as the improvements of upper bounds (for example [10], [8]) and asymptotic

upper bounds (for example [28], [14]) of the bilinear complexity. However, few studies have been devoted to the

effective construction of Chudnovsky-type algorithms, and in particular no work has been done when the degree

of extensions reaches a cryptographic size. Indeed, the first known effective finite fields multiplication through

interpolation on algebraic curves was proposed by Shokrollahi and Baum [11]. They used the Fermat curve

x3 + y3 = 1 to construct multiplication algorithm over F44 with 8 bilinear multiplications. In [3], Ballet proposed

one over F16n where n ∈ [13, 14, 15], using the hyperelliptic curve y2+y = x5 with 2n+1 bilinear multiplications.

Notice that these aforementioned two algorithms only use rational points, and multiplicity equals to one. Recently

Cenk and Özbudak proposed in [16] an explicit multiplication algorithm in F39 with 26 bilinear multiplications.

To this end, they used the elliptic curve y2 = x3 + x+ 2 with points of higher degree and higher multiplicity.

C. Organization of the paper and new results

In Section 2, we fix the notation and we recall the different versions of Chudnovsky-type algorithms. Then in

Section 3, we present a strategy in order to construct multiplication algorithms of type Chudnovsky in arbitrary large

extensions of finite fields. In particular, we show that from an elliptic curve defined over any finite field Fq , we can

exhibit a symmetric version of the generalization of Randriambololona (specialized on the elliptic curves) for any

extension of Fq of degree n, with low bilinear complexity. More precisely, if we only consider the Chudnovsky-type

algorithms of type symmetric elliptic, we show that the symmetric bilinear complexity of these algorithms is in

O(n(2q)log
∗
q(n)). Even if this asymptotic complexity is quasi-linear, it has the advantage of being derived from

an infinite family of symmetric algorithms with a fixed genus equal to one. Fixing the genus to one allows us to

control the complexity of the construction, meaning that for finite fields of cryptographic size, one can construct in

a reasonable time such algorithms. Hence, our strategy leads to fully constructive methods. Indeed, we prove that

the complexity of the construction of symmetric elliptic algorithms is in time polynomial in n. Notice that with

the usual strategy based upon the construction of algorithms with growing genus, the complexity of construction is

not known because it is a hard problem to explicitly construct a point with a high degree [28, Section 4, Remarks

5]. Finally in Section 4, we present new upper bounds for large extensions of F2 and F3, and we also propose the

effective construction, step by step, of an algorithm of multiplication in F357 .

II. MULTIPLICATION ALGORITHMS OF TYPE

We start with some elementary terminology and results of algebraic function fields. A comprehensive course of

the subject can be found in [29].

A. Notation

An algebraic function field F/Fq of one variable over Fq is an extension field F ⊇ Fq such that F is a finite

extension of Fq(x) for some element x ∈ F which is transcendental over Fq . A valuation ring of the function

field F/Fq is a ring O ⊆ F such that Fq ⊂ O ⊂ F and for any z ∈ F , either z ∈ O or z−1 ∈ O. A place P of
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the function field F/Fq is the maximal ideal of some valuation ring O of F/Fq . If O is a valuation ring of F/Fq
and P is its maximal ideal, then O is uniquely determined by P hence we denote O by OP . Every place P can be

written as P = tOP , where t is the local parameter for P . We will denote the set of all places of F/Fq as PF . For

a place P , FP := OP /P is called the residue class field of P. The map x→ x(P ) from F to FP ∪ {∞} is called

the residue class map with respect to P. The degree of P is defined by [FP : Fq] := degP . The free abelian group

which is generated by the places of F/Fq is called the divisor group of F/Fq and it is denoted by DF , so a divisor

is a formal sum D =
∑
P∈PF nPP , with nP ∈ Z almost all nP = 0, of degree deg(D) =

∑
P∈PF vP (D).degP

where vP is a discrete valuation associated to the place P . The support of a divisor D denoted supp D is the set of

places P with vP (D) 6= 0. For a function f ∈ F/Fq , we denote by (f) =
∑
P∈PF vP (f).P the principal divisor of

f . If D is a divisor then L (D) = {f ∈ F | D + (f) ≥ 0}∪{0} is the Riemann-Roch space which is a Fq-vector

space. The integer `(D) = dim L (D) is called the dimension of D and i(D) = dimD − degD + g − 1 is the

index of specialty of D. We say that D is non-special if i(D) = 0 and special otherwise.

B. Generalization of Arnaud and Cenk-Ozbudak

A drawback of the original algorithm is that it only uses rational points. In 1999, S. Ballet and R. Rolland

generalized in [9] the algorithm using places of degree 1 and 2. The best finalized version of this algorithm in

this direction, is the generalization introduced by Arnaud in [1] and improved by Cenk and Özbudak in [16].

This generalization uses several coefficients in the local expansion at each place Pi. The bound for the bilinear

complexity involves the complexity notion M̂q(u) introduced by Cenk and Özbudak in [16] and defined as follows:

Definition II.1. We denote by M̂q(u) the minimum number of multiplications in Fq needed to obtain coefficients

of the product of two arbitrary u-term polynomials modulo xu in Fq[x].

For instance, we know that for all prime powers q, we have M̂q(2) ≤ 3 by [15]. Now, we introduce the generalized

algorithm of type Chudnovsky described in [16].

Theorem II.2. Let

• q be a prime power,

• F/Fq be an algebraic function field,

• Q be a degree n place of F/Fq ,

• D be a divisor of F/Fq ,

• P = {P1, . . . , PN} be a set of N places of arbitrary degree,

• u1, . . . , uN be positive integers.

We suppose that Q and all the places in P are not in the support of D and that:

a) the map

EvQ :

 L(D) → Fqn ' FQ
f 7−→ f(Q)
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is onto,

b) the map

EvP :

 L(2D) −→
(
Fqdeg P1

)u1 × · · · ×
(
Fqdeg PN

)uN
f 7−→

(
ϕ1(f), ϕ2(f), . . . , ϕN (f)

)
is injective, where the application ϕi is defined by

ϕi :

 L(2D) −→
(
Fqdeg Pi

)ui
f 7−→

(
f(Pi), f

′(Pi), . . . , f
(ui−1)(Pi)

)
with f = f(Pi) + f ′(Pi)ti + f ′′(Pi)t

2
i + · · ·+ f (k)(Pi)t

k
i + . . ., the local expansion at Pi of f in L(2D), with

respect to the local parameter ti. Note that we set f (0) = f .

Then

µsymq (n) ≤
N∑
i=1

µsymq (degPi)M̂qdeg Pi (ui).

C. Generalization of Randriambololona

In 2012, Randriambololona introduced in [25] a possibly asymmetric generalization of this algorithm. Further-

more, he introduced a new quantity µq(degPi, ui) to deal with both, the degree and the multiplicity, at the same

time.

Definition II.3. For any integers n, l ≥ 1 we consider the Fq-algebra of polynomials in one indeterminate with

coefficients in Fqn , truncated at order l:

Aq(n, l) = Fqn [t]/(tl)

of dimension

dimFqAq(n, l) = nl,

and we denote by

µq(n, l) = µ(Aq(n, l)/Fq)

its bilinear complexity over Fq and by

µsymq (n, l) = µsym(Aq(n, l)/Fq)

its symmetric bilinear complexity over Fq .

Remark II.4. When l = 1, we have µq(n, 1) = µq(n) which corresponds to the bilinear complexity of multiplication

in Fqn over Fq; and when n = 1, we have µq(1, l) = M̂qdeg Pi (l) which represents the quantity defined by Cenk

and Ozbudak [16].

We recall here the presentation of Randriambololona’s generalization [25] which corresponds to the asymmetric

version of Chudnovsky type algorithms. By a thickened point in the algebraic curve X defined over Fq , we mean
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any closed subscheme of X supported on a closed point (of arbitrary degree). If Q is a closed point in X , we

denote by IQ the sheaf of ideals defining it and for any integer l ≥ 1, we let Q[l] be the closed subscheme of X

defined by the sheaf of ideals (IQ)l. Then Q[l] is the thickened point supported on Q. If D is a divisor on X , we

denote by L(D) = Γ(X,OX(D)) its Riemann-Roch space.

Theorem II.5. Let C be a curve of genus g over Fq , and let n, l ≥ 1 be two integers. Suppose that C admits a

closed point Q of degree degQ = n. Let G be an effective divisor on C, and write

G = u1P1 + · · ·+ uNPN

where the Pi are pairwise distinct closed points, of degree degPi = di. Suppose there exist two divisors D1, D2

on C such that:

(i) The natural evaluation map

L(D1 +D2) −→
N∏
i=1

OC(D1 +D2) |
P

[ui]

i

is injective.

(ii) The natural evaluation maps

L(D1) −→ OC(D1) |Q[l] L(D2) −→ OC(D2) |Q[l]

are surjective.

Then

µq(n, l) ≤
N∑
i=1

µq(di, ui).

In fact, we also have µq(n, l) ≤ µ(
∏N
i=1Aq(di, ui)/Fq). Moreover, if D1 = D2, all these inequalities also hold

for the symmetric bilinear complexity µsymq .

Sufficient numerical criteria for the hypotheses above to hold can be given as follows. A sufficient condition for

the existence of Q of degree n on C is that 2g+ 1 ≤ q(n−1)/2(q1/2− 1), while sufficient conditions for (i) and (ii)

are:

(i’) The divisor D1 +D2 −G is zero-dimensional:

l(D1 +D2 −G) = 0.

(ii’) The divisors D1 − lQ and D2 − lQ are non-special:

i(D1 − lQ) = i(D2 − lQ) = 0.

More precisely, (i) and (i′) are equivalent, while (ii′) only implies (ii) a priori.

The improvement suggested by Randriambololona in relation with bilinear complexity leads to the following

inequality

µq(degPi, ui) ≤ µq(degPi)M̂qdeg Pi (ui),
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where µq(degPi, 1) = µq(degPi) is the bilinear complexity of multiplication in Fqdeg Pi over Fq , and µq(1, ui) =

M̂qdeg Pi (ui) is the complexity previously defined in Definition II.1. We present in Table I the best known bounds

for µq(n) for small values of n (cf. [23], [16], [12]).

TABLE I

BOUNDS FOR µq(n) AND M̂q(n) FOR 1 ≤ n ≤ 8, AND q = 2, 3.

n 2 3 4 5 6 7 8

µ2(n, 1) = µ2(n) 3 6 9 13 15 22 24

µ3(n, 1) = µ3(n) 3 6 9 11 15 19 21

M̂q(n) 3 5 8 11 15 19 24

III. CONSTRUCTION OF CERTAIN ALGORITHMS OF TYPE CHUDNOVSKY

A. Strategies of construction

So far, the strategy to obtain upper bounds for bilinear complexity of multiplication in Fqn over Fq , has always

been to apply algorithms of type Chudnovsky on infinite families (specially some towers) of algebraic function fields

defined over a fixed finite field Fq , with genus growing to infinity and for few fixed degrees of places. Unfortunately

this strategy has a weak point since growing the genus could hugely increase the complexity of the construction.

However, there exists another strategy which corresponds to using the degree of freedom that remains: the degree of

places. Technically, this approach consists in fixing the genus while increasing the degree of places. This new way,

implied in the generalization of Arnaud and Cenk-Ozbudak, has never been investigated and requires introducing

new complexity notions.

Our purpose here is to develop this strategy in the case of elliptic function fields. The choice of algebraic curves

of genus one was made for two main reasons:

1) Elliptic curves are heavily used to construct cryptographic primitives. Indeed, using the same elliptic curve

for both the multiplication and the cryptographic algorithms could improve the efficiency in secure embedded

systems.

2) The effective construction of such elliptic algorithms can be completed within a reasonable time. More precisely,

we prove that the complexity of the construction of a symmetric elliptic bilinear multiplication algorithm in

Fqn is in time polynomial in n.

Our main tool will be a result obtained by Randriambololona in [25, Proposition 4.3] which generalizes results

of Shokrollahi [27], Chaumine [17], and Cenk-Ozbudak [16].

Let C/Fq be an elliptic curve defined over Fq with a chosen point P∞. The set C(Fq) of rational points over Fq
admits a structure of finite abelian group with identity element P∞ and a cardinal N1(C(Fq)). Moreover, there is a
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map σ : Div(C) −→ C(Fq) uniquely defined by the condition that each divisor D of degree d is linearly equivalent

to the divisor σ(D) + (d − 1)P∞. This map σ is a group morphism, it passes to linear equivalence, and induces

an isomorphism of the degree 0 class group Cl0(C). First, let us recall the result obtained by Randriambololona

in [25, Proposition 4.3]. In fact, this result is very general since it gives upper bounds on µq(n, l) and µsymq (n, l),

while we are interested only in µsymq (n), so we cite only part b) c) and d) of this Proposition restricted to this

special case:

Proposition III.1. Let C be an elliptic curve over Fq , n be an integer. Suppose that C admits a closed point Q of

degree n. Let G be an effective divisor on C, and write

G = u1P1 + · · ·+ uNPN

where Pi are pairwise distinct closed points, of degree degPi, so

degG =

N∑
i=1

degPi.ui.

Then

µq,C(n, 1) ≤
N∑
i=1

µq(degPi, ui), (3)

provided if one of the following conditions is satisfied:

1) C admits at least two points of degree one and degG ≥ 2n, and either not all of these points are of 2-torsion,

or σ(G) 6= P∞.

2) degG ≥ 2n+ 1 and C admits at least two points of degree one, all of which are of 2-torsion.

3) C admits only one point of degree one and degG ≥ 2n+ 3.

Remark III.2. In the applications we will be interested mostly in constructing multiplication algorithms for

extensions of F2 and F3, so it will be useful to list all elliptic curves over these fields (up to isomorphism) and to

specify which case of Proposition II.1 applies to each. In fact this could be done also for any q, and it is easy to

see that the case that should apply most of the time is case 1). Indeed, it is known that the 2-torsion subgroup of an

elliptic curve can only be {0}, Z/2Z, or Z/2Z× Z/2Z (in characteristic 6= 2), and because of the Hasse bound,

as soon as q 6= 2, 3, 4, 5, 7, 9, hence except for finitely many curves, the group of rational points is not entirely of

2-torsion, as asked in condition 1). These finitely many exceptional curves are easily found by direct enumeration:

a) Up to isomorphism, the only elliptic curves over Fq with group of points reduced to {0} are

y2 + y + (x3 + x+ 1) = 0, if q = 2,

y2 − (x3 + 2x+ 2) = 0, if q = 3,

y2 + y + (x3 + a) = 0, if q = 4 and F4 = F2(a),

so for these curves we use case 3) of Proposition III.1.
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b) Up to isomorphism, the only elliptic curves over Fq with group of points equal to Z/2Z are

y2 + xy + x3 + x2 + 1 = 0 if q = 2,

y2 − (x3 + 2x2 + 2) = 0 if q = 3,

y2 + xy + (x3 + ax2 + 1) = 0 if q = 4 and F4 = F2(a),

y2 − (x3 + 2x) = 0 if q = 5,

so for these curves we use 1) of Proposition III.1 if σ(G) 6= P∞, and we use 2) else.

c) Up to isomorphism, the only elliptic curves over Fq with group of points equal to Z/2Z× Z/2Z are

y2 + y + 2x3 + x+ 1 = 0 if q = 3,

y2 + 4x3 + 4x = 0 if q = 5,

y2 + 6x3 + 1 = 0 if q = 7,

y2 + (x+ 1)y + 2x3 + x2 + ax+ 1 = 0 if q = 9 and F9 = F3(a),

so for these curves we use 1) of Proposition III.1 if σ(G) 6= P∞, and we use 2) else.

d) For all other curves, there is at least one point of degree one that is not of 2-torsion, so we can use case 1)

of Proposition III.1. Particularly for q = 2, elliptic curves are

y2 + y + x3 = 0

y2 + y + x3 + x = 0

y2 + xy + x3 + 1 = 0,

and for q = 3, we obtain
y2 + 2x3 + 2x = 0

y2 + 2x3 + x+ 2 = 0

y2 + 2x3 + 2x2 + 2 = 0

y2 + 2x3 + 2x2 + 1 = 0

y2 + 2x3 + x2 + 2 = 0.

Also one can easily check that these curves all admit a closed point of degree n as soon as n ≥ 7 if q = 2, n ≥ 4,

if q = 3 and n ≥ 3 if q ≥ 4.

B. Recursive elliptic algorithms

Now we are interested in the following quantities:

Definition III.3. For any integer n, let

µsymq,1 (n)

denote an upper bound on µsymq (n) obtained by applying Proposition III.1, possibly recursively with various elliptic

curves, and starting from the values in Table I.

Likewise, given an elliptic curve C/Fq , let

µsymq,C (n)
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denote an upper bound on µsymq (n) obtained by applying Proposition III.1, possibly recursively but only with the

curve C, and starting from the values in Table I.

Definition III.4. The iterated logarithm of n, written log∗q(n) defined by the following recursive function:

log∗q(n) =

 0 if n ≤ 1

1 + log∗q(logq(n)) otherwise,

corresponds to the number of times the logarithm function must be iteratively applied to n before the result is less

than or equal to 1.

Theorem III.5. Let q be a prime power and let C be an elliptic curve defined over Fq . Then, for any integer n

such that n ≥ 7 if q = 2, n ≥ 4 if q = 3 and n ≥ 3 if q ≥ 4, there exists a symmetric elliptic bilinear algorithm

of type Theorem II.5 constructed from the curve C such that

µsymq,C (n) ∈ O
(
n(2q)log

∗
q(n)

)
.

Notice that (2q)log
∗
q(n) is a very slowly growing function, as illustrated in Table II.

TABLE II

VALUES FOR (2q)log
∗
q (n) FOR q = 2 AND n ≤ 265536 .

n log∗(n) (2q)log
∗
q (n)

(1, 2] 1 4

(2, 4] 2 16

(4, 16] 3 64

(16, 65536] 4 256

(65536, 265536] 5 1024

Proof: Without loss of generality, let C be an elliptic curve which the model does not appear in case a) and

b) of Remark III.2. Let G be the divisor on C such that

G = u1P1 + · · ·+ uNPN .

Concentrating on the worst case, we can assume that

• we do not use derivative evaluation, that is ui = 1 for 1 ≤ i ≤ N ,

• we only use places of a fixed degree, that is deg(P1) = · · · = deg(PN ) = d1.

With these assumptions G = P1 + · · · + PBd1 , where Bd1 denotes the number of places of degree d1. From

Remark III.2, if C is one of the elliptic curve of case d) and deg(G) = d1Bd1 ≥ 2n, then

µsymq,C (n) ≤
Bd1∑
i=1

µsymq,C (degPi) = Bd1µ
sym
q,C (d1). (4)
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From [29, Corollary 5.2.10] applied to elliptic curves, we know that Bd1 verifies

qd1

d1
− 9

qd1/2

d1
< Bd1 <

qd1

d1
+ 9

qd1/2

d1
.

Asymptotically, Bd1 ∈ O
(
qd1

d1

)
and then deg(G) ∈ O(qd1). Let d1 be the smallest integer such that qd1 ≥ 2n,

then qd1−1 < 2n and we have d1 ∈ O
(
logq(2n)

)
. Thus

µsymq,C (n) ∈ O
(
Bd1µ

sym
q,C (d1)

)
and then

µsymq,C (n) ∈ O

(
2nq

d1
µsymq,C (d1)

)
.

Using recursively the process, we obtain

µsymq,C (d1) ∈ O

(
2d1q

d2
µsymq,C (d2)

)
,

where d2 ∈ O
(
logq(2d1)

)
. With this procedure, we have that µsymq,C (n) belongs to

O

(
2nq

d1
· 2d1q

d2
· · · · · 2dk−2q

dk−1
· 2dk−1q

µsymq,C (dk)

dk

)
,

with di ∈ O
(
logq(2di−1)

)
, for 1 ≤ i ≤ k, and consequently

µsymq,C (n) ∈ O

(
n(2q)k ·

µsymq,C (dk)

dk

)
.

Let k = log∗q(2n), then we have

dk ∈ O

logq(logq(. . . (logq︸ ︷︷ ︸
k terms

(2n)) . . .))

 ≤ 1,

and thus
µsymq,C (dk)

dk
≤ 1.

Finally

µsymq,C (n) ∈ O
(
n · (2q)log

∗
q(n)

)
.

Corollary III.6. For any integer n such that n ≥ 7 if q = 2, n ≥ 4 if q = 3 and n ≥ 3 if q ≥ 4, there exists

a symmetric elliptic bilinear algorithm of type Theorem II.5 constructed from a curve of genus one and from an

effective divisor

G = u1P1 + · · ·+ uNPN ,

on this curve, where the Pi are N pairwise distinct closed points, of degree degPi = di, and the ui are strictly

positive integers, such that

µsymq,1 (n) ∈ O
(
n · (2q)log

∗
q(n)

)
.
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Proof: The proof is similar to the proof of Theorem III.5. Indeed, for a fixed genus g, the number Bd of places

of degree d, as claimed in [29, Corollary 5.2.10], is such that

qd

d
− (2 + 7g)

qd/2

d
< Bd <

qd

d
+ (2 + 7g)

qd/2

d
.

Thus, for each curve of genus g, Bd is asymptotically the same. Consequently, changing the model of the elliptic

curve does not change the proof, and does not change asymptotically the bilinear complexity.

Elliptic curves have already been used to bound the bilinear complexity of multiplication (see for example the

work of Shokrollahi [27], Ballet [4], and Chaumine [17]). Recently, Couveignes and Lercier [18] proposed a

multiplication algorithm for finite field extensions Fqn , using normal elliptic bases. Their multiplication tensor

consists in 5 convolution products, 2 component-wise products, 1 addition and 3 subtractions. Note that convolution

products can be computed at the expense of O (n log n log | log(n)|) operations in Fq . Asymptotically, the tensor

they produce is not competitive with ours from the point of view of bilinear complexity.

C. Complexity of the construction

Studies on bilinear complexity are well advanced, however we do not know a single polynomial construction

of bilinear multiplication algorithm with linear or quasi-linear multiplicative complexity. In the case of bilinear

multiplication algorithm with linear multiplicative complexity, namely the case of the usual strategy based upon

the construction with growing genus, we cannot give information about the complexity of construction. Indeed,

it is completely unclear how to construct explicitly points of high degree [28, Section 4, Remarks 5]. However,

using the new strategy with elliptic curves, we show that we can polynomially construct symmetric elliptic bilinear

multiplication algorithms with quasi-linear multiplicative complexity.

Lemma III.7. Let E be an elliptic curve defined over Fq and let F/Fq be the associated elliptic function field.

Then we can construct a degree n place of F/Fq in time polynomial in n.

Proof: In order to construct a degree n place Q of the elliptic function field F/Fq , firstly we have to construct

a rational point P = (xP , yP) of E defined over Fqn and then, we need to apply to the point P , n-times the

Frobenius map ϕ defined by
ϕ : E(Fqn) −→ E(Fqn)

(x, y) 7−→ (xq, yq).

Thus the orbit of P obtained under the action of ϕ is a degree n place. In 2006, Shallue and Van De Woestijne [26]

gave a deterministic polynomial-time algorithm that computes a nontrivial rational point given a Weierstrass equation

for the elliptic curve. More precisely, they performed the computation of a nontrivial rational point on an elliptic

curve E defined over Fq in time polynomial in log(q). It follows that P can be constructed in time polynomial

in log(qn), and thus in time polynomial in n since q is fixed. The action of the Frobenius map ϕ on the point P

is simply a modular exponentiation that can be done polynomially. Consequently, constructing a degree n place of

an elliptic function field can be done in time polynomial in n.
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Theorem III.8. Given an elliptic curve E defined over Fq , one can polynomially construct a sequence Aq,n of

symmetric elliptic bilinear multiplication algorithms in finite fields Fqn for the given sequence n→ +∞ such that

µsymq,E (Aq,n) ∈ O
(
n(2q/K)log

∗
q(n)

)
,

where K = 2/3 if the characteristic of Fq is 2 or 3, and K = 5/8 otherwise.

Proof: Let F/Fq be the elliptic function field associated to the curve E. According to the proof of Theorem III.5,

to construct a symmetric elliptic multiplication algorithm in Fqn over Fq , we first have to construct places and divisor

of certain degree. Indeed, we need to construct

• a place Q of degree n of F/Fq ,

• a divisor D of degree n of F/Fq ,

• a sufficient number N of degree d places of F/Fq , such that the degree of the divisor G formed by these N

places, is greater or equal to 2n.

The divisor D and the place Q are equivalent in terms of construction (in practice we can take any place to construct

a divisor [3]), so their complexities of construction are similar and from Lemma III.7 this complexity is in time

polynomial in n. The point now is to construct sufficiently places of degree d of F/Fq . To achieve this, from

lemma III.7 it suffices to construct rational points of the curve E over Fqd . Icart [22] shows that it is possible to

construct deterministically, a constant proportion K of the number of rational points of an elliptic curve defined

over Fq . More precisely, his method allows us to construct K = 5/8 of the number of rational points in time

polynomial in log3(q). Note that if the characteristic of Fq is 2 or 3, Farashi et al. [20] proved that K = 2/3.

This implies that asymptotically, we can construct in time polynomial in log3(qd), a sufficient number of places of

degree d of F/Fq by choosing d such that qd ≥ 2n/K. Finally, the complexity of construction of places of degree

d is polynomial in log3(n), thus polynomial in n. In conclusion, we can polynomially construct symmetric elliptic

bilinear multiplication algorithms since for a given divisor D, construct vector spaces L (D), L (2D), associated

basis BD, B2D and evaluation maps EvQ, EvP can be done polynomially [28, Section 4, Remarks] (cf. also

[30, p. 509, Remark 4.3.33]).

Remark III.9. This complexity can indeed be refined. We plan to study in detail this problem in a forthcoming

work.

IV. UPPER BOUNDS AND EXAMPLE OF CONSTRUCTION

Using our strategy, we propose in this section:

• upper bounds of symmetric bilinear complexity for large extension of finite fields F2 and F3, and

• an example of a multiplication algorithm construction.

In order to obtain the best bounds of symmetric bilinear complexity, we use our Remark III.2 not with bounds

µsymq,C (degPi, ui) derived from the same elliptic curve C, but with the better known bounds for µsymq (degPi, ui) as

in Proposition III.1. Moreover, for a fixed n, to obtain the best bounds of symmetric bilinear complexity, we need
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to find the best curve of genus one and thus we compute, not µsymq,C (n) but µsymq,1 (n). We note throughout the rest

of the paper µsymq (n) instead of µsymq,1 (n).

A. New Bounds

In elliptic curve cryptography, the NIST (National Institute of Standards and Technology) [24] suggests to use

finite fields with 2163, 2233, 2283, 2409 and 2571 elements. Randriambololona in [25] obtained the following bound

µsym2 (163) ≤ 910.

We improve this bound

µsym2 (163) ≤ 906.

In order to upgrade µsym2 (163), we seek out of the curves given in Remark III.2, the one which provides the lowest

bilinear complexity. Using only higher multiplicity with degree one and degree two places, the best curve turns out

to be y2 + y + x3 = 0. This curve has 3 points of degree one, and the lowest bilinear complexity is obtained with

the divisor G of degree 326 defined as follows:

we take all 3 points of degree 1 with multiplicity 4, all 3 points of degree 2 with multiplicity 2, and all 2 points

of degree 3, all 6 points of degree 5, all 11 points of degree 6 and 25 points of degree 8, all with multiplicity 1.

Then the degree of G is

degG = 3.1.4 + 3.2.2 + 2.3.1 + 6.5.1 + 11.6.1 + 25.8.1

= 326 = 2.163.

From Remark III.2 used with the best known bounds for µsymq (degPi, ui) and values of Table I we obtain

µsym2 (163) ≤ 3.µsym2 (1, 4) + 3.µsym2 (2, 2)

+ 2.µsym2 (3, 1) + 6.µsym2 (5, 1)

+ 11.µsym2 (6, 1) + 25.µsym2 (8, 1)

≤ 3.M̂2(4) + 3.µsym2 (2)M̂2(2)

+ 2.µsym2 (3) + 6.µsym2 (5)

+ 11.µsym2 (6) + 25.µsym2 (8)

µsym2 (163) ≤ 906.

Table III (respectively Table IV) represents optimal bounds for µsym2 (n) (respectively µsym3 (n)) and the size of

extension for F2 is in accordance with the NIST for elliptic curve cryptography. The column N represents the

number of places of arbitrary degrees used to obtain the optimal bound, and column U , the associated order for

derivative evaluation. As example, for n = 233, we obtain the lower bound 1340 using the elliptic curve (up to

isomorphism) defined by y2 + xy = x3 + 1. This lower bound is achieved with N = [4, 2, 0, 2, 8, 8, 10, 34] and

U = [5, 2, 1, 1, 1, 1, 1, 1], meaning that we use 4 degree one places with multiplicity u1 = 5, 2 degree two places

with multiplicity u2 = 2 and the remainder with multiplicity u3 = · · · = u8 = 1.
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TABLE III

OPTIMAL BOUNDS FOR µsym2 (n).

n µsym2 (n) Elliptic Curve N U

163 906 y2 + y + x3 = 0 [3, 3, 2, 0, 6, 11, 0, 25] [4, 2, 1, 1, 1, 1, 1, 1]

233 1340 y2 + xy + x3 + 1 = 0 [4, 2, 0, 2, 8, 8, 10, 34] [5, 2, 1, 1, 1, 1, 1, 1]

283 1668 y2 + xy + x3 + 1 = 0 [4, 2, 0, 2, 8, 8, 14, 34, 8] [5, 2, 1, 1, 1, 1, 1, 1, 1]

409 2495 y2 + xy + x3 + 1 = 0 [4, 2, 0, 2, 8, 8, 16, 34, 0, 31] [5, 2, 1, 1, 1, 1, 1, 1, 1, 1]

571 3566 y2 + xy + x3 + 1 = 0 [4, 2, 0, 2, 8, 8, 16, 34, 2, 62] [5, 1, 1, 1, 1, 1, 1, 1, 1, 1]

TABLE IV

OPTIMAL BOUNDS FOR µsym3 (n).

n µsym3 (n) Elliptic Curve N U

57 234 y2 + 2x3 + 2x2 + 1 = 0 [3, 6, 11, 15] [3, 1, 1, 1]

97 410 y2 + 2x3 + 2x2 + 1 = 0 [3, 6, 11, 15, 16] [3, 1, 1, 1, 1]

150 643 y2 + 2x3 + 2x2 + 1 = 0 [3, 6, 11, 14, 38] [3, 1, 1, 1, 1]

200 878 y2 + 2x3 + x2 + 1 = 0 [2, 5, 12, 21, 47, 5] [3, 1, 1, 1, 1, 1]

400 1879 y2 + 2x3 + x2 + 1 = 0 [2, 5, 12, 21, 47, 72] [2, 1, 1, 1, 1, 1]

B. Effective multiplication algorithm in F357

In this section, we choose to present the construction of the multiplication algorithm in F357 with 234 bilinear

multiplications, using elliptic curves, points of higher degree and higher multiplicity.

1) Method: Let α and β be two elements of F357 . Since there exists a point Q of degree 57, the residue class

field OQ/Q is isomorphic to F357 and we can consider that both elements are in OQ/Q. Furthermore, there exists

a divisor D such that the evaluation map

EvQ : L (D) −→ OQ
Q

f 7−→ f(Q)

is onto. Hence there exist two functions Fα, Fβ ∈ L (D) such that EvQ(Fα) = α, and EvQ(Fβ) = β.

Finally, to obtain the product α.β, we compute EvQ(Fα.Fβ) = α.β. At this step, we have to construct the only

Fγ ∈ L (2D) such that Fα.Fβ = Fγ . The uniqueness of Fγ comes from the injectivity of the second evaluation

map EvP . Consider Fα =
∑57
i=1 aifi, Fβ =

∑57
i=1 bifi and let Fγ be the product of Fα and Fβ given by the

relation
(Fα) . (Fβ)︸ ︷︷ ︸ = Fγ︸︷︷︸,

M C
(5)

where M and C are the matrix representation of the relation (5).
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2) Choice of the degree of places: For a fixed q and n, we do not know how to find an order of magnitude of

the degree of places to use for the interpolation. This task depends on two factors that is the number of places and

the derivative evaluation. We reason now similarly as for the proof of Theorem III.5: in the worst case we suppose

that we do not use derivative evaluation, and that we only use places of a fixed degree d. Recall that from [29,

Corollary 5.2.10] applied to elliptic curves, the number Bd of places of degree d verifies

qd

d
− 9

qd/2

d
< Bd <

qd

d
+ 9

qd/2

d
.

In practice, we reason in asymptotic way. Asymptotically Bd w qd/d so it suffices to find the smallest d such that

d(qd/d) > 2n. Since this process only gives us an estimation for the maximal degree of places to use, it is possible

that for a given d, Bd = 0. In this case we shall take d + 1 and so on. Consequently, to choose the right elliptic

curve for the multiplication in F357 we increase the degree of places until d equals to five.

3) Choice of the order for derivative evaluation: We know that using derived evaluation with places of high

degree does not improve the bilinear complexity so for F357 , we choose to use derived evaluation only for places

of degree one and two. Moreover, we choose to use derivative evaluation until order u1 = 5 for degree one places

and until order u2 = 3 for degree two places.

4) Choice of the Curve: Let Pj denotes the set of places of degree j and Pj [ k ] be the kth places of degree

j. In order to find the suitable curve, one just have to execute the procedure below for each curve of Remark III.2:

1) construct the associated elliptic function field,

2) determine all places of degree 1, 2, 3, 4 and 5,

3) find all combinations of the divisor

G = u1P1 + · · ·+ uNPN ,

with the appropriate degree,

4) for each combination, compute
∑N
i=1 µ

sym
q (degPi, ui) and store the lowest bilinear complexity.

Note that super singular curves can be used with no danger since we only use points for interpolation. Results of

the previous procedure are collected in Table V.

TABLE V

CHOICE OF THE CURVE FOR µsym3 (57).

Equation C N U µ
sym
3,C (57)

y2 + 2x3 + 2x2 + 2 = 0 [6, 3, 4, 21, 0] [2, 1, 1, 1, 1] 240

y2 + 2x3 + x2 + 1 = 0 [2, 5, 12, 15, 1] [2, 1, 1, 1, 1] 240

y2 + 2x3 + x2 + 2 = 0 [5, 5, 5, 15, 3] [3, 1, 1, 1, 1] 241

y2 + 2x3 + 2x2 + 1 = 0 [3, 6, 11, 15, 0] [3, 1, 1, 1, 1] 234

y2 + 2x3 + 2x = 0 [4, 6, 8, 9, 6] [3, 1, 1, 1, 1] 239

y2 + 2x3 + x + 2 = 0 [7, 0, 7, 18, 0] [3, 1, 1, 1, 1] 239

y2 + 2x3 + x + 1 = 0 [1, 3, 9, 19, 1]] [3, 1, 1, 1, 1] 251

From Table V, the suitable curve, up to isomorphism, is

E : y2 + 2x3 + 2x2 + 1 = 0,
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and the divisor G is constructed as follows: we take all 3 points of degree 1 with multiplicity 3, and then we take

all 6 points of degree 2, all 11 points of degree 3, and all 15 points of degree 4, all with multiplicity 1. It must be

verified that G has degree

degG = 3.1.3 + 6.2.1 + 11.3.1 + 15.4.1 = 114 = 2 · 57.

Using values of Table I we obtain

µsym3 (57) ≤ 3.µsym3 (1, 3) + 6.µsym3 (2, 1)

+11.µsym3 (3, 1) + 15.µsym3 (4, 1)

≤ 3.M̂3(3) + 6.µsym3 (2)

+11.µsym3 (3) + 15.µsym3 (4)

≤ 234.
5) Place Q and Divisor D: In the following, we use the notation of magma [13] for the representation of places

and divisors. In order to construct F357 we choose the place Q defined by

Q := (x57 + x56 + 2x54 + 2x53 + 2x51 + 2x50 + 2x49 + x48 + x46 + x43 + 2x42 + 2x41 + 2x39 + 2x38 +

2x37 + 2x36 + x35 + 2x32 + 2x29 + x28 + x27 + 2x26 + x25 + x24 + 2x23 + 2x21 + 2x20 + x19 + x18 + 2x15 +

x14 + 2x13 + x10 + 2x8 + x7 + x6 + 2x5 + x4 + x3 + 2x2 + x+ 2, z + 2x56 + x55 + x54 + x53 + x52 + 2x50 +

2x49 + x48 + 2x47 + 2x45 + 2x43 + 2x42 + 2x41 + 2x38 + 2x37 + 2x36 + 2x35 + x34 + x33 + x32 + 2x31 + 2x29 +

x28+2x25+2x24+x23+2x22+2x20+x19+2x18+x17+x15+2x13+2x12+x11+x10+x8+x6+2x5+x2+2x+1),

and we choose the following divisor D such that

D = (x57 + x55 + x53 + x48 + x46 + 2x45 + 2x43 + 2x42 + x40 + 2x36 + x35 + x34 + x33 + x32 + x29 +

2x27 +x26 + 2x24 + 2x23 + 2x21 + 2x18 + 2x17 +x16 + 2x13 +x12 + 2x10 + 2x9 +x8 + 2x7 + 2x6 + 2x3 + 2x2 +

x+ 2, z + x56 + 2x55 + x54 + x53 + 2x52 + x51 + x50 + 2x49 + x48 + 2x47 + 2x46 + 2x45 + x43 + 2x42 + 2x41 +

2x39 + x38 + x37 + x36 + 2x35 + 2x34 + x32 + 2x30 + 2x29 + 2x28 + x27 + x26 + x25 + x24 + x21 + x20 + 2x17 +

x16 + x13 + 2x12 + x10 + x9 + x8 + 2x7 + 2x6 + 2x5 + x4 + 2x2),

to construct B = {f1, . . . , f114} the basis of L (2D) containing a basis of L (D). Note that to construct the degree

57 divisor D it is sufficient to take a degree 57 place Q′ different from Q since the support of D must not contain

Q.

6) Interpolation Phase: In order to construct the function Fγ of L (2D), it suffices to use the relation (5) to

interpolate at all points chosen to obtain the bound 234. We classify the interpolation phase starting with places

used with derivative evaluation u > 1, and we finish by the ones used with no derivative evaluation.

• Derivative Evaluation

Remember that the higher multiplicity u = 3, occurs only with places of degree 1. This means that we use
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the local expansion at order 3 for all points of degree 1, hence for any function fi of the basis B we have

fi(P1[k]) = αi,0 + αi,1tk + αi,2tk
2, (6)

where αi,j is an element of F3, and tk is the local parameter for P1[k]. Using the relation (5) to interpolate

at points of degree 1 leads to (∑57
i=1 aifi(P1[ k ])

)
.
(∑57

i=1 bifi(P1[ k ])
)

=
∑114
i=1 cifi(P1[ k ]),

(7)

where k ∈ [1, . . . , 3], ai, bi, and ci ∈ F3. Substituting expression (6) in equation (7) allows us to write

(
A0 +A1tk +A2tk

2
)
.
(
B0 +B1tk +B2tk

2
)

= C0 + C1tk + C2tk
2,

(8)

where

A` =

57∑
i=1

aiαi,`, B` =

57∑
i=1

biαi,` and C` =

114∑
i=1

ciαi,`.

The quantity (8) is exactly the complexity of 3-multiplication of two 3-term polynomials of F3deg P1 [tk]. We

have M̂3(3) = 5, meaning that to obtain the three first coefficients of the product, we need the 5 bilinear

multiplications in F3deg P1

m1 = A0.B0,

m2 = A1.B1,

m3 = A2.B2,

m4 = (A0 +A1).(B0 +B1),

m5 = (A0 +A2).(B0 +B2).

Remember, if we use derivative evaluation with places of degree more than one, we should have 5 bilinear

multiplications in F3deg P , and finally we should add µsym3 (degP ) the bilinear complexity of multiplication in

F3deg P . This being said, for our example we use all 3 points of degree 1 with multiplicity 3, so we obtain 15

bilinear multiplications, the matrix representation of which is

m1

m4 −m1 −m2

m5 −m3 −m1 +m2

m6

m9 −m6 −m7

m10 −m8 −m6 +m7

m11

m14 −m11 −m12

m15 −m13 −m11 +m12



=



C0

C1

C2

C3

C4

C5

C6

C7

C8



.
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For places of higher degree, we use all of them with multiplicity 1, thus with no derivative evaluation.

• No Derivative Evaluation

Using the relation (5) to interpolate at points of degree degPj leads to

(
57∑
i=1

aifi(Pj [ k ])

)
.

(
57∑
i=1

bifi(Pj [ k ])

)
=

114∑
i=1

cifi(Pj [ k ]). (9)

For any function fi of the basis B, fi(Pj [ k ]) is an element of the finite field F3deg Pj in which a representation

is

F3deg Pj = F3(wk) =
F3[X]

< Pj [ k ] >
.

If the set {1, wk, . . . , wkj−1} denotes a basis of F3deg Pj , then there exist j elements, si,0, si,1, . . . , si,j−1 of

F3 such that

fi(Pj [ k ]) = si,0w
0
k + si,1w

1
k + · · ·+ si,j−1wk

j−1. (10)

Equation (10) allows us to rewrite relation (9) as

(
j−1∑
`=0

A`wk
`

)
.

(
j−1∑
`=0

B`wk
`

)
=

(
j−1∑
`=0

C`wk
`

)
, (11)

where

A` =

57∑
i=1

aisi,`, B` =

57∑
i=1

bisi,`, and C` =

114∑
i=1

cisi,`.

One can easily identify expression (11) as the multiplication of two elements of F3deg Pj over F3. The bilinear

complexity of multiplication is, in the case of interpolation at places with no derivative evaluation, µsym3 (degP ).

– When degP = 2 equation (11) becomes(
1∑
`=0

A`wk
`

)
.

(
1∑
`=0

B`wk
`

)
=

(
1∑
`=0

C`wk
`

)
,

and this expression is the multiplication of two elements of F32 over F3 which bilinear complexity µsym3 (2)

equals 3. It means that to obtain coefficients C0, C1, one needs three bilinear multiplications, obtained

with Karatsuba algorithm and defined by

m1 = A0.B0,

m2 = A1.B1,

m3 = (A0 +A1).(B0 +B1).
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– For degrees 3 places, we have µsym3 (3) = 6 where the 6 multiplications needed are

m1 = A0.B0,

m2 = A1.B1,

m3 = A2.B2,

m4 = (A0 +A1).(B0 +B1),

m5 = (A0 +A2).(B0 +B2),

m6 = (A1 +A2).(B1 +B2).

– Finally for degrees 4 places where µsym3 (4) = 9, with

m1 = A0.B0,

m2 = A1.B1,

m3 = A2.B2,

m4 = A3.B3,

m5 = (A0 +A1).(B0 +B1),

m6 = (A0 +A2).(B0 +B2),

m7 = (A2 +A3).(B2 +B3),

m8 = (A1 +A3).(B1 +B3),

m9 = (A0 +A1 +A2 +A3).(B0 +B1 +B2 +B3).

7) Evaluation at Place Q: In order to complete the multiplication algorithm, we have to reconstruct Fγ and

then evaluate it at the chosen place Q. The final matrix representation of the interpolation phase can be rewrite as


m1

m4 −m1 −m2

m5 −m3 −m1 +m2

m6

m9 −m6 −m7

m10 −m8 −m6 +m7

m11

m14 −m11 −m12

m15 −m13 −m11 +m12

.

.

.

.

.

.

.

.

.

m1 + · · · + 2m230 −m231 +m234


︸ ︷︷ ︸

M

=



11101101 . . . 01020010

01001110 . . . 10200110

21201101 . . . 01020022

21201101 . . . 10221122

11201011 . . . 02021010

11201110 . . . 11020011

01201101 . . . 01020112

11201001 . . . 01020211

.

.

.

.

.

.

.

.

.

21201110 . . . 01020011

01201111 . . . 01020011


︸ ︷︷ ︸

G



c1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

c114



.

︸ ︷︷ ︸
c

Since G is invertible, we have G−1.M = (c1, . . . , c114) and then the only function Fγ of L (2D) such that

Fα.Fβ = Fγ is

Fγ = c1f1 + · · ·+ c114f114.

Recall that to obtain the product α.β we just have to evaluate Fγ at the place Q so

α.β = Fγ(Q) = c1f1(Q) + · · ·+ c114f114(Q).
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8) Final product αβ: To complete the algorithm, we must find coefficients ĉi for i [1..57] such that

(
57∑
i=1

aifi

)
.

(
57∑
i=1

bifi

)
=

57∑
i=1

ĉifi.

Let

(e1, . . . , e114) = (f1(Q), . . . , f114(Q))

With these notations we have

Fγ(Q) = c1e1 + · · ·+ c57e57 + c58e58 + · · ·+ c114e114.

Vectors (e1, . . . , e57) form a basis of F357 as (f1, . . . , f57) is a basis of L (D), then to find coefficients ĉi for

i ∈ [1..57], it is sufficient to express vectors (e58, . . . , e114) according to (e1, . . . , e57). This leads to

e58 = e1 + 2e2 + · · ·+ e57,
...

...

e114 = 2e1 + e2 + · · ·+ 257,

and bringing together terms in (e1, . . . , e57), we finally get

αβ = (c1 + c58 + · · ·+ c114)︸ ︷︷ ︸
ĉ1

e1 + · · ·+ (c57 + · · ·+ 2c114)︸ ︷︷ ︸
ĉ57

e57.

Remark IV.1. Explicit formulas for the multiplication in F357 and the verification program to execute with Magma

can be found in [31].
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