Stéphane Ballet 
  
Alexis Bonnecaze 
  
Mila Tukumuli 
  
On the Construction of Elliptic Chudnovsky-Type Algorithms for Multiplication in Large Extensions of Finite Fields

Keywords: Multiplication algorithm, bilinear complexity, elliptic function field, interpolation on algebraic curve, finite field. I

We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, using the symmetric version of the generalization of Randriambololona specialized on the elliptic curves, we show that it is possible to construct such algorithms with low bilinear complexity. More precisely, if we only consider the Chudnovsky-type algorithms of type symmetric elliptic, we show that the symmetric bilinear complexity of these algorithms is in O(n(2q) log * q (n) ) where n corresponds to the extension degree, and log * q (n) is the iterated logarithm. Moreover, we show that the construction of such algorithms can be done in time polynomial in n.

Finally, applying this method we present the effective construction, step by step, of such an algorithm of multiplication in the finite field F 3 57 .

us to obtain multiplication algorithms with low bilinear complexity. Our objective is to construct explicitely such multiplication algorithms for large finite extensions of finite fields. The Chudnovsky-Chudnovsky method and its variants have been extensively studied these last years through the work of Shparlinsky, Tsfasmann, Vladut [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF], Baum and Shokrollahi [START_REF] Baum | An optimal algorithm for multiplication in F 256 /F 4[END_REF], Ballet and Rolland [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], [START_REF] Ballet | On the bilinear complexity of the multiplication in finite fields[END_REF], Chaumine [START_REF] Chaumine | Multiplication in small finite fields using elliptic curves[END_REF], Arnaud [START_REF] Arnaud | Évaluation Dérivées, Multiplication dans les Corps Finis et Codes Correcteurs[END_REF], Cenk-Ozbudak [START_REF] Cenk | On multiplication in finite fields[END_REF] and Cascudo, Cramer, Xing and Yang [START_REF] Cascudo | Asymptotic Bound for Multiplication Complexity in the Extensions of Small Finite Fields[END_REF], and recently Randriambololona [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]. Indeed, the studies on the subject are of both theoretical and practical importance: theoretically, the bilinear complexity is linked to the tensor rank and in practice, it is related to the number of gates in an electronic circuit. However, most of the work focused on the improvement of the bounds on the bilinear complexity and the theoretical aspects of the Chudnovsky-type algorithms (in particular the underlying geometry of Riemann-Roch spaces).

A. Multiplication algorithm and tensor rank

In this article, we focus on the construction of algorithms realizing the multiplication in extensions of finite fields with a minimal number (called bilinear complexity) of two-variable multiplications (called bilinear multiplications) without considering the other operations as multiplications by a constant (called scalar multiplications). Let us first recall the notions of multiplication algorithm and associated bilinear complexity in terms of tensor rank as is done in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF].

Definition I.1. Let K be a field, and E 0 , . . . , E s be finite dimensional k-vector spaces. A non zero element t ∈ E 0 ⊗ • • • ⊗ E s is said to be an elementary tensor, or a tensor of rank 1, if it can be written in the form t = e 0 ⊗ • • • ⊗ e s for some e i ∈ E i . More generally, the rank of an arbitrary t ∈ E 0 ⊗ • • • ⊗ E s is defined as the minimal length of a decomposition of t as a sum of elementary tensors.

Definition I.2. If α : E 1 × • • • × E s -→ E 0
is an s-linear map, the s-linear complexity of α is defined as the tensor rank of the element

α ∈ E 0 ⊗ E ∨ 1 ⊗ • • • ⊗ E ∨ s
where E ∨ i denotes the dual of E i as vector space over K for any integer i, naturally deduced from α. In particular, the 2-linear complexity is called the bilinear complexity.

Definition I.3. Let A be a finite-dimensional K-algebra. We denote by µ(A/K) the bilinear complexity of the multiplication map m A : A × A -→ A considered as a K-bilinear map.
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In particular, if A = F q n and K = F q , we let:

µ q (n) = µ(F q n /F q ).
More concretely, µ(A/K) is the smallest integer n such that there exist linear forms φ 1 , . . . , φ n and ψ 1 , . . . , ψ n : A -→ K, and elements w 1 , . . . , w n ∈ A, such that for all x, y ∈ A one has

xy = φ 1 (x)ψ 1 (y)w 1 + • • • + φ n (x)ψ n (y)w n , (1) 
since such an expression is the same thing as a decomposition

T M = n i=1 w i ⊗ φ i ⊗ ψ i ∈ A ⊗ A ⊗ A ∨ . ( 2 
)
for the multiplication tensor of A.

Definition I.4. We call multiplication algorithm of length n for A/K a collection of φ i , ψ i , w i that satisfy [START_REF] Arnaud | Évaluation Dérivées, Multiplication dans les Corps Finis et Codes Correcteurs[END_REF] or equivalently a tensor decomposition

T M = n i=1 w i ⊗ φ i ⊗ ψ i ∈ A ⊗ A ⊗ A ∨
for the multiplication tensor of A. Such an algorithm is said symmetric if φ i = ψ i for all i (this can happen only if A is commutative).

Hence, when A is commutative, it is interesting to study the minimal length of a symmetric multiplication algorithm.

Definition I.5. If A is a finite-dimensional K-algebra. The symmetric bilinear complexity

µ sym (A/K)
is the minimal length of a symmetric multiplication algorithm.

In particular, if A = F q n and K = F q , we let:

µ sym q (n) = µ sym (F q n /F q ).

B. Known results

In their seminal papers, Winograd [START_REF] Winograd | On Multiplication in Algebraic Extension Fields[END_REF] and De Groote [START_REF] De Groote | Lectures on the Complexity of Bilinear Problems[END_REF] have shown that µ(F q n /F q ) ≥ 2n -1, with equality holding if and only if n ≤ 1 2 q + 1. Winograd have also proved [START_REF] Winograd | On Multiplication in Algebraic Extension Fields[END_REF] that optimal multiplication algorithms realizing the lower bound belong to the class of interpolation algorithms. Later, generalizing interpolation algorithms on the projective line over F q to algebraic curves of higher genus over F q , Chudnovsky and Chudnovsky provided a method [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] which enabled to prove the linearity [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] of the bilinear complexity of multiplication in finite extensions of a finite field. Moreover, they proposed the first known multiplication algorithm using interpolation to algebraic function fields (of one variable) over F q . This is the so-called Chudnovsky and Chudnovsky algorithm, also called Chudnovsky algorithm to simplify. Then, several studies focused on the qualitative improvement of this algorithm October 13, 2013 DRAFT (for example [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], [START_REF] Arnaud | Évaluation Dérivées, Multiplication dans les Corps Finis et Codes Correcteurs[END_REF], [START_REF] Cenk | On multiplication in finite fields[END_REF], [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]) as well as the improvements of upper bounds (for example [START_REF] Ballet | On the bilinear complexity of the multiplication in finite fields[END_REF], [START_REF] Ballet | On the tensor rank of multiplication in any extension of F 2[END_REF]) and asymptotic upper bounds (for example [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF], [START_REF] Cascudo | Asymptotic Bound for Multiplication Complexity in the Extensions of Small Finite Fields[END_REF]) of the bilinear complexity. However, few studies have been devoted to the effective construction of Chudnovsky-type algorithms, and in particular no work has been done when the degree of extensions reaches a cryptographic size. Indeed, the first known effective finite fields multiplication through interpolation on algebraic curves was proposed by Shokrollahi and Baum [START_REF] Baum | An optimal algorithm for multiplication in F 256 /F 4[END_REF]. They used the Fermat curve

x 3 + y 3 = 1 to construct multiplication algorithm over F 4 4 with 8 bilinear multiplications. In [START_REF] Ballet | Quasi-optimal algorithms for multiplication in the extensions of F 16 of degree 13, 14 and 15[END_REF], Ballet proposed one over F 16 n where n ∈ [START_REF] Bosma | The Magma Algebra System I. The user language[END_REF][START_REF] Cascudo | Asymptotic Bound for Multiplication Complexity in the Extensions of Small Finite Fields[END_REF][START_REF] Cenk | Improved Polynomial Multiplication Formulas over F 2 Using Chinese Remainder Theorem[END_REF], using the hyperelliptic curve y 2 +y = x 5 with 2n+1 bilinear multiplications.

Notice that these aforementioned two algorithms only use rational points, and multiplicity equals to one. Recently

Cenk and Özbudak proposed in [START_REF] Cenk | On multiplication in finite fields[END_REF] an explicit multiplication algorithm in F 3 9 with 26 bilinear multiplications.

To this end, they used the elliptic curve y 2 = x 3 + x + 2 with points of higher degree and higher multiplicity.

C. Organization of the paper and new results

In Section 2, we fix the notation and we recall the different versions of Chudnovsky-type algorithms. Then in Section 3, we present a strategy in order to construct multiplication algorithms of type Chudnovsky in arbitrary large extensions of finite fields. In particular, we show that from an elliptic curve defined over any finite field F q , we can exhibit a symmetric version of the generalization of Randriambololona (specialized on the elliptic curves) for any extension of F q of degree n, with low bilinear complexity. More precisely, if we only consider the Chudnovsky-type algorithms of type symmetric elliptic, we show that the symmetric bilinear complexity of these algorithms is in

O(n(2q) log * q (n) ).
Even if this asymptotic complexity is quasi-linear, it has the advantage of being derived from an infinite family of symmetric algorithms with a fixed genus equal to one. Fixing the genus to one allows us to control the complexity of the construction, meaning that for finite fields of cryptographic size, one can construct in a reasonable time such algorithms. Hence, our strategy leads to fully constructive methods. Indeed, we prove that the complexity of the construction of symmetric elliptic algorithms is in time polynomial in n. Notice that with the usual strategy based upon the construction of algorithms with growing genus, the complexity of construction is not known because it is a hard problem to explicitly construct a point with a high degree [28, Section 4, Remarks 5]. Finally in Section 4, we present new upper bounds for large extensions of F 2 and F 3 , and we also propose the effective construction, step by step, of an algorithm of multiplication in F 3 57 .

II. MULTIPLICATION ALGORITHMS OF TYPE

We start with some elementary terminology and results of algebraic function fields. A comprehensive course of the subject can be found in [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF].

A. Notation

An algebraic function field F/F q of one variable over F q is an extension field F ⊇ F q such that F is a finite extension of F q (x) for some element x ∈ F which is transcendental over F q . A valuation ring of the function field F/F q is a ring O ⊆ F such that F q ⊂ O ⊂ F and for any z ∈ F , either z ∈ O or z -1 ∈ O. A place P of October 13, 2013 DRAFT the function field F/F q is the maximal ideal of some valuation ring O of F/F q . If O is a valuation ring of F/F q and P is its maximal ideal, then O is uniquely determined by P hence we denote O by O P . Every place P can be written as P = tO P , where t is the local parameter for P . We will denote the set of all places of F/F q as P F . For a place P , F P := O P /P is called the residue class field of P. The map x → x(P ) from F to F P ∪ {∞} is called the residue class map with respect to P. The degree of P is defined by [F P : F q ] := deg P . The free abelian group which is generated by the places of F/F q is called the divisor group of F/F q and it is denoted by D F , so a divisor is a formal sum D = P ∈P F n P P , with n P ∈ Z almost all n P = 0, of degree deg(D) = P ∈P F v P (D). deg P where v P is a discrete valuation associated to the place P . The support of a divisor D denoted supp D is the set of places P with v P (D) = 0. For a function f ∈ F/F q , we denote by (f ) = P ∈P F v P (f ).P the principal divisor of

f . If D is a divisor then L (D) = {f ∈ F | D + (f ) ≥ 0} ∪ {0} is the Riemann-Roch space which is a F q -vector space. The integer (D) = dim L (D) is called the dimension of D and i(D) = dim D -deg D + g -1 is the index of specialty of D.
We say that D is non-special if i(D) = 0 and special otherwise.

B. Generalization of Arnaud and Cenk-Ozbudak

A drawback of the original algorithm is that it only uses rational points. In 1999, S. Ballet and R. Rolland generalized in [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF] the algorithm using places of degree 1 and 2. The best finalized version of this algorithm in this direction, is the generalization introduced by Arnaud in [START_REF] Arnaud | Évaluation Dérivées, Multiplication dans les Corps Finis et Codes Correcteurs[END_REF] and improved by Cenk and Özbudak in [START_REF] Cenk | On multiplication in finite fields[END_REF].

This generalization uses several coefficients in the local expansion at each place P i . The bound for the bilinear complexity involves the complexity notion M q (u) introduced by Cenk and Özbudak in [START_REF] Cenk | On multiplication in finite fields[END_REF] and defined as follows:

Definition II.1. We denote by M q (u) the minimum number of multiplications in F q needed to obtain coefficients of the product of two arbitrary u-term polynomials modulo

x u in F q [x].
For instance, we know that for all prime powers q, we have M q (2) ≤ 3 by [START_REF] Cenk | Improved Polynomial Multiplication Formulas over F 2 Using Chinese Remainder Theorem[END_REF]. Now, we introduce the generalized algorithm of type Chudnovsky described in [START_REF] Cenk | On multiplication in finite fields[END_REF].

Theorem II.2. Let

• q be a prime power,

• F/F q be an algebraic function field,

• Q be a degree n place of F/F q ,

• D be a divisor of F/F q ,

• P = {P 1 , . . . , P N } be a set of N places of arbitrary degree,

• u 1 , . . . , u N be positive integers.

We suppose that Q and all the places in P are not in the support of D and that: a) the map

Ev Q :    L(D) → F q n F Q f -→ f (Q) October 13, 2013 DRAFT is onto, b) the map Ev P :    L(2D) -→ F q deg P 1 u1 × • • • × F q deg P N u N f -→ ϕ 1 (f ), ϕ 2 (f ), . . . , ϕ N (f )
is injective, where the application ϕ i is defined by

ϕ i :    L(2D) -→ F q deg P i ui f -→ f (P i ), f (P i ), . . . , f (ui-1) (P i ) with f = f (P i ) + f (P i )t i + f (P i )t 2 i + • • • + f (k) (P i )t k i + . . ., the local expansion at P i of f in L(2D)
, with respect to the local parameter t i . Note that we set f (0) = f . Then

µ sym q (n) ≤ N i=1 µ sym q (deg P i ) M q deg P i (u i ).

C. Generalization of Randriambololona

In 2012, Randriambololona introduced in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF] a possibly asymmetric generalization of this algorithm. Furthermore, he introduced a new quantity µ q (deg P i , u i ) to deal with both, the degree and the multiplicity, at the same time.

Definition II.3. For any integers n, l ≥ 1 we consider the F q -algebra of polynomials in one indeterminate with coefficients in F q n , truncated at order l:

A q (n, l) = F q n [t]/(t l ) of dimension dim Fq A q (n, l) = nl,
and we denote by µ q (n, l) = µ(A q (n, l)/F q ) its bilinear complexity over F q and by

µ sym q (n, l) = µ sym (A q (n, l)/F q )
its symmetric bilinear complexity over F q .

Remark II.4. When l = 1, we have µ q (n, 1) = µ q (n) which corresponds to the bilinear complexity of multiplication in F q n over F q ; and when n = 1, we have µ q (1, l) = M q deg P i (l) which represents the quantity defined by Cenk and Ozbudak [START_REF] Cenk | On multiplication in finite fields[END_REF].

We recall here the presentation of Randriambololona's generalization [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF] which corresponds to the asymmetric version of Chudnovsky type algorithms. By a thickened point in the algebraic curve X defined over F q , we mean [START_REF] Winograd | On Multiplication in Algebraic Extension Fields[END_REF] DRAFT any closed subscheme of X supported on a closed point (of arbitrary degree). If Q is a closed point in X, we denote by I Q the sheaf of ideals defining it and for any integer l ≥ 1, we let Q [l] be the closed subscheme of X defined by the sheaf of ideals (I Q ) l . Then Q [l] is the thickened point supported on Q. If D is a divisor on X, we denote by L(D) = Γ(X, O X (D)) its Riemann-Roch space.

Theorem II.5. Let C be a curve of genus g over F q , and let n, l ≥ 1 be two integers. Suppose that C admits a

closed point Q of degree deg Q = n.
Let G be an effective divisor on C, and write

G = u 1 P 1 + • • • + u N P N
where the P i are pairwise distinct closed points, of degree deg

P i = d i . Suppose there exist two divisors D 1 , D 2
on C such that:

(i) The natural evaluation map

L(D 1 + D 2 ) -→ N i=1 O C (D 1 + D 2 ) | P [u i ] i is injective.
(ii) The natural evaluation maps

L(D 1 ) -→ O C (D 1 ) | Q [l] L(D 2 ) -→ O C (D 2 ) | Q [l]
are surjective.

Then

µ q (n, l) ≤ N i=1 µ q (d i , u i ).
In fact, we also have µ q (n, l) ≤ µ(

N i=1 A q (d i , u i )/F q ). Moreover, if D 1 = D 2
, all these inequalities also hold for the symmetric bilinear complexity µ sym q . Sufficient numerical criteria for the hypotheses above to hold can be given as follows. A sufficient condition for the existence of Q of degree n on C is that 2g + 1 ≤ q (n-1)/2 (q 1/2 -1), while sufficient conditions for (i) and (ii) are:

(i') The divisor D 1 + D 2 -G is zero-dimensional: l(D 1 + D 2 -G) = 0. (ii') The divisors D 1 -lQ and D 2 -lQ are non-special: i(D 1 -lQ) = i(D 2 -lQ) = 0.
More precisely, (i) and (i ) are equivalent, while (ii ) only implies (ii) a priori.

The improvement suggested by Randriambololona in relation with bilinear complexity leads to the following inequality

µ q (deg P i , u i ) ≤ µ q (deg P i ) M q deg P i (u i ),
October 13, 2013 DRAFT where µ q (deg P i , 1) = µ q (deg P i ) is the bilinear complexity of multiplication in F q deg P i over F q , and µ q (1, u i ) = M q deg P i (u i ) is the complexity previously defined in Definition II.1. We present in Table I the best known bounds for µ q (n) for small values of n (cf. [START_REF] Montgomery | Five, Six, and Seven-Term Karatsuba-Like Formulae[END_REF], [START_REF] Cenk | On multiplication in finite fields[END_REF], [START_REF] Barbulescu | Finding Optimal Formulae for Bilinear Maps[END_REF]). 

III. CONSTRUCTION OF CERTAIN ALGORITHMS OF TYPE CHUDNOVSKY

A. Strategies of construction

So far, the strategy to obtain upper bounds for bilinear complexity of multiplication in F q n over F q , has always been to apply algorithms of type Chudnovsky on infinite families (specially some towers) of algebraic function fields defined over a fixed finite field F q , with genus growing to infinity and for few fixed degrees of places. Unfortunately this strategy has a weak point since growing the genus could hugely increase the complexity of the construction.

However, there exists another strategy which corresponds to using the degree of freedom that remains: the degree of places. Technically, this approach consists in fixing the genus while increasing the degree of places. This new way, implied in the generalization of Arnaud and Cenk-Ozbudak, has never been investigated and requires introducing new complexity notions.

Our purpose here is to develop this strategy in the case of elliptic function fields. The choice of algebraic curves of genus one was made for two main reasons:

1) Elliptic curves are heavily used to construct cryptographic primitives. Indeed, using the same elliptic curve for both the multiplication and the cryptographic algorithms could improve the efficiency in secure embedded systems.

2) The effective construction of such elliptic algorithms can be completed within a reasonable time. More precisely, we prove that the complexity of the construction of a symmetric elliptic bilinear multiplication algorithm in

F q n is in time polynomial in n.
Our main tool will be a result obtained by Randriambololona in [25, Proposition 4.3] which generalizes results

of Shokrollahi [START_REF] Shokrollahi | Optimal algorithms for multiplication in certain finite fields using elliptic curves[END_REF], Chaumine [START_REF] Chaumine | Multiplication in small finite fields using elliptic curves[END_REF], and Cenk-Ozbudak [START_REF] Cenk | On multiplication in finite fields[END_REF].

Let C/F q be an elliptic curve defined over F q with a chosen point P ∞ . The set C(F q ) of rational points over F q admits a structure of finite abelian group with identity element P ∞ and a cardinal N 1 (C(F q )). Moreover, there is a October 13, 2013 DRAFT map σ : Div(C) -→ C(F q ) uniquely defined by the condition that each divisor D of degree d is linearly equivalent to the divisor σ(D) + (d -1)P ∞ . This map σ is a group morphism, it passes to linear equivalence, and induces an isomorphism of the degree 0 class group Cl 0 (C). First, let us recall the result obtained by Randriambololona in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Proposition 4.3]. In fact, this result is very general since it gives upper bounds on µ q (n, l) and µ sym q (n, l), while we are interested only in µ sym q (n), so we cite only part b) c) and d) of this Proposition restricted to this special case:

Proposition III.1. Let C be an elliptic curve over F q , n be an integer. Suppose that C admits a closed point Q of degree n. Let G be an effective divisor on C, and write

G = u 1 P 1 + • • • + u N P N
where P i are pairwise distinct closed points, of degree deg P i , so

deg G = N i=1 deg P i .u i .
Then

µ q,C (n, 1) ≤ N i=1 µ q (deg P i , u i ), (3) 
provided if one of the following conditions is satisfied:

1) C admits at least two points of degree one and deg G ≥ 2n, and either not all of these points are of 2-torsion, or σ(G) = P ∞ .

2) deg G ≥ 2n + 1 and C admits at least two points of degree one, all of which are of 2-torsion.

3) C admits only one point of degree one and deg G ≥ 2n + 3.

Remark III.2. In the applications we will be interested mostly in constructing multiplication algorithms for extensions of F 2 and F 3 , so it will be useful to list all elliptic curves over these fields (up to isomorphism) and to specify which case of Proposition II.1 applies to each. In fact this could be done also for any q, and it is easy to see that the case that should apply most of the time is case 1). Indeed, it is known that the 2-torsion subgroup of an elliptic curve can only be {0}, Z/2Z, or Z/2Z × Z/2Z (in characteristic = 2), and because of the Hasse bound, as soon as q = 2, 3, 4, 5, 7, 9, hence except for finitely many curves, the group of rational points is not entirely of 2-torsion, as asked in condition 1). These finitely many exceptional curves are easily found by direct enumeration: a) Up to isomorphism, the only elliptic curves over F q with group of points reduced to {0} are

y 2 + y + (x 3 + x + 1) = 0, if q = 2, y 2 -(x 3 + 2x + 2) = 0, if q = 3, y 2 + y + (x 3 + a) = 0, if q = 4 and F 4 = F 2 (a),
so for these curves we use case 3) of Proposition III.1.

October 13, 2013 DRAFT b) Up to isomorphism, the only elliptic curves over F q with group of points equal to Z/2Z are

y 2 + xy + x 3 + x 2 + 1 = 0 if q = 2, y 2 -(x 3 + 2x 2 + 2) = 0 if q = 3,
y 2 + xy + (x 3 + ax 2 + 1) = 0 if q = 4 and F 4 = F 2 (a), y 2 -(x 3 + 2x) = 0 if q = 5,
so for these curves we use 1) of Proposition III.1 if σ(G) = P ∞ , and we use 2) else.

c) Up to isomorphism, the only elliptic curves over F q with group of points equal to Z/2Z × Z/2Z are

y 2 + y + 2x 3 + x + 1 = 0 if q = 3,
y 2 + 4x 3 + 4x = 0 if q = 5,
y 2 + 6x 3 + 1 = 0 if q = 7,
y 2 + (x + 1)y + 2x 3 + x 2 + ax + 1 = 0 if q = 9 and F 9 = F 3 (a),
so for these curves we use 1) of Proposition III.1 if σ(G) = P ∞ , and we use 2) else.

d) For all other curves, there is at least one point of degree one that is not of 2-torsion, so we can use case 1) of Proposition III.1. Particularly for q = 2, elliptic curves are

y 2 + y + x 3 = 0 y 2 + y + x 3 + x = 0 y 2 + xy + x 3 + 1 = 0,
and for q = 3, we obtain y 2 + 2x 3 + 2x = 0

y 2 + 2x 3 + x + 2 = 0 y 2 + 2x 3 + 2x 2 + 2 = 0 y 2 + 2x 3 + 2x 2 + 1 = 0 y 2 + 2x 3 + x 2 + 2 = 0.
Also one can easily check that these curves all admit a closed point of degree n as soon as n ≥ 7 if q = 2, n ≥ 4, if q = 3 and n ≥ 3 if q ≥ 4.

B. Recursive elliptic algorithms

Now we are interested in the following quantities:

Definition III.3. For any integer n, let

µ sym q,1 (n)
denote an upper bound on µ sym q (n) obtained by applying Proposition III.1, possibly recursively with various elliptic curves, and starting from the values in Table I.

Likewise, given an elliptic curve C/F q , let µ sym q,C (n)

October 13, 2013 DRAFT denote an upper bound on µ sym q (n) obtained by applying Proposition III.1, possibly recursively but only with the curve C, and starting from the values in Table I.

Definition III.4. The iterated logarithm of n, written log * q (n) defined by the following recursive function:

log * q (n) =    0 if n ≤ 1
1 + log * q (log q (n)) otherwise, corresponds to the number of times the logarithm function must be iteratively applied to n before the result is less than or equal to 1.

Theorem III.5. Let q be a prime power and let C be an elliptic curve defined over F q . Then, for any integer n such that n ≥ 7 if q = 2, n ≥ 4 if q = 3 and n ≥ 3 if q ≥ 4, there exists a symmetric elliptic bilinear algorithm of type Theorem II.5 constructed from the curve C such that

µ sym q,C (n) ∈ O n(2q) log * q (n) .
Notice that (2q) log * q (n) is a very slowly growing function, as illustrated in Table II.

TABLE II VALUES FOR (2q) log * q (n) FOR q = 2 AND n ≤ 2 65536 . n log * (n) (2q) log * q (n) (1, 2] 1 4 
( Proof: Without loss of generality, let C be an elliptic curve which the model does not appear in case a) and b) of Remark III.2. Let G be the divisor on C such that

G = u 1 P 1 + • • • + u N P N .
Concentrating on the worst case, we can assume that

• we do not use derivative evaluation, that is

u i = 1 for 1 ≤ i ≤ N ,
• we only use places of a fixed degree, that is deg(P

1 ) = • • • = deg(P N ) = d 1 .
With these assumptions 

G = P 1 + • • • + P B d 1 ,
(G) = d 1 B d1 ≥ 2n, then µ sym q,C (n) ≤ B d 1 i=1 µ sym q,C (deg P i ) = B d1 µ sym q,C (d 1 ). (4) 
October 13, 2013 DRAFT From [29, Corollary 5.2.10] applied to elliptic curves, we know that B d1 verifies

q d1 d 1 -9 q d1/2 d 1 < B d1 < q d1 d 1 + 9 q d1/2 d 1 .
Asymptotically, B d1 ∈ O q d 1 d1

and then deg(G) ∈ O(q d1 ). Let d 1 be the smallest integer such that q d1 ≥ 2n, then q d1-1 < 2n and we have d 1 ∈ O log q (2n) . Thus

µ sym q,C (n) ∈ O B d1 µ sym q,C (d 1 )
and then

µ sym q,C (n) ∈ O 2nq d 1 µ sym q,C (d 1 )
.

Using recursively the process, we obtain

µ sym q,C (d 1 ) ∈ O 2d 1 q d 2 µ sym q,C (d 2 ) ,
where d 2 ∈ O log q (2d 1 ) . With this procedure, we have that µ sym q,C (n) belongs to

O 2nq d 1 • 2d 1 q d 2 • • • • • 2d k-2 q d k-1 • 2d k-1 q µ sym q,C (d k ) d k , with d i ∈ O log q (2d i-1 )
, for 1 ≤ i ≤ k, and consequently

µ sym q,C (n) ∈ O n(2q) k • µ sym q,C (d k ) d k .
Let k = log * q (2n), then we have

d k ∈ O   log q (log q (. . . (log q k terms (2n)) . . .))    ≤ 1,
and thus

µ sym q,C (d k ) d k ≤ 1.
Finally

µ sym q,C (n) ∈ O n • (2q) log * q (n) .
Corollary III.6. For any integer n such that n ≥ 7 if q = 2, n ≥ 4 if q = 3 and n ≥ 3 if q ≥ 4, there exists a symmetric elliptic bilinear algorithm of type Theorem II.5 constructed from a curve of genus one and from an effective divisor

G = u 1 P 1 + • • • + u N P N ,
on this curve, where the P i are N pairwise distinct closed points, of degree deg P i = d i , and the u i are strictly positive integers, such that

µ sym q,1 (n) ∈ O n • (2q) log * q (n) .
October 13, 2013 DRAFT Proof: The proof is similar to the proof of Theorem III.5. Indeed, for a fixed genus g, the number B d of places of degree d, as claimed in [29, Corollary 5.2.10], is such that

q d d -(2 + 7g) q d/2 d < B d < q d d + (2 + 7g) q d/2 d .
Thus, for each curve of genus g, B d is asymptotically the same. Consequently, changing the model of the elliptic curve does not change the proof, and does not change asymptotically the bilinear complexity.

Elliptic curves have already been used to bound the bilinear complexity of multiplication (see for example the work of Shokrollahi [START_REF] Shokrollahi | Optimal algorithms for multiplication in certain finite fields using elliptic curves[END_REF], Ballet [START_REF] Ballet | An improvement of the construction of the D.V. and G.V. Chudnovsky algorithm for multiplication in finite fields[END_REF], and Chaumine [START_REF] Chaumine | Multiplication in small finite fields using elliptic curves[END_REF]). Recently, Couveignes and Lercier [START_REF] Couveignes | Elliptic periods for finite fields[END_REF] proposed a multiplication algorithm for finite field extensions F q n , using normal elliptic bases. Their multiplication tensor consists in 5 convolution products, 2 component-wise products, 1 addition and 3 subtractions. Note that convolution products can be computed at the expense of O (n log n log | log(n)|) operations in F q . Asymptotically, the tensor they produce is not competitive with ours from the point of view of bilinear complexity.

C. Complexity of the construction

Studies on bilinear complexity are well advanced, however we do not know a single polynomial construction of bilinear multiplication algorithm with linear or quasi-linear multiplicative complexity. In the case of bilinear multiplication algorithm with linear multiplicative complexity, namely the case of the usual strategy based upon the construction with growing genus, we cannot give information about the complexity of construction. Indeed, it is completely unclear how to construct explicitly points of high degree [28, Section 4, Remarks 5]. However, using the new strategy with elliptic curves, we show that we can polynomially construct symmetric elliptic bilinear multiplication algorithms with quasi-linear multiplicative complexity.

Lemma III.7. Let E be an elliptic curve defined over F q and let F/F q be the associated elliptic function field.

Then we can construct a degree n place of F/F q in time polynomial in n.

Proof: In order to construct a degree n place Q of the elliptic function field F/F q , firstly we have to construct a rational point P = (x P , y P ) of E defined over F q n and then, we need to apply to the point P, n-times the Frobenius map ϕ defined by ϕ :

E(F q n ) -→ E(F q n ) (x, y) -→ (x q , y q ).
Thus the orbit of P obtained under the action of ϕ is a degree n place. In 2006, Shallue and Van De Woestijne [START_REF] Shallue | Construction of Rationals points on elliptic curves ove finite fields[END_REF] gave a deterministic polynomial-time algorithm that computes a nontrivial rational point given a Weierstrass equation for the elliptic curve. More precisely, they performed the computation of a nontrivial rational point on an elliptic curve E defined over F q in time polynomial in log(q). It follows that P can be constructed in time polynomial in log(q n ), and thus in time polynomial in n since q is fixed. The action of the Frobenius map ϕ on the point P is simply a modular exponentiation that can be done polynomially. Consequently, constructing a degree n place of an elliptic function field can be done in time polynomial in n.

October 13, 2013 DRAFT Theorem III.8. Given an elliptic curve E defined over F q , one can polynomially construct a sequence A q,n of symmetric elliptic bilinear multiplication algorithms in finite fields F q n for the given sequence n → +∞ such that

µ sym q,E (A q,n ) ∈ O n(2q/K) log * q (n) ,
where K = 2/3 if the characteristic of F q is 2 or 3, and K = 5/8 otherwise.

Proof: Let F/F q be the elliptic function field associated to the curve E. According to the proof of Theorem III.5, to construct a symmetric elliptic multiplication algorithm in F q n over F q , we first have to construct places and divisor of certain degree. Indeed, we need to construct

• a place Q of degree n of F/F q ,
• a divisor D of degree n of F/F q ,

• a sufficient number N of degree d places of F/F q , such that the degree of the divisor G formed by these N places, is greater or equal to 2n.

The divisor D and the place Q are equivalent in terms of construction (in practice we can take any place to construct a divisor [START_REF] Ballet | Quasi-optimal algorithms for multiplication in the extensions of F 16 of degree 13, 14 and 15[END_REF]), so their complexities of construction are similar and from Lemma III.7 this complexity is in time polynomial in n. The point now is to construct sufficiently places of degree d of F/F q . To achieve this, from lemma III.7 it suffices to construct rational points of the curve E over F q d . Icart [START_REF] Icart | How to hash into Elliptic Curves[END_REF] shows that it is possible to construct deterministically, a constant proportion K of the number of rational points of an elliptic curve defined over F q . More precisely, his method allows us to construct K = 5/8 of the number of rational points in time polynomial in log 3 (q). Note that if the characteristic of F q is 2 or 3, Farashi et al. [START_REF] Farashi | On Hasing into Elliptic Curves[END_REF] proved that K = 2/3.

This implies that asymptotically, we can construct in time polynomial in log 3 (q d ), a sufficient number of places of degree d of F/F q by choosing d such that q d ≥ 2n/K. Finally, the complexity of construction of places of degree d is polynomial in log 3 (n), thus polynomial in n. In conclusion, we can polynomially construct symmetric elliptic bilinear multiplication algorithms since for a given divisor D, construct vector spaces L (D), L (2D), associated basis B D , B 2D and evaluation maps Ev Q , Ev P can be done polynomially [28, Section 4, Remarks] (cf. also [START_REF] Tsfasman | Algebraic-Geometry Codes (Translated from the russian by the authors)[END_REF]p. 509,Remark 4.3.33]).

Remark III.9. This complexity can indeed be refined. We plan to study in detail this problem in a forthcoming work.

IV. UPPER BOUNDS AND EXAMPLE OF CONSTRUCTION

Using our strategy, we propose in this section:

• upper bounds of symmetric bilinear complexity for large extension of finite fields F 2 and F 3 , and

• an example of a multiplication algorithm construction.

In order to obtain the best bounds of symmetric bilinear complexity, we use our Remark III.2 not with bounds µ sym q,C (deg P i , u i ) derived from the same elliptic curve C, but with the better known bounds for µ sym q (deg P i , u i ) as in Proposition III.1. Moreover, for a fixed n, to obtain the best bounds of symmetric bilinear complexity, we need October 13, 2013 DRAFT to find the best curve of genus one and thus we compute, not µ sym q,C (n) but µ sym q,1 (n). We note throughout the rest of the paper µ sym q (n) instead of µ sym q,1 (n).

A. New Bounds

In elliptic curve cryptography, the NIST (National Institute of Standards and Technology) [START_REF]Digital Signature Standard[END_REF] suggests to use finite fields with 2 163 , 2 233 , 2 283 , 2 409 and 2 571 elements. Randriambololona in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF] obtained the following bound

µ sym 2 (163) ≤ 910.
We improve this bound

µ sym 2 (163) ≤ 906.
In order to upgrade µ sym 2 (163), we seek out of the curves given in Remark III.2, the one which provides the lowest bilinear complexity. Using only higher multiplicity with degree one and degree two places, the best curve turns out to be y 2 + y + x 3 = 0. This curve has 3 points of degree one, and the lowest bilinear complexity is obtained with the divisor G of degree 326 defined as follows:

we take all 3 points of degree 1 with multiplicity 4, all 3 points of degree 2 with multiplicity 2, and all 2 points of degree 3, all 6 points of degree 5, all 11 points of degree 6 and 25 points of degree 8, all with multiplicity 1.

Then the degree of G is 

deg G = 3
≤ 234. 5) Place Q and Divisor D: In the following, we use the notation of magma [START_REF] Bosma | The Magma Algebra System I. The user language[END_REF] for the representation of places and divisors. In order to construct F 3 57 we choose the place Q defined by 

Q := (
+ 2x 5 + x 4 + 2x 2 ),
to construct B = {f 1 , . . . , f 114 } the basis of L (2D) containing a basis of L (D). Note that to construct the degree 57 divisor D it is sufficient to take a degree 57 place Q different from Q since the support of D must not contain Q.

6) Interpolation Phase:

In order to construct the function F γ of L (2D), it suffices to use the relation [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] to interpolate at all points chosen to obtain the bound 234. We classify the interpolation phase starting with places used with derivative evaluation u > 1, and we finish by the ones used with no derivative evaluation.

• Derivative Evaluation

Remember that the higher multiplicity u = 3, occurs only with places of degree 1. This means that we use October 13, 2013 DRAFT the local expansion at order 3 for all points of degree 1, hence for any function f i of the basis B we have

f i (P 1 [k]) = α i,0 + α i,1 t k + α i,2 t k 2 , (6) 
where α i,j is an element of F 3 , and t k is the local parameter for P 1 [k]. Using the relation ( 5) to interpolate at points of degree 1 leads to

57 i=1 a i f i (P 1 [ k ]) . 57 i=1 b i f i (P 1 [ k ]) = 114 i=1 c i f i (P 1 [ k ]), (7) 
where k ∈ [1, . . . , 3], a i , b i , and c i ∈ F 3 . Substituting expression [START_REF] Ballet | On the existence of non special divisor of degree g and g -1 in algebraic function fields over Fq[END_REF] in equation ( 7) allows us to write

A 0 + A 1 t k + A 2 t k 2 . B 0 + B 1 t k + B 2 t k 2 = C 0 + C 1 t k + C 2 t k 2 , (8) 
where

A = 57 i=1 a i α i, , B = 57 i=1 b i α i, and C = 114 i=1 c i α i, .
The quantity ( 8) is exactly the complexity of 3-multiplication of two 3-term polynomials of

F 3 deg P 1 [t k ].
We have M 3 (3) = 5, meaning that to obtain the three first coefficients of the product, we need the 5 bilinear

multiplications in F 3 deg P 1 m 1 = A 0 .B 0 , m 2 = A 1 .B 1 , m 3 = A 2 .B 2 , m 4 = (A 0 + A 1 ).(B 0 + B 1 ), m 5 = (A 0 + A 2 ).(B 0 + B 2 )
. Remember, if we use derivative evaluation with places of degree more than one, we should have 5 bilinear multiplications in F 3 deg P , and finally we should add

µ sym      C 0 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8
For places of higher degree, we use all of them with multiplicity 1, thus with no derivative evaluation.

• No Derivative Evaluation Using the relation ( 5) to interpolate at points of degree deg P j leads to 57 i=1 a i f i (P j [ k ]) . 

For any function f i of the basis B, f i (P j [ k ]) is an element of the finite field F 3 deg P j in which a representation is

F 3 deg P j = F 3 (w k ) = F 3 [X] < P j [ k ] > .
If the set {1, w k , . . . , w k j-1 } denotes a basis of F 3 deg P j , then there exist j elements, s i,0 , s i,1 , . . . , s i,j-1 of

F 3 such that f i (P j [ k ]) = s i,0 w 0 k + s i,1 w 1 k + • • • + s i,j-1 w k j-1 . (10) 
Equation ( 10) allows us to rewrite relation (9) as 

                                   . c
Since G is invertible, we have G -1 .M = (c 1 , . . . , c 114 ) and then the only function F γ of L (2D) such that

F α .F β = F γ is F γ = c 1 f 1 + • • • + c 114 f 114 .
Recall that to obtain the product α.β we just have to evaluate F γ at the place Q so Remark IV.1. Explicit formulas for the multiplication in F 3 57 and the verification program to execute with Magma can be found in [START_REF] Tukumuli | [END_REF].

α.β = F γ (Q) = c 1 f 1 (Q) + • • • + c 114 f 114 (Q).

2 (n) (respectively µ sym 3 (sym 3 ( 57 ) ≤ 3 .µ sym 3 ( 1 , 3 ) + 6.µ sym 3 ( 2 , 1 )+11.µ sym 3 ( 3 , 1 ) + 15.µ sym 3 ( 4 , 1 )≤ 3 . M 3 ( 3 ) + 6.µ sym 3 ( 2 )+11.µ sym 3 ( 3 )

 2335733133213313413333233 n)) and the size of extension for F 2 is in accordance with the NIST for elliptic curve cryptography. The column N represents the number of places of arbitrary degrees used to obtain the optimal bound, and column U , the associated order for derivative evaluation. As example, for n = 233, we obtain the lower bound 1340 using the elliptic curve (up to isomorphism) defined by y 2 + xy = x 3 + 1. This lower bound is achieved with N = [4, 2, 0, 2, 8, 8, 10, 34] and U = [5, 2, 1, 1, 1, 1, 1, 1], meaning that we use 4 degree one places with multiplicity u 1 = 5, 2 degree two places with multiplicity u 2 = 2 and the remainder with multiplicityu 3 = • • • = u 8 = 1.October[START_REF] Bosma | The Magma Algebra System I. The user language[END_REF] 2013 DRAFT and the divisor G is constructed as follows: we take all 3 points of degree 1 with multiplicity 3, and then we take all 6 points of degree 2, all 11 points of degree 3, and all 15 points of degree 4, all with multiplicity 1. It must be verified that G has degree deg G = 3.1.3 + 6.2.1 + 11.3.1 + 15.4.1 = 114 = 2 • 57. Using values of Table I we obtain µ + 15.µ sym 3

57 i=1b

 57 i f i (P j [ k ]) = 114 i=1 c i f i (P j [ k ]).

a 3 (- 1 =0A w k . 1 =0 B w k = 1 =0C 3 ( 2 )equals 3 .

 3111323 i s i, , B = 57 i=1 b i s i, , and C = 114 i=1 c i s i, . One can easily identify expression (11) as the multiplication of two elements of F 3 deg P j over F 3 . The bilinear complexity of multiplication is, in the case of interpolation at places with no derivative evaluation, µ sym deg P ). When deg P = 2 equation (11) becomes w k , and this expression is the multiplication of two elements of F 3 2 over F 3 which bilinear complexity µ sym It means that to obtain coefficients C 0 , C 1 , one needs three bilinear multiplications, obtained with Karatsuba algorithm and defined by m 1 = A 0 .B 0 , m 2 = A 1 .B 1 , m 3 = (A 0 + A 1 ).(B 0 + B 1 ).

8 )a i f i . 57 i=1 b i f i = 57 i=1ce 1 +

 857571 Final product αβ: To complete the algorithm, we must find coefficients c i for i [1..57] such that57 i=1 i f i . Let (e 1 , . . . , e 114 ) = (f 1 (Q), . . . , f 114 (Q))With these notations we haveF γ (Q) = c 1 e 1 + • • • + c 57 e 57 + c 58 e 58 + • • • + c 114 e 114 .Vectors (e 1 , . . . , e 57 ) form a basis of F 3 57 as (f 1 , . . . , f 57 ) is a basis of L (D), then to find coefficients c i for i ∈ [1..57], it is sufficient to express vectors (e 58 , . . . , e 114 ) according to (e 1 , . . . , e 57 ). This leads to e 58 = e 1 + 2e 2 + • • • + e 57 , . . . . . . e 114 = 2e 1 + e 2 + • • • + 2 57 , and bringing together terms in (e 1 , . . . , e 57 ), we finally get αβ = (c 1 + c 58 + • • • + c 114 ) c1 • • • + (c 57 + • • • + 2c 114 ) c57 e 57 .

TABLE I BOUNDS

 I FOR µq(n) AND Mq(n) FOR 1 ≤ n ≤ 8, AND q = 2, 3.

	n	2	3	4	5	6	7	8
	µ 2 (n, 1) = µ 2 (n)	3	6	9	13	15	22	24
	µ 3 (n, 1) = µ 3 (n)	3	6	9	11	15	19	21
	Mq(n)	3	5	8	11	15	19	24

  where B d1 denotes the number of places of degree d 1 . From

Remark III.2, if C is one of the elliptic curve of case d) and deg

  Table III (respectively Table IV) represents optimal bounds for µ sym

					.1.4 + 3.2.2 + 2.3.1 + 6.5.1 + 11.6.1 + 25.8.1
					= 326 = 2.163.
	From Remark III.2 used with the best known bounds for µ sym q	(deg P i , u i ) and values of Table I we obtain
	µ sym 2	(163) ≤ 3.µ sym 2	(1, 4) + 3.µ sym 2	(2, 2)
		+ 2.µ sym 2	(3, 1) + 6.µ sym 2	(5, 1)
		+ 11.µ sym 2	(6, 1) + 25.µ sym 2	(8, 1)
		≤ 3. M 2 (4) + 3.µ sym 2	(2) M 2 (2)
		+ 2.µ sym 2	(3) + 6.µ sym 2	(5)
		+ 11.µ sym 2	(6) + 25.µ sym 2	(8)
	µ sym 2	(163) ≤ 906.		

  x 57 + x 56 + 2x 54 + 2x 53 + 2x 51 + 2x 50 + 2x 49 + x 48 + x 46 + x 43 + 2x 42 + 2x 41 + 2x 39 + 2x 38 + 2x 37 + 2x 36 + x 35 + 2x 32 + 2x 29 + x 28 + x 27 + 2x 26 + x 25 + x 24 + 2x 23 + 2x 21 + 2x 20 + x 19 + x 18 + 2x 15 + x 14 + 2x 13 + x 10 + 2x 8 + x 7 + x 6 + 2x 5 + x 4 + x 3 + 2x 2 + x + 2, z + 2x 56 + x 55 + x 54 + x 53 + x 52 + 2x 50 + 2x 49 + x 48 + 2x 47 + 2x 45 + 2x 43 + 2x 42 + 2x 41 + 2x 38 + 2x 37 + 2x 36 + 2x 35 + x 34 + x 33 + x 32 + 2x 31 + 2x 29 + x 28 +2x 25 +2x 24 +x 23 +2x 22 +2x 20 +x 19 +2x 18 +x 17 +x 15 +2x 13 +2x 12 +x 11 +x 10 +x 8 +x 6 +2x 5 +x 2 +2x+1), and we choose the following divisor D such that D = (x 57 + x 55 + x 53 + x 48 + x 46 + 2x 45 + 2x 43 + 2x 42 + x 40 + 2x 36 + x 35 + x 34 + x 33 + x 32 + x 29 + 2x 27 + x 26 + 2x 24 + 2x 23 + 2x 21 + 2x 18 + 2x 17 + x 16 + 2x 13 + x 12 + 2x 10 + 2x 9 + x 8 + 2x 7 + 2x 6 + 2x 3 + 2x 2 + x + 2, z + x 56 + 2x 55 + x 54 + x 53 + 2x 52 + x 51 + x 50 + 2x 49 + x 48 + 2x 47 + 2x 46 + 2x 45 + x 43 + 2x 42 + 2x 41 + 2x 39 + x 38 + x 37 + x 36 + 2x 35 + 2x 34 + x 32 + 2x 30 + 2x 29 + 2x 28 + x 27 + x 26 + x 25 + x 24 + x 21 + x 20 + 2x 17 + x 16 + x 13 + 2x 12 + x 10 + x 9 + x 8 + 2x 7 + 2x 6

[START_REF] Winograd | On Multiplication in Algebraic Extension Fields[END_REF] DRAFT

m 14 -m 11 -m 12 m 15 -m 13 -m 11 + m 12 . . . . . .

In this section, we choose to present the construction of the multiplication algorithm in F 3 57 with 234 bilinear multiplications, using elliptic curves, points of higher degree and higher multiplicity.

1) Method: Let α and β be two elements of F 3 57 . Since there exists a point Q of degree 57, the residue class field O Q /Q is isomorphic to F 3 57 and we can consider that both elements are in O Q /Q. Furthermore, there exists a divisor D such that the evaluation map

Finally, to obtain the product α.β, we compute Ev Q (F α .F β ) = α.β. At this step, we have to construct the only

The uniqueness of F γ comes from the injectivity of the second evaluation

where M and C are the matrix representation of the relation [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF].
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2) Choice of the degree of places: For a fixed q and n, we do not know how to find an order of magnitude of the degree of places to use for the interpolation. This task depends on two factors that is the number of places and the derivative evaluation. We reason now similarly as for the proof of Theorem III.5: in the worst case we suppose that we do not use derivative evaluation, and that we only use places of a fixed degree d. Recall that from [29, Corollary 5.2.10] applied to elliptic curves, the number B d of places of degree d verifies

In practice, we reason in asymptotic way. Asymptotically B d q d /d so it suffices to find the smallest d such that d(q d /d) > 2n. Since this process only gives us an estimation for the maximal degree of places to use, it is possible that for a given d, B d = 0. In this case we shall take d + 1 and so on. Consequently, to choose the right elliptic curve for the multiplication in F 3 57 we increase the degree of places until d equals to five.

3) Choice of the order for derivative evaluation: We know that using derived evaluation with places of high degree does not improve the bilinear complexity so for F 3 57 , we choose to use derived evaluation only for places of degree one and two. Moreover, we choose to use derivative evaluation until order u 1 = 5 for degree one places and until order u 2 = 3 for degree two places.

4)

Choice of the Curve: Let P j denotes the set of places of degree j and P j [ k ] be the k th places of degree j. In order to find the suitable curve, one just have to execute the procedure below for each curve of Remark III.2:

1) construct the associated elliptic function field,

2) determine all places of degree 1, 2, 3, 4 and 5,

3) find all combinations of the divisor

with the appropriate degree, 4) for each combination, compute N i=1 µ sym q (deg P i , u i ) and store the lowest bilinear complexity.

Note that super singular curves can be used with no danger since we only use points for interpolation. Results of the previous procedure are collected in Table V.