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Product Markovian quantization of an R d -valued Euler scheme of a diffusion process with applications to finance

We introduce a new approach to quantize the Euler scheme of an R d -valued diffusion process. This method is based on a Markovian and componentwise product quantization and allows us, from a numerical point of view, to speak of fast online quantization in dimension greater than one since the product quantization of the Euler scheme of the diffusion process and its companion weights and transition probabilities may be computed quite instantaneously. We show that the resulting quantization process is a Markov chain, then, we compute the associated companion weights and transition probabilities from (semi-) closed formulas. From the analytical point of view, we show that the induced quantization errors at the k-th discretization step t k is a cumulative of the marginal quantization error up to time t k . Numerical experiments are performed for the pricing of a Basket call option, for the pricing of a European call option in a Heston model and for the approximation of the solution of backward stochastic differential equations to show the performances of the method.

Introduction

In [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF] is proposed and analyzed a Markovian (fast) quantization of an R d -valued Euler scheme of a diffusion process. However, in practice, this approach allows to speak of fast quantization only in dimension one since, as soon as d ≥ 2, one has to use recursive stochastic zero search algorithm (known to be very time consuming, compared to deterministic procedures like the Newton-Raphson algorithm, see [START_REF] Pagès | Optimal quadratic quantization for numerics: the gaussian case[END_REF]) to compute optimal quantizers, their associated weights and transition probabilities. In order to overcome this limitation, we propose in this work another approach to quantize an R d -valued Euler scheme of a diffusion process. This method is based on a Markovian and componentwise product quantization. It allows again to speak of fast quantization in high dimension since the product quantization of the Euler scheme of the diffusion process and its transition probabilities can be computed almost instantaneously still using deterministic recursive zero search algorithms.

In a general setting, the stochastic process (X t ) t∈[0,T ] of interest is defined as the (strong) solution to the following stochastic differential equation

X t = X 0 + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s ( 1 
)
where W is a standard q-dimensional Brownian motion, independent from the R d -valued random vector X 0 , both defined on the same probability space (Ω, A, P). The drift coefficient b : [0, T ]×R d → R d and the volatility coefficient σ : [0, T ] × R d → R d×q are Borel measurable functions satisfying appropriate Lipschitz continuity and linear growth conditions (specified further on) which ensure the existence of a unique strong solution of the stochastic differential equation. In corporate finance, these processes are used to model the dynamics of assets for several quantities of interest involving the pricing and the hedging of derivatives. These quantities are usually of the form

E f (X T ) , T > 0, (2) 
or

E f (X t )|X s = x , 0 < s < t, (3) 
for a given Borel function f : R d → R. For illustrative purposes, let us consider the following three examples which may be reduced to the computation of regular expectations like [START_REF] Bender | A forward scheme for backward SDEs[END_REF] or [START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF]. First, let us consider the price of a Basket call option with maturity T and strike K, based on two stocks whose prices S 1 and S 2 evolve following the dynamics

dS 1 t = rS 1 t + ρ σ 1 S 1 t dW 1 t + 1 -ρ 2 σ 1 S 1 t dW 2 t dS 2 t = rS 2 t dt + σ 2 S 2 t dW 1 t ( 4 
)
where r is the interest rate, σ 1 , σ 2 > 0, ρ ∈ (-1, 1) is a correlation term and W 1 and W 2 are two independent Brownian motions. We know that the no arbitrage price at time t = 0 in a complete market reads e -rT E (w

1 S 1 T + w 2 S 2 T -K) + = e -rT EF (X T ), X = (S 1 , S 2 ), (5) 
where the weights w 1 and w 2 are usually assumed to be positive with a sum equal to one and where the function F is defined, for every x = (s 1 , s 2 ) ∈ R 2 , by F (x) = (w 1 s 1 + w 2 s 2 -K) + . Keep in mind that x + = max(x, 0), x ∈ R.

The second example concerns the pricing of a call option with maturity T and strike K, in the Heston model of [START_REF] Steven | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF] where the stock price S and its stochastic variance V evolve following the (correlated) dynamics

dS t = rS t dt + ρ √ V t S t dW 1 t + 1 -ρ 2 √ V t S t dW 2 t dV t = κ(θ -V t )dt + σ √ V t dW 1 t , t ∈ [0, T ]. (6) 
In the previous equation, the parameter r is still the interest rate; κ > 0 is the rate at which V reverts to the long run average variance θ > 0; the parameter σ > 0 is the volatility of the variance and ρ ∈ [-1, 1] is the correlation term. In this case, the no arbitrage price at time t = 0 in a complete market reads under this risk neutral probability e -rT E (S T -K) + = e -rT EH(X T ), X = (S, V ), [START_REF] Crisan | On the Monte Carlo simulation of BSDE's: an improvement on the malliavin weights[END_REF] where H(x) = (x 1 -K) + , for x = (x 1 , x 2 ) ∈ R 2 . Note that both price expressions [START_REF] Callegaro | Pricing via recursive quantization in stochastic volatility models[END_REF] and [START_REF] Crisan | On the Monte Carlo simulation of BSDE's: an improvement on the malliavin weights[END_REF] are of type [START_REF] Bender | A forward scheme for backward SDEs[END_REF].

The last example concerns the approximation of the following Backward Stochastic Differential Equation (BSDE),

Y t = ξ + T t f (s, X s , Y s , Z s )ds - T t Z s • dW s , t ∈ [0, T ], (8) 
where terminal condition of the form ξ = h(X T ) for a given Borel function h : R d → R and where X is a strong solution to [START_REF] Bally | A stochastic quantization method for non-linear problems[END_REF]. The process (Z t ) t∈[0,T ] is a square integrable progressively measurable process taking values in R q and f : [0, T ]×R d ×R×R q → R is a Borel function. We will see further on that the approximation of the solution of the BSDE [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF] involves the computation of expressions of the type (3).

In the general setting (in particular, in both previous examples ( 4)-( 7)) the stochastic differential equation [START_REF] Bally | A stochastic quantization method for non-linear problems[END_REF] has no explicit solution. Therefore, both quantities (2) and (3) have to be approximated, for example, by E f ( XT )

and E f ( Xt k+1 )| Xt k = x where t = t k+1 , s = t k , [START_REF] Gobet | Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs[END_REF] and where ( Xt k ) k=0,...,n is a discretization scheme of the process (X t ) t≥0 on [0, T ], for a given discretization mesh t k = k∆, k = 0, . . . , n, ∆ = T /n. The Euler scheme ( Xt k ) k=0,...,n associated to (X t ) t∈[0,T ] is recursively defined by

Xt k+1 = Xt k + b(t k , Xt k )∆ + σ(t k , Xt k )(W t k+1 -W t k ), X0 = X 0 .
In the sequel, when no confusion may occur, we will identify the value Y t k at time t k of any process (Y t k ) 0≤k≤n by Y k , k = 0, . . . , n. At this stage, the quantities ( 9) and [START_REF] Gobet | Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs[END_REF] still have no closed formulas in the general setting so is the case when for example dealing with a general local volatility model or a stochastic volatility model like the Heston model. Consequently, we have to make a spacial approximation of the expectation or the conditional expectation. This may be done by Monte Carlo simulation techniques or by optimal quantization method in particular, by the Markovian (fast) quantization method.

The fast Markovian quantization of the Euler scheme of an R d -valued diffusion process has been introduced in [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF]. It consists of a sequence of quantizations ( XΓ k k ) k=0,...,N of the Euler scheme ( Xk ) k=0,...,N defined recursively as follows:

X0 = X0 , XΓ k k = Proj Γ k ( Xk ) and Xk+1 = E k ( XΓ k k , Z k+1 ), k = 0, . . . , n -1, where (Z k ) k=1,...,n is an i.i.d. sequence of N (0; I q )-distributed random vectors, independent of X0 and E k (x, z) = x + ∆b(t k , x) + √ ∆σ(t k , x)z, x ∈ R d , z ∈ R q , k = 0, . . . , n -1.
The sequence of quantizers satisfies for every k ∈ {0, . . . , n},

Γ k ∈ argmin{ Dk (Γ), Γ ⊂ R d , card(Γ) ≤ N k },
where for every grid

Γ ⊂ R d , Dk+1 (Γ) := E dist( Xt k+1 , Γ) 2 .
However, this quantization method is fast from the numerical point of view only in one dimension. The aim of this work is to present another approach to quantize the Euler scheme of an R d -valued diffusion process in order to speak of fast quantization in dimension greater than one. We propose a Markovian and product quantization method. It allows us to compute instantaneously the optimal product quantizers and their transition probabilities (and its companion weights) when the size of the quantizations are chosen reasonably.

The method is based on a Markovian and componentwise product quantization of the process ( Xk ) 0≤k≤n . To be more precise, let us denote by Γ ℓ k an N ℓ k -quantizer of the ℓ-th component Xℓ k of the vector Xk and let Xi k be the quantization of Xℓ k of size N ℓ k , on the grid Γ ℓ k . Let us define the product quantizer

Γ k = d i=1 Γ ℓ k of size N k = N 1 k × . . . ×N d k of the vector Xk as Γ k = (x 1,i 1 k , . . . , x d,i d k ), i ℓ ∈ {1, . . . , N ℓ k }, ℓ ∈ {1, . . . , d} .
Then, assuming that X0 is already quantized as X0 , we define the product quantization ( Xt k ) 0≤k≤n of the process ( Xt k ) 0≤k≤n from the following recursion:

         X0 = X0 , Xℓ k = Proj Γ ℓ k ( Xi k ), i = 1, . . . , d Xk = ( X1 k , . . . , Xd k ) and Xℓ k+1 = E ℓ k ( Xk , Z k+1 ), i = 1, . . . , d E ℓ k (x, z) = x ℓ + ∆b ℓ (t k , x) + √ ∆(σ ℓ• (t k , x)|z), z = (z 1 , . . . , z q ) ∈ R q x = (x 1 , . . . , x d ), b = (b 1 , . . . , b d ) and (σ ℓ• (t k , x)|z) = q m=1 σ ℓm (t k , x)z m (11) 
where for a ∈ M(d, q), a ℓ• = [a ℓj ] j=1,...,q .

It is easy to see that the sequence of quantizers ( Xk ) k≥0 is a Markov chain (see Remark 3.1). Then, the challenging question is to know how to compute its (set) values, i.e. the product quantizer

Γ k = d i=1 Γ ℓ
k , k = 0, . . . n, and the associated transition probabilities. Using the fact that the conditional distribution of the Euler scheme is a multivariate Gaussian distribution and that each component of a Gaussian vector remains a scalar Gaussian random variable, we propose a way to quantize every component Xℓ k of the vector Xk , for k = 0, . . . , n. We then define the product quantization ( Xk ) 0≤k≤n of ( Xk ) 0≤k≤n from the recursive procedure [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]. Then, we show how to compute, for every k ≥ 1, the companion transition probabilities (and the companion weights) associated to each component of the vector Xk , for every k ≥ 1 and to the vector Xk itself.

When the components of the vector Xk are independent for every k = 0, . . . , n, the method boils down to the usual product quantization of the vector Xk , where each component is quantized from the Markovian recursive quantization method (see [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF]). In this case, the transition probability weight associated to the vector Xk is the product of the transition probability weights associated to its components.

The main difficulties arise when the components of Xk are not independent. In this work, we propose a closed formula even in this case by relying on a domain decomposition technique.

To be more precise, set, for every k ∈ {0, . . . , n},

I k = (i 1 , . . . , i d ), i ℓ ∈ {1, . . . , N ℓ k } (12) 
and for i :

= (i 1 , . . . , i d ) ∈ I k , set x i k := (x 1,i 1 k , . . . , x d,i d k ). (13) 
We will show in Proposition 3.1 that the transition probabilities of the Markov chain ( Xk ) k≥0 reads, for any multi-indices i ∈ I k and j ∈ I k+1 ,

P X k+1 = x j k+1 | X k = x i k = E ℓ∈J 0 k (x i k ) 1 {ζ∈J 0 k,j ℓ (x i k )} max Φ 0 (β j (x i k , ζ)) -Φ 0 (α j (x i k , ζ)), 0 (14) 
where ζ ∼ N (0; I q-1 ), with the convention that ℓ∈∅ (•) = 1. The function Φ 0 stands for the cumulative distribution function of the N (0, 1) and the functions α j and β j are defined in Proposition 3.1.

Although this formula looks quite involved, it turns out to be very simple to use in practice. In fact, keeping in mind that the optimal quantization grids associated to multivariate Gaussian random vectors (up to dimension d = 10) can be downloaded on the website www.quantize.maths-fi.com, it is clear that ( 14) can be computed instantaneously using these optimal grids of multivariate normal vectors. Furthermore, Equation ( 14) allows us to deduce the weights associated to the product quantization Xk+1 , k = 0, . . . , n -1, since for every j ∈ I k+1 ,

P Xk+1 = x j k+1 = i∈I k P Xk+1 = x j k+1 | Xk = x i k P Xk = x i k ). (15) 
Formulas ( 14)-( 15) are useful when, for example, we deal with the approximation of the solution of BSDEs or when we deal with the pricing of a Basket call like Equation [START_REF] Callegaro | Pricing via recursive quantization in stochastic volatility models[END_REF]. In this last situation, given a time discretization mesh t 0 = 0, . . . , t n = T , the price of the Basket call option will be approximated by the cubature formula

e -rT j∈In F (x j n ) P( Xn = x j n ), (16) 
where the probability weights P( Xn = x j n ) are computed recursively in a forward way using equations ( 14) and [START_REF] Ju | Pricing Asian and Basket options via Taylor expansion[END_REF].

When the correlation coefficient ρ = 0 in (4), the probabilities P( Xn = x j n ) in ( 16) will be computed in a simplified since the components of the vectors Xk are independent. We show in Proposition 3.2 that the formula [START_REF] Hu | Malliavin calculus for backward stochastic differential equations and applications to numerical solutions[END_REF] reads in the simplified form

P Xk+1 = x j k+1 | Xk = x i k = d ℓ=1 P Xℓ k+1 = x j ℓ k+1 | Xk = x i k = d ℓ=1 Φ 0 x ℓ,j ℓ + k+1 (x i k , 0) -Φ 0 x ℓ,j ℓ - k+1 (x i k , 0) , for i ∈ I k , j ∈ I k+1 .
For the approximation of the solution of the BSDE (8), many numerical schemes and approximating methods have been proposed (see e.g. [START_REF] Bally | A stochastic quantization method for non-linear problems[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF][START_REF] Crisan | On the Monte Carlo simulation of BSDE's: an improvement on the malliavin weights[END_REF][START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF][START_REF] Hu | Malliavin calculus for backward stochastic differential equations and applications to numerical solutions[END_REF][START_REF] Gobet | Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs[END_REF][START_REF] Bender | A forward scheme for backward SDEs[END_REF]). In this paper, we just aim to test the numerical performances of our method using the (quantization) numerical scheme proposed in [START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF]. Setting Ŷk = ŷk ( Xk ) (where ( Xk ) is the quantization of the Euler scheme ( Xt k )), for every k ∈ {0, • • • , n}, this quantized BSDE scheme reads (see [START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF]) as

ŷn (x i n ) = h(x i n ) x i n ∈ Γ n ŷk (x i k ) = αk (x i k ) + ∆ n f t k , x i k , αk (x i k ), βk (x i k ) x i k ∈ Γ k where for k = 0, . . . , n -1, for i ∈ I k , αk (x i k ) = j∈I k+1 ŷk+1 (x j k+1 ) p ij k and βk (x i k ) = 1 √ ∆ n j∈I k+1 ŷk+1 (x j k+1 ) Λ ij k , (17) 
with

p ij k = P( Xk+1 = x j k+1 | Xk = x i k ) and Λ ij k = E Z k+1 { Xk+1 =x j k+1 } Xk = x i k .
We will show further on how to compute the previous quantities from the Markovian product quantization method and using (semi)-closed formulas. We also compute the (transition) distribution of each component of the product quantizations. Indeed, we show in Proposition 3.3 that for every ℓ ∈ {1, . . . , d} and for every j ℓ ∈ {1, . . . , N ℓ k+1 }, the transition probability P( Xℓ

k+1 ∈ C j ℓ (Γ ℓ k+1 )| Xk = x i k ) is given by P Xℓ k+1 = x ℓj ℓ k+1 | Xk = x i k = Φ 0 x ℓ,j ℓ +1/2 k+1 -m ℓ k (x i k ) √ ∆ |σ ℓ• k (x i k )| 2 -Φ 0 x ℓ,j ℓ -1/2 k+1 -m ℓ k (x i k ) √ ∆ |σ ℓ• k (x i k )| 2 , (18) 
where

m ℓ k (x) = x + b(t k , x)∆ and |σ ℓ• k (x)| 2
is the Euclidean norm of the ℓ-th row of the volatility matrix σ(t k , x), for x ∈ R d . We deduce immediately the formulas for the probabilities P( Xℓ k+1 ∈ C j ℓ (Γ ℓ k+1 )), k = 0, . . . , n -1, j ℓ ∈ {1, . . . , N ℓ k+1 } using (18) (and ( 15)).

Equation [START_REF] Pagès | Optimal quadratic quantization for numerics: the gaussian case[END_REF] allows us to approximate the price of the call in the Heston model by

e -rT N 1 n j 1 =1 H(x 1j 1 n ) P( X1 n = x 1j 1 n ). (19) 
Another important issue form the analytical point of view is to compute the quantization error bound associated to the Markovian quantization process. Using some results from [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF], we show (in particular, when N ℓ k = N k , for avery ℓ = 1, . . . , d) that for any sequence ( XΓ k k ) 0≤k≤n of (quadratic) Markovian product quantization of ( Xk ) 0≤k≤n , the quantization error Xk -XΓ k k 2 , at step k of the recursion, is bounded by the cumulative quantization errors

Xk ′ - XΓ k ′ k ′
2 , for k ′ = 0, . . . , k. More precisely, one shows that for every k = 0, . . . , n, for any η ∈ (0, 1],

Xk -XΓ k k 2 ≤ k k ′ =0 a k ′ (b, σ, k, d, ∆, x 0 , η)N -1/d k ′
, where a k ′ (b, σ, k, d, ∆, x 0 , η) is a positive real constant depending on b, σ, ∆, x 0 , η (see Theorem 3.4 further on for a more precise statement).

The paper is organized as follows: in Section 2 we recall some basic results on optimal quantization. Section 3 is the main part of this paper. We present the algorithm and show the Markov property of the product quantization of the Euler scheme of a diffusion process. Then, we show how to compute the weights and transition probabilities associated to the product quantizers and to its components. We also show how to compute the optimal quantizers associated to each component of the Euler scheme (keep in mind that this is the foundation of our method). Finally, we provide in Theorem 3.4 some a priori error bounds for the quantization error associated to the Markovian product quantization and show that, at every step discretization step t k , this error is a cumulated (weighted) sum of the regular quantization errors, up to time t k . In Section 4, we present some numerical results for the pricing of a European call Basket option and a European call option in the Heston model, as well for the approximation of BSDEs. NOTATIONS. We denote by M(d, q, R), the set of d×q real value matrices. If A = [a ij ] ∈ M(d, q, R), A ⋆ denotes its transpose and we define the norm A := Tr(AA ⋆ ) = ( i,j a 2 ij ) 1/2 , where Tr(M ) stands for the trace of M , for M ∈ M(d, d, R). For every f : R d → M(d, q, R), we will set

[f ] Lip = sup x =y f (x)-f (y) |x-y| . For x, y ∈ R, x ∨ y = max(x, y). If x ∈ R d , |x| 2 will stand for the
Euclidean norm on R d . For every vectors x, y, the notation (x|y) denotes the dot product of the vectors x and y. For a given vector z ∈ R q and a matrix M ∈ M(d, q, R), z i denotes the component i of z, z (j:k) the vector made up from the component j to the component k of the vector z and M (i,j:k) is the vector made up from the component j to the component k of the i-th row of the matrix M and M ij for the component (i, j) of the matrix M . The notation M i• stands for the i-th row of M . The function Φ 0 will denote the cumulative distribution function of the standard real valued Normal distribution and its derivative Φ ′ 0 will stand for its density function.

Brief background on optimal quantization

Let (Ω, A, P) be a probability space and let X : (Ω, A, P) -→ R d be a random variable with distribution P X . The L r -optimal quantization problem at level N for the random vector X (or for the distribution P X ) consists in finding the best approximation of X by a Borel function π(X) of X taking at most N values. Assuming that X ∈ L r (P), we associate to every Borel function π(X) taking at most N values, the L r -mean error Xπ(X) r measuring the distance between the two random vectors X and π(X) w.r.t. the mean L r -norm, where X r := (E|X| r ) 1/r and | • | denotes an Enclidean norm on R d . Then finding the best approximation of X by a Borel function of X taking at most N values turns out to solve the following minimization problem:

e N,r (X) = inf { X -π(X) r , π : R d → Γ, Γ ⊂ R d , |Γ| ≤ N },
where |A| stands for the cardinality of A,

for A ⊂ R d . Now, let Γ = {x 1 , • • • , x N } ⊂ R d be a
codebook of size N (also called an N -quantizer or a grid of size N ) and define a Voronoi partition

C i (Γ) i=1,••• ,N of R d , which is a Borel partition of R d satisfying for every i ∈ {1, • • • , N }, C i (Γ) ⊂ x ∈ R d : |x -x i | = min j=1,••• ,N |x -x j | .
Consider the Voronoi quantization of X (or simply quantization of X) by the N -quantizer Γ defined by

XΓ = N i=1 x i 1 {X∈C i (Γ)} .
Then, for any Borel function π :

R d → Γ = {x 1 , • • • , x N } we have |X -π(X)| ≥ min i=1,••• ,N d(X, x i ) = d(X, Γ) = |X -XΓ | P a.s so that the optimal L r -mean quantization error e N,r (X) reads e N,r (X) = inf { X -XΓ r , Γ ⊂ R d , |Γ| ≤ N } = inf Γ⊂R d |Γ|≤N R d d(z, Γ) r dP X (z) 1/r . ( 20 
)
Recall that for every N ≥ 1, the infimum in [START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF] is attained at least one codebook. Any Nquantizer realizing this infimum is called an L r -optimal N -quantizer. Moreover, when |supp(P X ))| ≥ N then any L r -mean optimal N -quantizer has exactly size N (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF] or [START_REF] Pagès | A space vector quantization method for numerical integration[END_REF]). On the other hand, the quantization error, e N,r (X), decreases to zero as the grid size N goes to infinity and its rate of convergence is ruled by the so-called Zador Theorem recalled below. There also is a non-asymptotic upper bound for optimal quantizers. It is called Pierce Lemma (we recall it below for the quadratic case) and will allows us to put a finishing touches to the proof of the main result of the paper, stated in Theorem 3.4.

Theorem 2.1. (a) Sharp asymptotic rate (Zador Theorem, see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Zador | Asymptotic quantization error of continuous signals and the quantization dimension[END_REF]). Let X be an R d -valued random vector such that E|X| r+η < +∞ for some η > 0 and let P X = f • λ d + P s be the Lebesgue decomposition of P X with respect to the Lebesgue measure λ d and P s denotes its singular part. Then

lim N →+∞ N 1 d e N,r (P ) = Qr (P X ) (21) 
where

Qr (P X ) = Jr,d R d f d d+r dλ d 1 r + 1 d = Jr,d f 1/r d d+r ∈ [0, +∞) Jr,d = inf N ≥1 N 1 d e N,r (U ([0, 1] d )) ∈ (0, +∞) with U ([0, 1] d ) denotes the uniform distribution over the hypercube [0, 1] d .
(b) Non-asymptotic bound (Pierce Lemma, see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF]). Let η > 0. There exists a universal constant K 2,d,η such that for every random vector X : (Ω,

A, P) → R d , inf |Γ|≤N X -XΓ 2 ≤ K 2,d,η σ 2,η (X)N -1 d ( 22 
)
where σ 2,η (X) = inf ζ∈R d X -ζ 2+η ≤ +∞.
From the Numerical Probability point of view, finding an optimal N -quantizer Γ may be a challenging task. In practice (we will only consider the quadratic case, i.e. r = 2 for numerical implementations) we are sometimes led to find some "good" quantizations XΓ which are close to X in distribution, so that for every continuous function f : R d → R, we can approximate Ef (X) by

Ef XΓ = N i=1 p i f (x i ) (23) 
where p i = P( XΓ = x i ). When we approximate Ef (X) by ( 23), this induced an error which bound depends on the regularity of the function f (see e.g. [START_REF] Pagès | Optimal quadratic quantization for numerics: the gaussian case[END_REF] for more details).

We recall below the stationarity property for a quantizer.

Definition 2.1. A quantizer Γ = {x 1 , . . . , x N } of size N inducing the Voronoi quantization XΓ of X is stationary if P (X ∈ ∪ i ∂C i (Γ)) = 0, P (X ∈ C i (Γ)) > 0, i = 1, . . . , N
, and

E X| XΓ = XΓ P-a.s. ⇐⇒ x i = E(X {X∈C i (Γ)} ) P(X ∈ C i (Γ)) , i = 1, . . . , N. (24) 
The notion of stationarity is related to the critical point of the so-called distortion function defined on (R d ) N by

D N,2 (x) = E min 1≤i≤N |X -x i | 2 = R d |ξ -x i | 2 P X (dξ), x = (x 1 , . . . , x N ) ∈ (R d ) N . ( 25 
)
As any grid of size at most N can be "represented" by some N -tuples (by repeating, if necessary, some of its elements), we will often put grids of all size N as an argument of the distortion function D 2,N as well as for its gradient and Hessian matrix when its Voronoi boundary is negligible. It is also clear, from the definition of the quantization error, that

e 2 N,2 (X) = inf (x 1 ,...,x N )∈(R d ) N D N,2 (x 1 , . . . , x N ).
Furthermore, the function D N,2 is continuous and differentiable at any N -tuple having pairwise distinct components with a P-negligible Voronoi partition boundary and the following result makes this more precise.

Proposition 2.2. (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Pagès | A space vector quantization method for numerical integration[END_REF]) (a) The function D N,2 is differentiable at any N -tuple (x 1 , . . . , x N ) ∈ (R d ) N having pairwise distinct components and such that P (X ∈ ∪ i ∂C i (Γ)) = 0. Furthermore, we have

∇D N,2 (x 1 , . . . , x N ) = 2 C i (Γ) (x i -x)dP X (x) i=1,...,N (26) 
= 2 P(X ∈ C i (Γ))x i -E(X1 {X∈C i (Γ)} ) i=1,...,N . ( 27 
) (b) A grid Γ = {x 1 , . . . , x N } of full size N is stationary if and only if P (X ∈ ∪ i ∂C i (Γ)) = 0 and ∇D N,2 (Γ) = 0. (28) 
(c) If the support of P X has at least N elements, any L 2 -optimal quantizer at level N has full size and a P-negligible Voronoi boundary. Hence it is a stationary N -quantizer.

For numerical implementations, the search of stationary quantizers is based on zero search recursive procedures like Newton-Raphson algorithm for real valued random variables, and some algorithms like Lloyd's I algorithms (see e.g. [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF][START_REF] Pagès | Pointwise convergence of the lloyd algorithm in higher dimension[END_REF]), the Competitive Learning Vector Quantization (CLVQ) algorithm (see [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF]) or stochastic algorithms (see [START_REF] Pagès | Optimal quadratic quantization for numerics: the gaussian case[END_REF]) in the multidimensional framework. Optimal quantization grids associated to multivariate Gaussian random vectors can be downloaded on the website www.quantize.math-fi.com.

Markovian product quantization of an R d -valued Euler process

Let (X t ) t≥0 be a stochastic process taking values in a d-dimensional Euclidean space R d and solution to the stochastic differential equation:

X t = x 0 + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s , x 0 ∈ R d , ( 29 
)
where W is a standard q-dimensional Brownian motion starting at 0 and where b :

[0, T ] × R d → R d and the matrix diffusion coefficient function σ : [0, T ] × R d → M(d, q, R
) are measurable and satisfy the global Lipschitz continuity and linear growth conditions: for every t ∈ [0, T ],

|b(t, x) -b(t, y)| ≤ [b] Lip |x -y| (30) σ(t, x) -σ(t, y) ≤ [σ] Lip |x -y| (31) |b(t, x)| ≤ L(1 + |x|) and σ(t, x) ≤ L(1 + |x|) (32) 
for some L > 0. This guarantees the existence and pathwise uniqueness of a strong solution of (29), adapted to the (augmented) filtration of W . We also suppose that the matrix σ is positive definite. Throughout the paper we will suppose that R d is equipped with the canonical Euclidean norm.

The algorithm and the Markov property of the quantized process

Recall that the Euler scheme of the stochastic process (X t ) t≥0 is defined recursively from the following procedure:

Xt k+1 = Xt k + ∆b(t k , Xt k ) + σ(t k , Xt k )(W t k+1 -W t k ), X0 ∈ R d ,
where ∆ = ∆ n = T n and t k = kT n , for every k ∈ {0, • • • , n}. To simplify notations, we will often set X k := X t k to denote the process X evaluated at time t k . We also set b k (x) := b(t k , x) and σ k (x) = σ(t k , x) for x ∈ R d . Recall also that the Euler operator associated to the conditional distribution of Xk+1 given Xk = x is defined by

E k (x, z) := x + ∆b(t k , x) + √ ∆σ(t k , x)z, x ∈ R d , z ∈ R q
and that if Γ k+1 is an N k+1 -quantizer for Xk+1 , the distortion function Dk+1 associated to Xk+1 may be written for every

k = 0, • • • , n -1, as Dk+1 (Γ k+1 ) = E (dist( Xk+1 , Γ k+1 ) 2 = E dist(E k ( Xk , Z k+1 ), Γ k+1 ) 2
where Z k+1 ∼ N (0; I q ) is independent from Xk . The previous way to write the distortion function has been used in [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF] to propose a fast recursive (and Markovian) quantization of the Euler process (using the Newton-Raphson algorithm for the numerical computation of the optimal grids) when d = 1.

Keep in mind that the conditional distribution of the discrete Euler process X is Gaussian and that one of the properties of a Gaussian vector is that any sub-component of the vector remains a Gaussian random vector. So, a natural alternative way to quantize the vector Xk ∈ R d is to quantize each component Xℓ k by a grid Γ ℓ k of size N ℓ k , for ℓ = 1, . . . , d, and then to define its product quantization Xk associated with the product quantizer

Γ k = d ℓ=1 Γ ℓ k of size N k = N 1 k × . . . ×N d k , as Xk = ( X1 k , . . . , Xd k ).
The question is now to know how to quantize the Xi k 's. On the other hand, since the components of the vector Xk are not independent it is also a challenging question to know how to compute (from closed formula) the companions weights and transition probabilities associated with the quantizations of the Xi k 's and the vector Xk . We describe below the componentwise recursive Markovian quantization of the process { Xk , k = 0, . . . , n}.

It is clear that for every ℓ = 1, . . . , d, and for every k = 0, . . . , n -1, the transition operator E ℓ k (x, z) associated with the distribution of Xℓ k+1 given Xk = x reads as

E ℓ k (x, z) := m ℓ k (x) + √ ∆ σ ℓ• k (x)|z , x ∈ R d , z ∈ R q ,
where m ℓ k (x) := x ℓ + ∆b k (x). For every k = 0, . . . , n, for every given ℓ ∈ {1, . . . , d}, we denote by Xℓ k the quantization of Xℓ

k on the grid Γ ℓ k = {x ℓ,i ℓ k , i ℓ = 1, . . . , N ℓ k }.
We propose in what follows a recursive and componentwise product quantization of the process { Xk , k = 0, . . . , n}. In fact, for every ℓ = 1, . . . , d, we denote by Γ ℓ k an N ℓ k -quantizer (we suppose that we have access to it) of the ℓ-th component Xℓ k of the vector Xk and by Xℓ k , the resulting quantization of Xℓ k . Then, we define a componentwise recursive product quantizer

Γ k = d ℓ=1 Γ ℓ k of size N k = N 1 k × . . . ×N d k of the vector Xk = ( Xℓ k ) ℓ=1,...,d by Γ k = (x 1,i 1 k , . . . , x d,i d k ), i ℓ ∈ 1, . . . , N ℓ k , ℓ ∈ {1, . . . , d} .
To define the Markovian product quantization, suppose that Xk has already been quantized and that we have access to the companion weights P( Xk = x i k ), i ∈ I k , where I k and x i k are defined by Equations ( 12) and [START_REF] Steven | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. Setting Xℓ k = E ℓ k ( Xk , Z k+1 ), we may approximate the distortion function Dℓ k+1 associated to the ℓ-th component of the vector Xℓ k+1 by

Dℓ k+1 (Γ ℓ k+1 ) := E dist( Xℓ k+1 , Γ ℓ k+1 ) 2 = E dist(E ℓ k ( Xk , Z k+1 ), Γ ℓ k+1 ) 2 = i∈I k E dist(E ℓ k (x i k , Z k+1 ), Γ k+1 ) 2 P Xk = x i k .
This allows us to consider the sequence of product recursive quantizations of ( Xk ) k=0,••• ,n , defined for every k = 0, . . . , n -1, by the following recursion:

         X0 = X0 , Xℓ k = Proj Γ ℓ k ( Xℓ k ), ℓ = 1, . . . , d, Xk = ( X1 k , . . . , Xd k ) and Xℓ k+1 = E ℓ k ( Xk , Z k+1 ), ℓ = 1, . . . , d, E ℓ k (x, z) = m ℓ k (x) + √ ∆(σ ℓ• (t k , x)|z), z = (z 1 , . . . , z q ) ∈ R q , x = (x 1 , . . . , x d ), b = (b 1 , . . . , b d ) and (σ ℓ• (t k , x)|z) = q m=1 σ ℓm (t k , x)z m . ( 33 
)
where

(Z k ) k=1,••• ,n is i.i.d., N (0; I q )-distributed, independent of X0 .
In the following result, we show that the sequence ( Xk ) k≥0 of Markovian and product quantizations is in fact a Markov chain. Its transition probabilities will be computed further on. Remark 3.1. We may remark that the process ( Xk ) k≥0 is a Markov chain on R d .

In fact, setting F X k = σ( X0 , . . . , Xk ), we have for any bounded function f :

R d → R E(f ( Xk+1 )|F X k ) = j∈I k+1 E f (x j k+1 )1 { Xk+1 =x j k+1 } |F X k = j∈I k+1 f (x j k+1 )E 1 {E k ( Xk ,Z k+1 )∈ d ℓ=1 C j ℓ (Γ ℓ k+1 )} |F X k , where E k ( Xk , Z k+1 ) = (E 1 k ( Xk , Z k+1 ), . . . , E d k ( Xk , Z k+1 )). It follows that E(f ( Xk+1 )|F X k ) = j∈I k+1 f (x j k+1 )h j ( Xk ),
where for every x ∈ R d ,

h j (x) = P E k (x, Z k+1 ) ∈ d ℓ=1 C j ℓ (Γ ℓ k+1 ) .
As a consequence, E(f ( Xk+1 )|F X k ) = ϕ( Xk ), so that ( Xk ) k≥0 is a Markov chain. Now, for a given componentwise (quadratic) optimal quantizers Γ k = d ℓ=1 Γ ℓ k , let us explain how to compute the companion transition probability weights associated with the quantizations of the Xℓ k 's and the whole vector Xk . We write all the quantities of interest as an expectation of a function of a standard R q-1 -valued Normal distribution. These transformations are the key step of this work. In fact, since the optimal quantization grids associated to standard Normal random vectors (up to dimension 10) and their companion weights are available on www.quantize.maths-fi.com, these quantities of interest may be computed instantaneously using a cubature formula.

Computing the companion weights and transition probabilities of the marginal quantizations

First of all we define the following quantities which will be needed in the sequel. For every k ∈ {0, . . . , n -1} and for every j ∈ I k+1 we set

x i,j i -1/2 k+1 = x i,j i k+1 + x i,j i -1 k+1 2 , x i,j i +1/2 k+1 = x i,j i k+1 + x i,j i +1 k+1 2 , with x i,1/2 k+1 = -∞, x i,N i k+1 +1/2 k+1 = +∞,
and if Z (2:q) k = z ∈ R q-1 and x ∈ R d , we set (if σ i1 k (x) > 0) x i,j i - k+1 (x, z) := x i,j i -1/2 k+1 -m i k (x) - √ ∆ σ (i,2:q) k (x)|z √ ∆σ i1 k (x) and x i,j i + k+1 (x, z) := x i,j i +1/2 k+1 -m i k (x) - √ ∆ σ (i,2:q) k (x)|z √ ∆σ i1 k (x)
.

We also set

J 0 k,j i (x) = z ∈ R q-1 , √ ∆ σ (i,2:q) k (x) z ∈ x i,j i -1/2 k+1 -m i k (x), x i,j i +1/2 k+1 -m i k (x)
and

J 0 k (x) = i ∈ {1, . . . , d}, σ i1 k (x) = 0 J - k (x) = i ∈ {1, . . . , d}, σ i1 k (x) < 0 J + k (x) = i ∈ {1, . . . , d}, σ i1 k (x) > 0 .
The following result allows us to compute the weights and the transition probabilities associated to the quantizations X k , k = 0, . . . , n. Proposition 3.1. Let { X k , k = 0, . . . , n} be the sequence defined from the algorithm (33).

The transition probability P(

X k+1 = x j k+1 | X k = x ℓ k ), i ∈ I k , j ∈ I k+1
, is given by

P X k+1 = x j k+1 | X k = x i k = E ℓ∈J 0 k (x i k ) 1 {ζ∈J 0 k,j ℓ (x i k )} max Φ 0 (β j (x i k , ζ)) -Φ 0 (α j (x i k , ζ)), 0 (34) 
where ζ ∼ N (0; I q-1 ) and, for every x ∈ R d and z ∈ R q-1 ,

α j (x, z) = max sup ℓ∈J + k (x)
x ℓ,j ℓ - k+1 (x, z), sup

ℓ∈J - k (x)
x ℓ,j ℓ + k+1 (x, z)

and β j (x, z) = min inf ℓ∈J + k (x) x ℓ,j ℓ + k+1 (x, z), inf ℓ∈J - k (x)
x ℓ,j ℓ - k+1 (x, z) .

Before proving this result, remark that we may deduce the probability weights associated to the quantizations ( Xk+1 ) by

P Xk+1 = x j k+1 = i∈I k P Xk+1 = x j k+1 | Xk = x i k P Xk = x i k ) (35) 
where the conditional probabilities are computed using the formula (34).

Proof. We have

P( X k+1 = x j k+1 | X k = x ℓ k ) = P d i=1 X i k+1 ∈ v i,j i -, v i,j i + X k = x ℓ k = P d i=1 E i k (x ℓ k , Z k+1 ) ∈ v i,j i -, v i,j i + = E E 1 d i=1 E i k (x ℓ k ,Z k+1 )∈ v i,j i -,v i,j i + Z (2:d) k+1 = E Ψ(x ℓ k , Z (2:d) k+1 )
where, for every u ∈ R q-1 ,

Ψ(x, u) = P d i=1 m i k (x ℓ k ) + √ ∆σ i1 k (x)Z 1 k+1 + √ ∆ σ (i,2:q) k (x)|u ∈ v i,j i -, v i,j i + .
Let us set

A i,k = m i k (x ℓ k ) + √ ∆σ i1 k (x)Z 1 k+1 + √ ∆ σ (i,2:q) k (x)|u ∈ v i,j i -, v i,j i + .
We know that if i ∈ J 0 k (x) then A i,k = {u ∈ J 0 k,j i (x)} and we deduce that

Ψ(x, u) = i 0 ∈J 0 k (x) 1 {u∈J 0 k,j i (x)} P i -∈J - k (x) A i -,k ∩ i + ∈J + k (x) A i + ,k . Furthermore, notice that if i + ∈ J + k (x) then A i + ,k = Z 1 k+1 ∈ (x i,j i - k+1 (x, u), x i,j i + k+1 (x, u)) and i -∈ J - k (x) then A i -,k = Z 1 k+1 ∈ (x i,j i + k+1 (x, u), x i,j i - k+1 (x, u)
) . It follows that (remark that the sets J - k (x) or J + k (x) may be empty)

P i -∈J - k (x) A i -,k ∩ i + ∈J + k (x) A i + ,k = P Z 1 k+1 ∈ sup i∈J + k (x)
x i,j i - k+1 (x, u), inf

i∈J + k (x)
x i,j i + k+1 (x, u)

∩ sup i∈J - k (x) x i,j i + k+1 (x, u), inf i∈J - k (x)
x i,j i - k+1 (x, u) .

This completes the proof since Z

(2:d) k+1 ∼ N (0; I q-1 ).

Now, we focus on in the particular case where the matrix σ(t, x), for (t, x) ∈ [0, T ]×R d , is diagonal with positive diagonal entries σ ℓℓ (t, x), ℓ = 1, . . . , d. The following result says how to compute the transition probability weights of the Xk 's. Let us set for every x ∈ R d , every ℓ ∈ {1, . . . , d} and j ℓ ∈ {1, . . . , N ℓ k+1 },

x ℓ,j ℓ - k+1 (x, 0) := x ℓ,j ℓ -1/2 k+1 -m ℓ k (x) √ ∆σ ℓℓ k (x)
and x ℓ,j ℓ + k+1 (x, 0) :=

x ℓ,j ℓ +1/2 k+1 -m ℓ k (x) √ ∆σ ℓℓ k (x)
. Proposition 3.2. Let { Xk , k = 0, . . . , n} be the sequence of quantizers defined by the algorithm (33) and associated with the solution (X t ) of (29). Suppose that the volatility matrix σ(t, x) of (X t ) t≥0 is diagonal with positive diagonal entries σ ℓℓ (t, x), ℓ = 1, . . . , d. Then, the transition probability weights P( Xk+1 = x j k+1 | Xk = x i k ), i ∈ I k , j ∈ I k+1 , are given by

P Xk+1 = x j k+1 | Xk = x i k = d ℓ=1 P Xℓ k+1 = x j ℓ k+1 | Xk = x i k (36) = d ℓ=1 Φ 0 x ℓ,j ℓ + k+1 (x i k , 0) -Φ 0 x ℓ,j ℓ - k+1 (x i k , 0) , ( 37 
)
and the companion probability weights P Xk+1 = x j k+1 are given for every k = 0, . . . , n -1 and every j ∈ I k+1 by

P Xk+1 = x j k+1 = i∈I k d ℓ=1 Φ 0 x ℓ,j ℓ + k+1 (x i k , 0) -Φ 0 x ℓ,j ℓ - k+1 (x i k , 0) P( Xk = x i k ). (38) 
Proof. 1. Set v ℓ,j ℓ + := x ℓ,j ℓ +1/2 k+1 and v ℓ,j ℓ -= x ℓ,j ℓ -1/2 k+1

, for j ∈ I k+1 and ℓ = 1, . . . , d. We have

P( Xk+1 = x j k+1 | Xk = x i k ) = P d ℓ=1 Xℓ k+1 ∈ v ℓ,j ℓ -, v ℓ,j ℓ + Xk = x i k = P d ℓ=1 E ℓ k (x i k , Z k+1 ) ∈ v ℓ,j ℓ -, v ℓ,j ℓ + .
Since for every k = 0, . . . , n-1, σ(t k , x) is a diagonal matrix, it follows that the operators

E ℓ k (x i k , Z k+1 ) = E ℓ k (x i k , Z ℓ k+1
), for ℓ = 1, . . . , d, are independent, so that

P( Xk+1 = x j k+1 | Xk = x i k ) = d ℓ=1 P E ℓ k (x i k , Z ℓ k+1 ) ∈ v ℓ,j ℓ -, v ℓ,j ℓ + = d ℓ=1 Φ 0 x ℓ,j ℓ + k+1 (x i k ) -Φ 0 x ℓ,j ℓ - k+1 (x i k ) .
The second assertion immediately follows.

The following result is useful in the situation where we need to approximate the expectation of a function of one component of the vector Xk as for example in the pricing of European options in the Heston model. Proposition 3.3. Let Γ ℓ k+1 be an optimal quantizer for the random variable Xℓ k+1 . Suppose that the optimal product quantizer Γ k for Xk and its companion weights P( Xk = x i k ), i ∈ I k , are computed. For any ℓ ∈ {1, . . . , d} and any j ℓ ∈ {1, . . . , N ℓ k+1 }, the transition probability weights P( Xℓ k+1 ∈ C j ℓ (Γ ℓ k+1 )| Xk = x i k ) are given by

P Xℓ k+1 ∈ C j ℓ (Γ ℓ k+1 )| Xk = x i k = Φ 0 x ℓ,j ℓ + k+1 (x i k ) -Φ 0 x ℓ,j ℓ - k+1 (x i k ) . (39) 
Proof. 1. For every k ∈ {1, . . . , n -1}, for every ℓ = 1, . . . , d and for every j ℓ = 1, . . . , N ℓ k+1 , we have

P Xℓ k+1 ∈ C j ℓ (Γ ℓ k+1 )| Xk = x i k = P Xℓ k+1 ≤ x ℓ,j ℓ +1/2 k+1 | Xk = x i k -P Xℓ k+1 ≤ x ℓ,j ℓ -1/2 k+1 | Xk = x i k = P E ℓ k (x i k , Z k+1 ) ≤ x ℓ,j ℓ +1/2 k+1 -P E ℓ k (x i k , Z k+1 ) ≤ x ℓ,j ℓ -1/2 k+1
.

To complete the proof we just have to remark that

E ℓ k (x i k , Z k+1 ) ∼ N m ℓ k (x i k ); ∆|σ ℓ• k (x i k )| 2 2 .
Notice that the companion probability P( Xℓ k+1 ∈ C j ℓ (Γ k+1 )) is given, for every ℓ ∈ {1, . . . , d} and for every

j ℓ ∈ {1, • • • , N ℓ k+1 }, by P Xℓ k+1 ∈ C j ℓ (Γ ℓ k+1 ) = i∈I k Φ 0 x ℓ,j ℓ +1/2 k+1 -m ℓ k (x i k ) √ ∆|σ ℓ• k (x i k )| 2 -Φ 0 x ℓ,j ℓ -1/2 k+1 -m ℓ k (x i k ) √ ∆|σ ℓ• k (x i k )| 2 P Xk = x i k ). (40) 
We may note that the ℓ-th component process ( Xℓ k ) k≥0 is not a Markov chain. We may however compute the transition probabilities

P( Xℓ k+1 = x ℓ,j ℓ k+1 | Xℓ ′ k = x ℓ ′ ,j ℓ ′ k
), ℓ, ℓ ′ ∈ {1, . . . , d}, j ℓ ∈ {1, . . . , N ℓ k+1 }, j ℓ ′ ∈ {1, . . . , N ℓ ′ k }. This is the aim of the following remark which follows from Bayes formula. Remark 3.2. For ℓ, ℓ ′ ∈ {1, . . . , d}, j ℓ ∈ {1, . . . , N ℓ k+1 } and j ℓ ′ ∈ {1, . . . , N ℓ ′ k }, we have

P Xℓ k+1 = x ℓ,j ℓ k+1 | Xℓ ′ k = x ℓ ′ ,j ℓ ′ k = i∈I k 1 {i ℓ ′ =j ℓ ′ } P( Xℓ k+1 = x ℓ,j ℓ k+1 | Xk = x i k ) P( Xℓ ′ k = x ℓ ′ ,j ℓ ′ k ) P( Xk = x i k ) (41) 
where the terms P( Xk = x i k ), P( Xℓ

k+1 = x ℓ,j ℓ k+1 | Xk = x i k ) and P( Xℓ ′ k = x ℓ ′ ,j ℓ ′ k
) are computed from (35), ( 39) and (40), respectively.

As a matter of fact, applying Bayes formula and summing over i ∈ I k yields:

P Xℓ k+1 = x ℓ,j ℓ k+1 | Xℓ ′ k = x ℓ ′ ,j ℓ ′ k = i∈I k P( Xℓ k+1 = x ℓ,j ℓ k+1 , Xℓ ′ k = x ℓ ′ ,j ℓ ′ k , Xk = x i k ) P( Xℓ ′ k = x ℓ ′ ,j ℓ ′ k ) = i∈I k 1 {i ℓ ′ =j ℓ ′ } P( Xℓ k+1 = x ℓ,j ℓ k+1 , Xk = x i k ) P( Xℓ ′ k = x ℓ ′ ,j ℓ ′ k ) = i∈I k 1 {i ℓ ′ =j ℓ ′ } P( Xℓ k+1 = x ℓ,j ℓ k+1 | Xk = x i k ) P( Xℓ ′ k = x ℓ ′ ,j ℓ ′ k ) P( Xk = x i k ).
In the foregoing, we assume that we have access to the N ℓ k -quantizers Γ ℓ k of the ℓ-th component Xℓ 

Computing the distortion, the gradient and the Hessian matrix associated to a componentwise quantizer

Our aim, for numerical computation of the componentwise optimal quantizations, is to use the Newton-Raphson's algorithm in R N k which involves the gradient and the Hessian matrix of the distortion functions Dℓ k , k = 0, . . . , n; ℓ = 1, . . . , d. In the following, we give useful expressions for the distortion functions Dℓ k , their gradient vectors ∇ Dℓ k and their Hessian matrices ∇ 2 Dℓ k . We state these results in the next proposition.

Above all, recall that for every ℓ = 1, . . . , d, for every k = 0, . . . , n -1,

Dℓ k+1 (Γ ℓ k+1 ) = i∈I k E d(E ℓ k (x i k , Z k+1 ), Γ ℓ k+1 ) 2 P Xk = x i k
and notice that using Proposition 2.2, the distortion function Dℓ k+1 (Γ ℓ k+1 ) is continuously differentiable as a function of the N k+1 -quantizer Γ ℓ k+1 = {x ℓ,j ℓ k+1 , j ℓ = 1, . . . N ℓ k+1 } (having pairwise distinct components so that it can be viewed as an N ℓ k+1 -tuple) and its gradient vector reads

∇ Dℓ k+1 (Γ ℓ k+1 ) = 2 i∈I k E 1 {E ℓ k (x i k ,Z k+1 )∈C j ℓ (Γ ℓ k+1 )} x ℓ,j ℓ k+1 -E ℓ k (x i k , Z k+1 ) P( Xk = x ℓ k ) j ℓ =1,••• ,N ℓ k+1 .
We recall that key point of our method is to deal with the product quantization of the components of the process ( Xk ) 0≤k≤n . From a numerical point of view, each component will be quantized using the Newton-Raphson algorithm. To this end, we have to compute (explicitly) the distortion function Dℓ k+1 (•), the components of its gradient vector and the components its Hessian matrix. This is the purpose of the following remark. Its proof relies on tedious though elementary computation. Therefore, we have deliberately omitted the proof. Remark 3.3. Recall that for every ℓ ∈ {1, . . . , d}, ϑ ℓ k (x

) 2 = q p=1 ∆ σ ℓp k (x) 2 .
a) Distortion. We have for every ℓ = 1, . . . , d and every k = 0, . . . , n -1,

Dℓ k+1 (Γ ℓ k+1 ) = N ℓ k+1 j ℓ =1 i∈I k Ψ ℓ,j ℓ (x i k ) p i k = N ℓ k+1 j ℓ =1 EΨ ℓ,j ℓ ( Xk ), (42) 
where for every

x ∈ R d , Ψ ℓ,j ℓ (x)= m ℓ k (x) -x ℓ,j ℓ k+1 2 + ϑ ℓ k (x) 2 Φ 0 x ℓ,j ℓ + k+1 (x) -Φ 0 x ℓ,j ℓ - k+1 (x) + 2ϑ ℓ k (x) x ℓ,j ℓ k+1 -m ℓ k (x) Φ ′ 0 x ℓ,j ℓ + k+1 (x) -Φ ′ 0 x ℓ,j ℓ - k+1 (x) -ϑ ℓ k (x) 2 x ℓ,j ℓ + k+1 (x)Φ ′ 0 x ℓ,j ℓ + k+1 (x) -x ℓ,j ℓ - k+1 (x)Φ ′ 0 x ℓ,j ℓ - k+1 (x) .
b) Gradient. The components of the gradient ∇ Dℓ k+1 (Γ ℓ k+1 ) are given for every j ℓ = 1, . . . , N ℓ k+1 by

∂ Dℓ k+1 (Γ ℓ k+1 ) ∂x ℓ,j ℓ k+1 = i∈I k Ψ ′ j ℓ (x i k ) p i k = EΨ ′ j ℓ ( Xk ) (43) 
where for every x ∈ R d ,

Ψ ′ j ℓ (x) = x ℓ,j ℓ k+1 -m ℓ k (x) Φ 0 x ℓ,j ℓ + k+1 (x) -Φ 0 x ℓ,j ℓ - k+1 (x) + ϑ ℓ k (x) Φ ′ 0 x ℓ,j ℓ + k+1 (x) -Φ ′ 0 x ℓ,j ℓ - k+1 (x) .
c) Hessian. The sub-diagonal, the super-diagonals and the diagonal terms of the Hessian matrix are given respectively by

∂ 2 Dℓ k+1 (Γ ℓ k+1 ) ∂x ℓ,j ℓ k+1 ∂x ℓ,j ℓ -1 k+1 = i∈I k Ψ ′′ j ℓ ,j ℓ -1 (x i k ) p i k = EΨ ′′ j ℓ ,j ℓ -1 ( Xk ), ∂ 2 Dℓ k+1 (Γ ℓ k+1 ) ∂x ℓ,j ℓ k+1 ∂x ℓ,j ℓ +1 k+1 = i∈I k Ψ ′′ j ℓ ,j ℓ +1 (x i k ) p i k = EΨ ′′ j ℓ ,j ℓ +1 ( Xk ) and ∂ 2 Dℓ k+1 (Γ ℓ k+1 ) ∂ 2 x ℓ,j ℓ k+1 = i∈I k Ψ ′′ j ℓ ,j ℓ (x i k ) p i k = EΨ ′′ j ℓ ,j ℓ ( Xk )
where, for every x ∈ R d ,

Ψ ′′ j ℓ ,j ℓ -1 (x) = - 1 4 1 ϑ ℓ k (x) (x ℓ,j ℓ k+1 -x ℓ,j ℓ -1 k+1 )Φ ′ 0 x ℓ,j ℓ - k+1 (x) , Ψ ′′ j ℓ ,j ℓ +1 (x) = - 1 4 1 ϑ ℓ k (x) (x ℓ,j ℓ +1 k+1 -x ℓ,j ℓ k+1 )Φ ′ 0 x ℓ,j ℓ + k+1 (x) , Ψ ′′ j ℓ ,j ℓ (x) = Φ 0 x ℓ,j ℓ + k+1 (x) -Φ 0 x ℓ,j ℓ - k+1 (x) + Ψ ′′ j ℓ ,j ℓ -1 (x) + Ψ ′′ j ℓ ,j ℓ +1 (x).
Once we have access to the gradient vector and the Hessian matrix associated with Xℓ k+1 and to the optimal grids and companions weights associated with the Xk ′ 's, k ′ = 0, . . . , k, it is possible to write down (at least formally) a Newton-Raphson zero search procedure to compute the optimal quantizer Γ ℓ k+1 . The Newton-Raphson algorithm is in fact indexed by p ≥ 0, where a current grid Γ ℓ,p k+1 is updated as follows:

Γ ℓ,p+1 k+1 = Γ ℓ,p k+1 -∇ 2 Dℓ k+1 (Γ ℓ,p k+1 ) -1 ∇ Dℓ k+1 (Γ ℓ,p k+1 ), p ≥ 1, (44) 
starting from a Γ ℓ,0 k+1 ∈ R N ℓ k+1 (with increasing components).

Remark 

Γ ℓ k+1 = x ℓ,j ℓ k+1 , j ℓ = 1, . . . , N ℓ k+1 with x ℓ,j ℓ k+1 = i∈I k E E ℓ k (x i k , Z k+1 )1 {E ℓ k (x i k ,Z k+1 )∈C j ℓ (Γ ℓ k+1 )} P( Xk = x i k ) p j ℓ k+1 (45) and p j ℓ k+1 = i∈I k P E ℓ k (x i k , Z k+1 ) ∈ C j ℓ (Γ ℓ k+1 ) P( Xk = x i k ), j ℓ = 1, . . . , N ℓ k+1 . (46) 
A straightforward computation leads to the following result: if Γ ℓ k+1 = {x ℓ,j ℓ k+1 , j ℓ = 1, . . . , N ℓ k+1 } is a stationary quantizer for Xℓ k+1 then, for every ℓ ∈ {1, . . . , d} and for every j ℓ ∈ {1, . . . , N ℓ k+1 },

x ℓ,j ℓ k+1 = i∈I k m ℓ k (x i k )γ ℓ,k (x i k ) -ϑ ℓ k (x i k )γ ′ ℓ,k (x i k ) p i k i∈I k γ ℓ,k (x i k ) p i k ( 47 
)
where for every

x ∈ R d , γ ℓ,k (x) = Φ 0 x ℓ,j ℓ + k+1 (x) -Φ 0 x ℓ,j ℓ - k+1 (x) and γ ′ ℓ,k (x) = Φ ′ 0 x ℓ,j ℓ + k+1 (x) -Φ ′ 0 x ℓ,j ℓ - k+1 (x) . (48)

The error analysis

Our aim is now to compute the quadratic quantization error bound XT -XT 2 := Xn -XΓn n 2 . The analysis of this error bound is the subject of the following theorem. We suppose that x 0 = X 0 = X0 . We consider here a regular time discretization (t k ) 0≤k≤n with step ∆ = T /n: t k = kT n , k = 0, . . . , n. Theorem 3.4. Assume the coefficients b, σ satisfy the classical Lipschitz assumptions (30), ( 31) and (32). Let, for every k = 0, . . . , n, Γ k be a Markovian product quantizer for Xk at level N k . Then, for

every k = 0, • • • , n, for any η ∈]0, 1], Xk -XΓ k k 2 ≤ K 2,η k k ′ =1 e (k-k ′ )∆C b,σ a k ′ b, σ, d, k, ∆, x 0 , L, 2 + η N -1/d k ′ (49)
where for every p ∈ (2, 3],

a k ′ (b, σ, d, k, d, ∆, x 0 , L, θ) := e ∆C b,σ (k-k ′ ) p e (κp+Kp)t k ′ |x 0 | p + d k( p 2 -1) e κp∆ L + K p d p 2 -1 (κ p + K p ) e (κp+Kp)t k ′ -1 1 p , with C b,σ = [b] Lip + 1 2 [σ] 2 Lip , K 2,η := K 2,1
,η is a universal constant defined in Equation [START_REF] Zador | Asymptotic quantization error of continuous signals and the quantization dimension[END_REF];

κ θ := (θ + 1)(θ -2) 2 + 2θL and K θ := 2 θ-1 L θ 1 + θ + p(p -1) 2 ∆ θ 2 -1 E|Z| θ , Z ∼ N (0; I d ).
Proof. (of Theorem 3.4). Recall that for every k ≥ 0, Xk = ( X1 k , . . . , Xd k ), where Xℓ k is the quantization of the ℓ-th component Xℓ k of the vector Xk . Therefore, following step by step the proof of Lemma 3.2. in [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF], we obtain for every k ≥ 1:

Xk -Xk 2 ≤ k k=1 e (t k -t k ′ )C b,σ Xk ′ - XΓ k ′ k ′ 2 ,
where

C b,σ = [b] Lip + 1 2 [σ] 2 Lip .
Using the definition of Xk combined with Pierce's Lemma (see Theorem 2.1(b)) yields for every k = 1, . . . , n, for any η ∈ (0, 1],

Xk -Xk 2 ≤K 2,η k k ′ =1 e (k-k ′ )∆C b,σ Xℓ k ′ 2+η (N ℓ k ′ ) -1/d .
Recall that each component Xℓ k of the vector Xk is defined as

X ℓ k = Xℓ k , ℓ = 1, . . . , d,
where Xℓ k is an optimal quadratic quantization of Xℓ k . Hence each component of Xk is stationary with

respect to Xℓ k , that is Xk = E( Xℓ k | Xℓ k ) = Xℓ k . We deduce that E| Xk | p ≤ d p 2 -1 E| Xk | p .
Following the lines of the proof of Lemma 3.2. in [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF], we easily show that for every ℓ ∈ {1, . . . , d}, Xℓ

k ′ 2+η ≤ a k ′ (b, σ, k, d, ∆, x 0 , L, 2 + η).
This completes the proof.

Numerical examples

First of all, keep in mind that the computations for all numerical examples have been performed on a CPU 2.7 GHz and 4 Go memory computer.

Pricing of a Basket European option

We consider a European Basket option with maturity T and strike K, based on two stocks with prices S 1 and S 2 with associated weights w 1 and w 2 . We suppose that S 1 and S 2 evolve following the dynamics

dS 1 t = rS 1 t + ρ σ 1 S 1 t dW 1 t + 1 -ρ 2 σ 1 S 1 t dW 2 t dS 2 t = rS 2 t dt + σ 2 S 2 t dW 1 t ( 50 
)
where W 1 and W 2 are two independent Brownian motion, r is the interest rate and ρ ∈ [-1, 1], is the correlation term. We know that in this case, the price at time t = 0 of the call option reads

e -rT E max(w 1 S 1 T + w 2 S 2 T -K, 0) = e -rT EF (X T ), X = (S 1 , S 2 ), (51) 
where the function F is defined, for every x = (s 1 , s 2 ) ∈ R 2 , by F (x) = max(w 1 s 1 + w 2 s 2 -K, 0). Using the Markovian product quantization, the price of the Basket European option is approximated by

e -rT j∈In F (x j n )P( X n = x j n ). (52) 
For the numerical exercises we will use the following set of parameters: r = 0.04, σ 1 = 0.3, σ 2 = 0.4, ρ = 0.5, w 1 = w 2 = 0.5, S 1 0 = 100, S 2 0 = 100, T = 1. The benchmark price is given by the algorithm developed in [START_REF] Ju | Pricing Asian and Basket options via Taylor expansion[END_REF]. The results are given in Table 1 and Table 2. For both tables, we consider Call prices for the strikes K ∈ {80, 85, 90, 95, 100} and Put prices for strikes K lying to {100, 105, 110, 115, 120}. We also depict in Table 1 the associated relative error Err. = Err. = |Price-M Q n N | Price between the benchmark prices (Price) and the prices obtained from the Markovian and product quantization method of size N = N 1 = N 2 with n discretization steps (denoted by MQ n N ) and the computation time (in seconds) for the Markovian and product quantization method.

In Table 1, we set the number of time steps n = 10 and make the sizes N 1 et N 2 of the marginal quantizers varying whereas, for the results of Table 2, we set N 1 = N 2 = 30 and make varying the number n of time steps.

We verify, as expected, that increasing the size of the marginal quantizers lead to more precise results (see Theorem 3.4). However, this increases the computation time. On the other hand, it is also clear from Theorem 3.4 that fixing the marginal quantization size, the number n of the time steps increases the global quantization error. From the numerical results, the choice N 1 = N 2 = 20 and n = 10 seems to be a good compromise.

K

Price MQ 10 10 Err. (%) MQ 10 20 Err. (%) MQ 

Pricing of a European option in the Heston model

In this example, we consider a European option with maturity T and strike K, in the Heston model, introduced in [START_REF] Steven | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], where the stock price S and its stochastic variance V evolve following the dynamics

dS t = rS t dt + √ V t S t dW 1 t dV t = κ(θ -V t )dt + ρ σ √ V t dW 1 t + 1 -ρ 2 σ √ V t dW 2 t . (53) 
In the previous equation, the parameter r is the interest rate; κ > 0, is the rate at which V reverts to the long running average variance θ > 0; the parameter σ > 0, is the volatility of the variance and ρ ∈ [-1, 1], is the correlation term. In this case, the price of the call at time t = 0 reads where

e -rT E max(S T -K, 0) = e -rT EH(X T ), X = (S, V ), (54) 
H(x) = max(x 1 -K, 0), for x = (x 1 , x 2 ) ∈ R 2 .
Using the Markovian and product quantization method, the price of a call in the Heston model is approximated as

e -rT N 1 n j 1 =1 max(s 1j 1 n -K, 0) P( Ŝ1 n = s 1j 1 n ), (55) 
where P( Ŝ1 n = s 1j 1 n ) is computed according to (35).

For the numerical experiments we will use the following parameters, obtained from a calibration on market prices: r = 0.04, κ = 2.3924, θ = 0.0929, σ = 0.6903, ρ = -0.82, S 0 = 100, V 0 = 0.0719, T = 1.

The pricing of European options under local and stochastic volatility models using recursive quantization techniques has already been studied, see e.g. [START_REF] Pagès | Recursive marginal quantization of the euler scheme of a diffusion process[END_REF] and [START_REF] Callegaro | Quantized calibration in local volatility[END_REF] for the local volatility case, and [START_REF] Callegaro | Pricing via recursive quantization in stochastic volatility models[END_REF] for the stochastic volatility case. However, the method we present here is more general and is model free compared to [START_REF] Callegaro | Pricing via recursive quantization in stochastic volatility models[END_REF] where the method depends on the structure of the model.

The benchmark price is obtained using a Fourier based approach like in [START_REF] Carr | Option valuation using the fast fourier transform[END_REF] , since the Heston model is affine and the characteristic function is known in closed form.

Due to the fact that the derivative only depends on the price and not on the variance, it seems reasonable to choose the marginal grid size N 1 greater than N 2 . To guarantee a good balance between precision and computational time, setting N 1 = 2N 2 seems to be a good trade-off. As for the previous example, we consider Call prices for the strikes K ∈ {80, 85, 90, 95, 100} and Put prices for strikes K belonging to {100, 105, 110, 115, 120} and depict in Table 3 and Table 4 the corresponding prices (by making varying even n or the sizes N 1 and N 2 of the quantizers) and the associated relative errors

Err. = |Price-M Q n N 1 ,N 2 | Price
between the Fourier prices (Price) and the prices obtained from the Markovian and product quantization method of size N = N 1 × N 2 with n discretization steps (denoted by MQ n N 1 ,N 2 ) and the computation time (in seconds) for the Markovian and product quantization method. The best choice from the point of view of accuracy and computational effort, is obtained by taking the size N 1 of the quantization of the price process S equal to 20, by taking N 2 = 10 for the variance process V , and by setting n = 20.

K

Price MQ 20 10,6 Err. (%) MQ 20 20,10 Err. (%) MQ 

Approximation of BSDE

In this section, we consider a Markovian BSDE

Y t = ξ + T t f (s, X s , Y s , Z s )ds - T t Z s • dW s , t ∈ [0, T ], (56) 
where W is a q-dimensional Brownian motion, (Z t ) t∈[0,T ] is a square integrable progressively measurable process taking values in R q , f : [0, T ]×R d ×R×R q → R. The terminal condition is of the form ξ = h(X T ), for a given Borel function h : R d → R, where X T is the value at time T of a Brownian diffusion process (X t ) t≥0 , strong solution to the stochastic differential equation:

X t = x + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s , x ∈ R d . (57) 
As pointed out in the introduction, many (time) discretization schemes and several (spacial) numerical approximation method of the solution of such as BSDE are proposed in the literature (we refer for example to [START_REF] Bally | A stochastic quantization method for non-linear problems[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF][START_REF] Crisan | On the Monte Carlo simulation of BSDE's: an improvement on the malliavin weights[END_REF][START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF][START_REF] Hu | Malliavin calculus for backward stochastic differential equations and applications to numerical solutions[END_REF][START_REF] Gobet | Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs[END_REF][START_REF] Bender | A forward scheme for backward SDEs[END_REF][START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF]). Our aim in this section is to test the performances of our method to the numerical scheme proposed in [START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF]. To this end, we first show that the Markovian product quantization method allows us to compute the term appearing in the numerical schemes proposed in [START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF] (as well as for several numerical schemes) using (semi)-closed formula. We then test the performance of our method to a BSDE associated to the price of the Call option in the Black-Scholes model and to a multidimensional BSDE.

Explicit numerical scheme for the BSDE

Let us set for i ∈ I k , j ∈ I k+1 ,

p i k = P( Xk = x i k ), k = 0, • • • , n and p ij k = P( Xk+1 = x j k+1 | Xk = x i k ), k = 0, • • • , n -1. 
Setting Ŷk = ŷk ( Xk ), for every k ∈ {0, • • • , n}, the quantized BSDE scheme reads as

ŷn (x i n ) = h(x i n ) x i n ∈ Γ n ŷk (x i k ) = αk (x i k ) + ∆ n f t k , x i k , αk (x i k ), βk (x i k ) x i k ∈ Γ k where for k = 0, . . . , n -1, αk (x i k ) = j∈I k+1 ŷk+1 (x j k+1 ) p ij k and βk (x i k ) = 1 √ ∆ n j∈I k+1 ŷk+1 (x j k+1 ) Λ ij k , (58) 
with

Λ ij k = E Z k+1 1 { Xk+1 =x j k+1 } Xk = x i k .
In the following, we give closed formula for the Λ ij k 's. We will first suppose that the components of Xk are independent, for every k = 0, . . . , n. Proposition 4.1. Suppose that q = d and E

ℓ k (x, Z k+1 ) = E ℓ k (x, Z ℓ k+1 ), for every ℓ ∈ {1, . . . , d} and x ∈ R d . Then Λ ij,ℓ k = Φ ′ 0 (x ℓ,j ℓ - k+1 (x i k )) -Φ ′ 0 (x ℓ,j ℓ + k+1 (x i k )) d ℓ ′ =ℓ Φ 0 x ℓ ′ ,j ℓ ′ + k+1 (x i k ) -Φ 0 x ℓ ′ ,j ℓ ′ - k+1 (x i k ) (59) 
Proof. Let us set v ℓ,j ℓ + := x ℓ,j ℓ +1/2 k+1 and v ℓ,j ℓ -= x ℓ,j ℓ -1/2 k+1

. We have

Λ ij k = E Z k+1 1 {E k ( Xk ,Z k+1 )∈C j (Γ k+1 )} Xk = x i k = E Z k+1 1 {E k (x i k ,Z k+1 )∈C j (Γ k+1 )} = E Z k+1 d ℓ ′ =1 1 E ℓ ′ k (x i k ,Z ℓ ′ k+1 )∈ v ℓ ′ ,j ℓ ′ -,v ℓ,j ℓ ′ + .
Since the components of Z k+1 are independent, it follows that for ℓ = 1, . . . , d, the component

(i ℓ , j) of Λ ij k reads Λ ij,ℓ k = E Z ℓ k+1 d ℓ ′ =1 1 E ℓ ′ k (x i k ,Z ℓ ′ k+1 )∈ v ℓ ′ ,j ℓ ′ -,v ℓ,j ℓ ′ + = E Z ℓ k+1 1 E ℓ k (x i k ,Z ℓ k+1 )∈ v ℓ ′ ,j ℓ -,v ℓ,j ℓ + × E d ℓ ′ =ℓ 1 E ℓ ′ k (x i k ,Z ℓ ′ k+1 )∈ v ℓ ′ ,j ℓ ′ -,v ℓ ′ ,j ℓ ′ + . It is clear that E d ℓ ′ =ℓ 1 E ℓ ′ k (x i k ,Z ℓ ′ k+1 )∈ v ℓ ′ ,j ℓ ′ -,v ℓ ′ ,j ℓ ′ + = d ℓ ′ =ℓ Φ 0 x ℓ ′ ,j ℓ ′ + k+1 (x i k , 0) -Φ 0 x ℓ ′ ,j ℓ ′ - k+1 (x i k , 0) .
On this other hand,

E Z ℓ k+1 1 E ℓ k (x i k ,Z ℓ k+1 )∈ v ℓ,j ℓ -,v ℓ,j ℓ + = Φ ′ 0 (x ℓ,j ℓ - k+1 (x i k , 0)) -Φ ′ 0 (x ℓ,j ℓ + k+1 (x i k , 0)).
Combining both previous equalities gives the announced result.

In the following, we compute the p-th component Λ ij,p k of Λ ij k in a general setting. Let us set

J 0,p k,j ℓ (x)= z ∈ R, √ ∆σ ℓp k (x)z ∈ x ℓ,j ℓ -1/2 k+1 -m ℓ k (x), x ℓ,j ℓ +1/2 k+1 -m ℓ k (x) and L 0,p k (x) = ℓ ∈ {1, . . . , d}, p ′ =p σ ℓp ′ k (x) 2 = 0 .
We also set x ℓ,p,j ℓ - k+1 (x, z) and β p j (x, z) = inf ℓ∈ L 0,p k (x) c x ℓ,p,j ℓ + k+1 (x, z).

x ℓ,p,j ℓ - k+1 (x, z) = x ℓ,j ℓ -1/2 k+1 -m ℓ k (x) - √ ∆σ ℓp k (x)z √ ∆ p ′ =p σ ℓp ′ k (x)
(61)

In particular, if p ∈ {1, . . . , q} and if for every ℓ ∈ {1, . . . , d} there exists p ′ = p such that σ ℓp ′ k (x) = 0, then,

Λ ij,p k = E ζ Φ 0 (α p j (x i k , ζ)) -Φ 0 (β p j (x i k , ζ)) + . ( 62 
)
Proof. Let us set v ℓ,j ℓ + := x ℓ,j ℓ +1/2 k+1 and v ℓ,j ℓ -= x ℓ,j ℓ -1/2 k+1

. We have

Λ ij k = E Z k+1 1 {E k ( Xk ,Z k+1 )∈C j (Γ k+1 )} Xk = x i k = E Z k+1 1 {E k (x i k ,Z k+1 )∈C j (Γ k+1 )} = E Z k+1 1 A i j
where

A i j = d ℓ=1 {E ℓ k (x i k , Z k+1 ) ∈ (v ℓ,j ℓ -, v ℓ,j ℓ + )} = d ℓ=1 m ℓ k (x i k ) + √ ∆σ ℓp k (x i k )Z p k+1 + p ′ =p √ ∆σ ℓp ′ k (x i k )Z p ′ k+1 ∈ (v ℓ,j ℓ -, v ℓ,j ℓ + ) .
Then, conditioning by Z p k+1 shows that the component Λ ij,p k of Λ ij k reads

Λ ij,p k = E E Z p k+1 1 A i j ℓ Z p k+1 = E(Ψ(ζ)), ζ ∼ N (0, 1),
where for every u,

Ψ(u) = u P d ℓ=1 A p ℓ,k (u) with A p ℓ,k (u) = m ℓ k (x i k ) + √ ∆σ ℓp k (x i k )u + p ′ =p √ ∆σ ℓp ′ k (x i k )Z p ′ k+1 ∈ (v ℓ,j ℓ -, v ℓ,j ℓ + ) .
Keep in mind that

p ′ =p √ ∆σ ℓp ′ k (x i k )Z p ′ k+1 L = ∆ p ′ =p σ ℓp ′ k (x i k ) 2 1/2
Z, Z ∼ N (0; 1).

Then, we may write

Ψ(u) = u 1 ℓ 0 ∈L 0,p k (x i k )
A p ℓ 0 ,k (u)

P ℓ + ∈ L 0,p k (x i k ) c A p ℓ + ,k (u)
with A p ℓ + ,k (u) = Z ∈ (x ℓ,p,j ℓ - k+1 (x i k , u), x ℓ,p,j ℓ + k+1 (x i k , u)) , Z ∼ N (0; 1). It follows that

Ψ(u) = u 1 ℓ 0 ∈L 0,p k (x i k )
A p ℓ 0 ,k (u)

P ℓ + ∈ L 0,p k (x i k ) c A p ℓ + ,k (u) = u ℓ∈L 0,p k (x i k )
1 u∈J 0,p k,j ℓ (x i k )

P Z ∈ α p j (x i k , u), β p j (x i k , u) .

The result follows immediately.

Pricing a risk neutral Black-Scholes Call under the historical probability

Let (Ω, A, P) be a probability space. We consider a call option with maturity T and strike K on a stock price (X t ) t∈[0,T ] with dynamics dX t = µX t dt + σX t dW t .

Considering a self financing portfolio Y t with ϕ t assets and bonds with risk free return r. We know that (see [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]) the portfolio evolves according to the following dynamics:

Y t = Y T + T t f (Y s , Z s )ds - T t Z s dW s ( 63 
)
where the payoff Y T = (X T -K) + , the hedging strategy Z t = σϕ t X t and f (y, z) = -ry -µ-r σ z. It is clear that the function f is linear with respect to y and z and, it is Lipschitz continuous with [f ] Lip = max(r, µ-r σ ). We perform the numerical tests from the algorithm we propose with the following parameters X 0 = 100, r = 0.1, µ = 0.2, K = 100, T = 0.5 and make varying the volatility σ. (64)

For the numerical experiments, we put the (regular) time discretization mesh to n = 20, with discretization step ∆. We use the uniform dispatching grid allocation and define the quantization ( Ŵt k ) 0≤k≤n of the Brownian trajectories (W t k ) 0≤k≤n from the following recursive procedure

Ŵt k+1 = Ŵt k + √ ∆ ε, (65) 
Ŵ0 = 0 and where ε is the optimal quantization of the d-dimensional standard Gaussian random variable. We choose t = 0.5, d = 2, 3, so that Y 0 = 0.5 and Z i 0 = 0.25, for every i = 1, . . . , d. Using the Markovian product quantization method we get 1. for d = 2, with N 1 = N 2 = 30: Ŷ0 = 0.504, Ẑ1 0 = Ẑ2 0 = 0.24. The computation time is around 4 seconds. Remark that the only reason motivating the choice of this example is the fact that the considered backward has an explicit solution. Nevertheless our method works for a general local volatility diffusion process X. We also note that when choosing the same size N i for all marginal quantizers, the complexity of the algorithm is equal to N d i . This prevents us from going beyond the dimension 3 without increasing significantly the computation time. One way of reducing the computation timein dimension d ≥ 4 may be to use the parallel computing.

k

  of the vector Xk , for every ℓ = 1, . . . , d. We show how to compute the distortion functions associated with every component of the vector Xk+1 , k = 0, . . . , n-1. From the numerical point of view, this will allow us to use the Newton-Raphson algorithm to compute the optimal quantizers associated to each component Xℓ k+1 , ℓ = 1, . . . , d, of the vector Xk+1 , for k = 0, . . . , n-1. Then, the quantization Xk+1 of Xk+1 is defined as the product quantization Xk = ( X1 k , . . . , Xd k ), where Xℓ k = Proj Γ ℓ k+1 ( Xℓ k+1 ).

2 1/ 2 ;2 1 / 2 . 4 . 2 .

 21242 x ℓ,p,j ℓ + k+1 (x, z) =x ℓ,j ℓ +1/2 k+1 m ℓ k (x) -√ ∆σ ℓp k (x)z √ ∆ p ′ =p σ ℓp ′ k (x)Proposition For every p ∈ {1, . . . , q}, the p-th componentΛ ij,p k of Λ ij k reads Φ 0 (α p j (x i k , ζ)) -Φ 0 (β p j (x i k , ζ)) + , ζ ∼ N (0; 1)(60)(convention: ℓ∈∅ (•) = 1) where for every x ∈ R d and z ∈ R,α p j (x, z) = sup ℓ∈ L 0,p k (x) c

σ

  Ŷ0 (n = 20) Ŷ0 (n = 40) Y 0 Ẑ0 (n = 20) Ẑ0 (n = 40) Z 0 0.

2 .

 2 for d = 3, with N 1 = N 2 = N 3 = 15: Ŷ0 = 0.547, Ẑ1 0 = Ẑ2 0 = Ẑ1 0 = 0.22. The computation time is around 1 minute.

  3.4. (Stationarity property) If Γ ℓ k+1 is an optimal Markovian product quantizer for Xℓ

	k+1 k+1 is a stationary quantizer k+1 , then Γ ℓ k+1 by the grid Γ ℓ k+1 denotes the quantization of Xℓ and if Xℓ
	for Xℓ k+1 , means, E Xℓ k+1	Xℓ k+1 = Xℓ k+1 . Equivalently, this means that if

Table 1 :

 1 Prices of a Basket option. The prices correspond to Call prices for strikes K ∈ {80, 85, 90, 95, 100} and to Put prices for strikes K ∈ {100, 105, 110, 115, 120}. The number of time steps n = 10. Size of the grids N1 = N2 = N . The error Err. =

	10 30	Err. (%)

Table 2 :

 2 Prices of a Basket option. The prices correspond to Call prices for strikes K ∈ {80, 85, 90, 95, 100} and to Put prices for strikes K ∈ {100, 105, 110, 115, 120}. Size of the grids N1 = N2 = 30 and the number of time steps n ∈ 20, 30, 40. The error Err. = Price corresponds to the relative error between the benchmark price (Price) and Product Markovian quantization price MQ n N of size N with n discretization steps.

	K	Price	MQ 20 30	Err. (%)	MQ 30 30	Err. (%)	MQ 40 30	Err. (%)
	80	25.9491 25.8461 0.3969	25.7646 0.7112	25.6937 0.9844
	85	22.4481 22.3335 0.5107	22.2473 0.8943	22.1731 1.2252
	90	19.2736 19.1460 0.6618	19.0599 1.1086	18.9837 1.5041
	95	16.4323 16.2916 0.8561	16.2074 1.3686	16.1310 1.8336
	100	13.9197 13.7660 1.1041	13.6861 1.6781	13.6117 2.2130
	100	9.9987	9.8490	1.4971	9.7677	2.3095	9.6926	3.0608
	105	12.6050 12.4428 1.2869	12.3675 1.8842	12.2954 2.4566
	110	15.5060 15.3328 1.1173	15.2642 1.5593	15.1966 1.9956
	115	18.6768 18.4954 0.9714	18.4342 1.2990	18.3717 1.6337
	120	22.0904 21.9045 0.8413	21.8506 1.0854	21.7931 1.3459
	Time (s)		84.13		151.90		194.05	
			|Price-MQ n N |					

Table 3 :

 3 Prices in the Heston model. The prices correspond to Call prices for strikes K ∈ {80, 85, 90, 95, 100} and to Put prices for strikes K ∈ {100, 105, 110, 115, 120}. The number of time steps n = 20. The error Err. = Price corresponds to the relative error between the benchmark price (Price) and Product Markovian quantization price MQ n N 1 ,N 2 of sizes N = N1 × N2 with n discretization steps.

	20 30,16	Err. (%)

Table 4 :

 4 Prices in the Heston model. The prices correspond to Call prices for strikes K ∈ {80, 85, 90, 95, 100} and to Put prices for strikes K ∈ {100, 105, 110, 115, 120}. The error Err. = Price) and Product Markovian quantization price MQ n N 1 ,N 2 of sizes N1 = 20, N2 = 20 with n discretization steps.

	|Price-MQ n N 1 ,N 2 Price	|	corresponds to the relative error

Table 5 :

 5 Call price in the BS model: N k = 100, ∀k = 1, . . . , n; n ∈ {20, 40}. Computational time: < 1 second for n = 20 and around 1 second for n = 40.dX t = dW t , -dY t = f (t, Y t , Z t )dt -Z t • dW t , Y T = e T 1 + e T ,where f (t, y, z) = (z 1 + . . . + z d ) y -2+d 2d . The solution of this BSDE is given by

	05	04.97	05.01	05.00	04.67	04.58	04.62
	0.07	05.23	05.26	05.27	06.04	05.95	05.95
	0.10	05.81	05.84	05.85	07.83	07.72	07.71
	0.30	10.88	10.89	10.91	19.00	18.91	19.01
	0.40	13.56	13.56	13.58	24.91	24.82	24.99
	0.50	16.26	16.25	16.26	31.07	30.98	31.24

4.3.3 Multidimensional example

We consider the following example due to J.-F. Chassagneux:

let t ∈ [0, T ]. Set e t = exp(W 1 t + . . . + W d t + t)

where W is a d-dimensional Brownian motion. Consider the following BSDE: t ) 2 .
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