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Abstract

We introduce a new approach to quantize the Euler scheme of an Rd-valued diffusion process.
This method is based on a Markovian and componentwise product quantization and allows us,
from a numerical point of view, to speak of fast quantization in dimension greater than one since
the product quantization of the Euler scheme of the diffusion process and its companion weights
and transition probabilities may be computed quite instantaneously using a Newton-Raphson al-
gorithm. We show that the resulting quantization process is a Markov chain, then, we compute
the associated companion weights and transition probabilities (for the quantized process and for its
components) using closed formulas. From the analytical point of view, we show that the induced
quantization errors at the k-th discretization step tk is a cumulative of the marginal quantization
error up to time tk. Numerical experiments are performed for the pricing of a Basket call option
and a European call option in a Heston model to show the performances of the method.

1 Introduction

In [8] is proposed and analyzed a Markovian (fast) quantization of an Rd-valued Euler scheme of a
diffusion process. However, in practice, their approach allows to speak of fast quantization only in di-
mension one since, as soon as d ≥ 2, one has to use recursive zero search stochastic algorithms (known
to be very time consuming, compared to deterministic procedures like the Newton-Raphson algorithm,
see [7]) to compute optimal quantizers and theirs associated weights and transition probabilities. In
order to overcome this limitation, we propose in this work another approach to quantize an Rd-valued
Euler scheme of a diffusion process. This method is based on a Markovian and componentwise prod-
uct quantization. It allows again to speak of fast quantization in hight dimension since the product
quantization of the Euler scheme of the diffusion process and its transition probabilities can almost be
computed quite instantaneously using deterministic zero search algorithms.

In a general setting, the stochastic process (Xt)t∈[0,T ] of interest is defined as a (strong) solution to
the following stochastic differential equation

Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (1)
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where W is a standard q-dimensional Brownian motion, independent from the Rd-valued random
vector X0, both defined on the same probability space (Ω,A,P). The drift coefficient b : [0, T ]×Rd →
Rd and the volatility coefficient σ : [0, T ] × Rd → Rd×q are Borel measurable functions satisfying
appropriate Lipschitz continuity and linear growth conditions (specified further on) which ensure the
existence of a unique strong solution of the stochastic differential equation. In corporate finance, these
processes are used to model the dynamics of assets for several quantities of interest involved the pricing
and the hedging of derivatives. These quantities are usually of the form

E
[
f(XT )

]
, T > 0, (2)

or
E
[
f(Xt)|Xs = x

]
, 0 < s < t, (3)

for a given Borel function f : Rd → R. For illustrative purposes, let us consider the following two
pricing examples which may be reduced to the computation of regular expectations like (2). First,
consider the price of a Basket call option with maturity T and strike K , based on two stocks which
prices X1 and X2 evolve following the dynamics

{
dX1

t = rX1
t dt+ σ1X

1
t dW

1
t

dX2
t = rX2

t + ρ σ2X
2
t dW

1
t +

√
1− ρ2 σ2X

2
t dW

2
t , t ∈ [0, T ],

(4)

where r is the interest rate, σ1, σ2 > 0, ρ ∈ (−1, 1) is a correlation term and W 1 and W 2 are two
independent Brownian motions. We know that the no arbitrage price at time t = 0 in a complete market
reads

e−rT
E
[
(w1X

1
T + w2X

2
T −K)+

]
= e−rT

EF (XT ), X = (X1,X2), (5)

where the weights w1 and w2 are usually assumed to be positive and their sum is equal to one and
where the function F is defined, for every x = (x1, x2) ∈ R2, by F (x) = (w1x

1+w2x
2−K)+. Keep

in mind that x+ = max(x, 0), ∀x ∈ R.

The second example concerns the pricing of a call option with maturity T and strike K , in a Heston
model where the stock price S and its stochastic volatility V evolve following the (correlated) dynamics

{
dSt = rStdt+

√
VtStdW

1
t

dVt = κ(θ − Vt)dt+ ρ σ
√
VtdW

1
t +

√
1− ρ2 σ

√
VtdW

2
t , t ∈ [0, T ].

(6)

In the previous equation, the parameter r is still the interest rate; κ > 0 is the rate at which V reverts
to the long run average variance θ > 0; the parameter σ > 0 is the volatility of the variance and
ρ ∈ [−1, 1] is the correlation term. In this case, the no arbitrage price at time t = 0 in a complete
market reads

e−rT
E
[
(ST −K)+

]
= e−rT

EH(XT ), X = (S, V ), (7)

where H(x) = (x1 −K)+, for x = (x1, x2) ∈ R2.

In the general setting (in particular, in both previous examples (4)-(7)) the stochastic differential
equation (1) has no explicit solution. Therefore, both quantities (2) and (3) (in particular, the price
expressions (5) and (7), which are problems of the first kind (8)) have to be approximated, for example,
by

E
[
f(X̄T )

]
(8)

and
E
[
f(X̄tk+1

)|X̄tk = x
]

when t = tk+1 and s = tk (9)

where (X̄tk)k=0,...,n is a discretization scheme of the process (Xt)t≥0 on [0, T ], for a given discretiza-
tion mesh (tk)0≤k≤n. The Euler scheme is usually used. Given the (regular) time discretization mesh

2



tk = k∆, k = 0, . . . , n, ∆ = T/n, the Euler scheme (X̄tk)k=0,...,n, associated to (Xt)t∈[0,T ] is
recursively defined by

X̄tk+1
= X̄tk + b(tk, X̄tk )∆ + σ(tk, X̄tk)(Wtk+1

−Wtk), X̄0 = X0.

In the sequel, when no confusion may occur, we will identify the value Ytk at time tk of any process
(Ytk)0≤k≤n by Yk, k = 0, . . . , n.

At this stage, the quantities (8) and (9) still have no closed formulas in the general setting (for ex-
ample when dealing with a general local volatility model or stochastic volatility models as the Heston
model), so that we have to make a spacial approximation of the expectation or the conditional expec-
tation. This may be done by Monte Carlo simulation techniques or by optimal quantization method (in
particular, by the Markovian (fast) quantization method).

The Markovian (fast) quantization of the Euler scheme of an Rd-valued diffusion process has
been introduced in [8]. It consists of a sequence of quantizations (X̂Γk

k )k=0,...,N of the Euler scheme
(X̄k)k=0,...,N defined recursively as follows:

X̃0 = X̄0,

X̂Γk

k = ProjΓk
(X̃k) and X̃k+1 = Ek(X̂Γk

k , Zk+1), k = 0, . . . , n− 1,

where (Zk)k=1,...,n is an i.i.d. sequence of N (0; Iq)-distributed random vectors, independent of X̄0

and
Ek(x, z) = x+∆b(tk, x) +

√
∆σ(tk, x)z, x ∈ R

d, z ∈ R
q, k = 0, . . . , n− 1.

The sequence of quantizers satisfies for every k ∈ {0, . . . , n},

Γk∈ argmin{D̃k(Γ), Γ ⊂ R
d, card(Γ) ≤ Nk},

where for every grid Γ ⊂ Rd, D̃k+1(Γ) := E
[
dist(X̃tk+1

,Γ)2
]
. However, this method allows fast

quantization (from the numerical point of view) only in dimension one. Otherwise, we are led to use
time consuming recursive stochastic zero search algorithms.

The aim of this work is to present another approach to quantize the Euler scheme of an Rd-valued
diffusion process in order to speak of fast quantization in dimension greater than one. We propose
a Markovian and product quantization method. It allows us to compute instantaneously the optimal
product quantizers and their transition probabilities (and its companion weights) when the size of the
quantizations are chosen reasonably.

The method is based on a Markovian and componentwise product quantization of the process
(X̄k)0≤k≤n. To be more precise, let us denote by Γℓ

k an N ℓ
k-quantizer of the ℓ-th component X̄ℓ

k of the
vector X̄k and let x̂ik be the quantization of X̄ℓ

k of size N ℓ
k, on the grid Γℓ

k. Let us define the product
quantizer Γk =

⊗d
i=1 Γ

ℓ
k of size Nk = N1

k× . . .×Nd
k of the vector X̄k as

Γk =
{
(x1,i1k , . . . , xd,idk ), iℓ ∈ {1, . . . , N ℓ

k}, ℓ ∈ {1, . . . , d}
}
.

Then, assuming that X̄0 is already quantized as X̂0, we define the product quantization (X̂tk )0≤k≤n of
the process (X̄tk )0≤k≤n from the following recursion:





X̃0 = X̂0, X̂ℓ
k = ProjΓℓ

k
(x̃ik), i = 1, . . . , d

X̂k = (X̂1
k , . . . , X̂

d
k ) and X̃ℓ

k+1 = Eℓ
k(X̂k, Zk+1), i = 1, . . . , d

Eℓ
k(x, z) = xℓ +∆bℓ(tk, x) +

√
∆(σℓ•(tk, x)|z), z = (z1, . . . , zq) ∈ Rq

x = (x1, . . . , xd), b = (b1, . . . , bd) and (σℓ•(tk, x)|z) =
∑q

m=1 σ
ℓm(tk, x)z

m.

(10)
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First we will check that the sequence of quantizers (X̂k)k≥0 is a Markov chain (see Proposition
3.1). Then, the challenging question is to know how to compute its set values and their associated tran-
sition probabilities. Using the fact that the conditional distribution of the Euler scheme is a multivariate
Gaussian distribution and that each component of a Gaussian vector remains a scalar Gaussian random
variable, we propose a way to quantize every component X̄ℓ

k of the vector X̄k, for k = 0, . . . , n.
We then define the product quantization (X̂k)0≤k≤n of (X̄k)0≤k≤n from the recursive procedure (10).
Then, we show how to compute, for every k ≥ 1, the transition probabilities (and the companion
weights) associated to each component of the vector X̂k, for every k ≥ 1 and to the vector X̂k itself.

When the components of the vector X̄k are independent for every k = 0, . . . , n, the method boils
down to the usual product quantization of the vector X̄k, where each component is quantized from the
Markovian recursive quantization method (see [8]). In this case, the transition probability weight asso-
ciated to the vector X̂k is the product of the transition probability weights associated to its components.

The main problem arises when the components of X̄k are not independent. In this work, we propose
a closed formula even in this case by relying to a domain decomposition technique.

To be more precise, set, for every k ∈ {0, . . . , n},

Ik =
{
(i1, . . . , id), iℓ ∈ {1, . . . , N ℓ

k}
}

(11)

and for i := (i1, . . . , id) ∈ Ik, set

xik := (x1,i1k , . . . , xd,idk ). (12)

We will show in Proposition 3.2 that the transition probabilities of the Markov chain (X̂k)k≥0

reads, for any multi-indices ℓ ∈ Ik and j =∈ Ik+1,

P
(
X̂k+1 = xjk+1|X̂k = xik

)
= E

∏

i∈J0
k
(xi

k
)

1{ζ∈J0
k,jℓ

(xi
k
)}

(
Φ0(βj(x

i
k, ζ))− Φ0(αj(x

i
k, ζ))

)
+

(13)

where ζ ∼ N (0; Iq−1). For every x ∈ Rd and z ∈ Rq−1,

αj(x, z) = max
(

sup
i∈J+

k
(x)

xi,jℓ−k+1 (x, z), sup
i∈J−

k
(x)

xi,jℓ+k+1 (x, z)
)

and βj(x, z) = min
(

inf
i∈J+

k
(x)

xi,jℓ+k+1 (x, z), inf
i∈J−

k
(x)

xi,jℓ−k+1 (x, z)
)
,

with the convention that
∏

i∈∅ = 1, and,

J
0
k(x) =

{
ℓ ∈ {1, . . . , d}, σℓ1(tk, x) = 0

}

J
−
k (x) =

{
ℓ{1, . . . , d}, σℓ1(tk, x) < 0

}

J
+
k (x) =

{
ℓ{1, . . . , d}, σℓ1(tk, x) > 0

}
.

The quantities xℓ,jℓ−k+1 (x, z) and xℓ,jℓ+k+1 (x, z) are precisely defined in Section 3.2. Although if this for-
mula looks complicated, it is very important in practice. In fact, keeping in mind that the optimal
quantization grids associated to multivariate Gaussian random vectors (up to dimension d = 10) can
be downloaded on the website www.quantize.maths-fi.com, it is clear that (14) can be com-
puted instantaneously using these optimal grids of multivariate normal vectors. Furthermore, Equation
(14) allows us to deduce the weights associated to the product quantization X̂k+1, k = 0, . . . , n − 1,
since for every j ∈ Ik+1,

P
(
X̂k+1 = xjk+1

)
=
∑

i∈Ik

P
(
X̂k+1 = xjk+1|X̂k = xik

)
P
(
X̂k = xik). (14)
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Formulas (13)-(14) are useful when, for example, we deal with the price of a Basket call like
Equation (5). In this situation, given a time discretization mesh t0 = 0, . . . , tn = T , the price of the
Basket call option will be approximated by the cubature

e−rT
∑

j∈In

F (xjn)P(X̂n = xjn), (15)

where P(X̂n = xjn) is computed in a recursive way, using equations (13) and (14).

When the correlation coefficient ρ = 0 in (4), the probabilities P(X̂n = xjn) in the formula (15)
will be computed in a simplified way. In fact, when the components of the vectors X̄k are independent,
k = 0, . . . , n, we show in Proposition 3.3 that the formula (13) reads in the simplified form

P
(
X̂k+1 = xjk+1|X̂k = xik

)
=

d∏

ℓ=1

P
(
X̂ℓ

k+1 = xjℓk+1|X̂k = xik
)

=
d∏

ℓ=1

(
Φ0

(
xℓ,jℓ+k+1 (xik, 0)

)
− Φ0

(
xℓ,jℓ−k+1 (xik, 0)

))
,

for i ∈ Ik, j ∈ Ik+1, where Φ0(·) stands for the cumulative distribution of the scalar Gaussian
random variable.

We also compute the (transition) distribution of each component of the product quantizations. In-
deed, we show in Proposition 3.4 that for any ℓ ∈ {1, . . . , d} and for every jℓ ∈ {1, . . . , N ℓ

k+1}, the

transition probability P(X̃ℓ
k+1 ∈ Cjℓ(Γ

ℓ
k+1)|X̂k = xik) is given by

P
(
X̃ℓ

k+1 = xℓjℓk+1|X̂k = xik
)

= Φ0

(
x
ℓ,jℓ+1/2
k+1 −mℓ

k(x
i
k)√

∆ |σℓ•
k (xik)|2

)
− Φ0

(
x
ℓ,jℓ−1/2
k+1 −mℓ

k(x
i
k)√

∆ |σℓ•
k (xik)|2

)
, (16)

where mℓ
k(x) = x + b(tk, x)∆ and |σℓ•

k (x)|2 is the Euclidean norm of the ℓ-th row of the volatility
matrix σ(tk, x), for x ∈ Rd. We deduce immediately the formulas for the probabilities P(X̃ℓ

k+1 ∈
Cjℓ(Γ

ℓ
k+1)), k = 0, . . . , n− 1, jℓ ∈ {1, . . . , N ℓ

k+1} using (16) (and (14)).

Equation (16) allows us to approximate the price of the call in the Heston model by

e−rT

N1
n∑

j1=1

H(x1j1n )P(X̂1
n = x1j1n ). (17)

Another important issue form the analytical point of view is to compute the quantization error
bound associated to the Markovian quantization process. Using some results from [8], we show (in
particular, when N ℓ

k = Nk, for avery ℓ = 1, . . . , d) that for any sequence (X̂Γk

k )0≤k≤n of (quadratic)

Markovian product quantization of (X̃k)0≤k≤n, the quantization error ‖X̄k − X̂Γk

k ‖2 , at step k of the

recursion, is bounded by the cumulative quantization errors
√
d‖X̃p − X̂

Γp
p ‖2 , for p = 0, . . . , k. More

precisely, one shows that for every k = 0, . . . , n, for any η∈ (0, 1],

‖X̄k − X̂Γk

k ‖2 ≤
√
d

k∑

p=0

ap(b, σ,∆, x0, η)N
−1/d
p ,

where ap(b, σ,∆, x0, η) is a positive real constant depending on b, σ, ∆, x0, η (see Theorem 3.6 further
on for a more general statement).

The paper is organized as follows: in Section 2 we recall some basic results on optimal quantiza-
tion. Section 3 is the main part of this paper. We present the algorithm and show the Markov property
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of the product quantization of the Euler scheme of a diffusion process. Then, we show how to compute
the weights and transition probabilities associated to the product quantizers and to its components. We
also show how to compute the optimal quantizers associated to each component of the Euler scheme
(keep in mind that this is the foundation of our method). Finally, we provide some a priori error bounds
for the quantization error associated to the Markovian product quantization and show that, at every step
discretization step tk, this error is a cumulated (weighted) sum of the regular quantization errors, up
to time tk. In Section 4, we present some numerical results for the pricing of a European call Basket
option and a European call option in the Heston model.

NOTATIONS. We denote by M(d, q,R), the set of d×q real value matrices. If A = [aij ] ∈ M(d, q,R),
A⋆ denotes its transpose and we define the norm ‖A‖ :=

√
Tr(AA⋆) = (

∑
i,j a

2
ij)

1/2, where Tr(M)

stands for the trace of M , for M ∈ M(d, d,R). For every f : Rd → M(d, q,R), we will set
[f ]Lip = supx 6=y

‖f(x)−f(y)‖
|x−y| . For x, y ∈ R, x ∨ y = max(x, y). If x ∈ Rd, |x|2 will stand for the

Euclidean norm on Rd. For every vectors x, y, the notation (x|y) denotes the dot product of the vectors
x and y. For a given vector z ∈ Rq and a matrix M ∈ M(d, q,R), zi denotes the component i of z,
z(j:k) the vector made up from the component j to the component k of the vector z and M (i,j:k) is the
vector made up from the component j to the component k of the i-th row of the matrix M and M ij for
the component (i, j) of the matrix M . The notation M i• stands for the i-th row of M . The function
Φ0 will denote the cumulative distribution function of the standard real valued Normal distribution and
Φ′
0 will stand for its density function.

2 Brief background on optimal quantization

Let (Ω,A,P) be a probability space and let X : (Ω,A,P) −→ Rd be a random variable with dis-
tribution PX . The Lr-optimal quantization problem at level N for the random vector X (or for the
distribution PX) consists in finding the best approximation of X by a Borel function π(X) of X taking
at most N values. Assuming that X ∈ Lr(P), we associate to every Borel function π(X) taking at
most N values, the Lr-mean error ‖X − π(X)‖r measuring the distance between the two random
vectors X and π(X) w.r.t. the mean Lr-norm, where ‖X‖r := (E|X|r)1/r and | · | denotes an arbitrary
norm on Rd. Then finding the best approximation of X by a Borel function of X taking at most N
values turns out to solve the following minimization problem:

eN,r(X) = inf {‖X − π(X)‖r , π : Rd → Γ,Γ ⊂ R
d, |Γ| ≤ N},

where |A| stands for the cardinality of A, for A ⊂ Rd. Now, let Γ = {x1, · · · , xN} ⊂ Rd be a
codebook of size N (also called an N -quantizer or a grid of size N ) and define a Voronoi partition
Ci(Γ)i=1,··· ,N of Rd, which is a Borel partition of Rd satisfying for every i ∈ {1, · · · , N},

Ci(Γ) ⊂
{
x ∈ R

d : |x− xi| = min
j=1,··· ,N

|x− xj |
}
.

Consider the Voronoi quantization of X (simply called quantization of X) by the N -quantizer Γ defined
by

X̂Γ =

N∑

i=1

xi1{X∈Ci(Γ)}.

Then, for any Borel function π : Rd → Γ = {x1, · · · , xN} we have

|X − π(X)| ≥ min
i=1,··· ,N

d(X,xi) = d(X,Γ) = |X − X̂Γ| P a.s

6



so that the optimal Lr-mean quantization error eN,r(X) reads

eN,r(X) = inf {‖X − X̂Γ‖r,Γ ⊂ R
d, |Γ| ≤ N}

= inf
Γ⊂Rd

|Γ|≤N

(∫

Rd

d(z,Γ)rdPX(z)

)1/r

. (18)

Recall that for every N ≥ 1, the infimum in (18) is attained at least one codebook. Any N -
quantizer realizing this infimum is called an Lr-optimal N -quantizer. Moreover, when |supp(PX))| ≥
N then any Lr-mean optimal N -quantizer has exactly size N (see [2] or [6]). On the other hand,
the quantization error, eN,r(X), decreases to zero as the grid size N goes to infinity and its rate of
convergence is ruled by the so-called Zador Theorem recalled below. There also is a non-asymptotic
upper bound for optimal quantizers. It is called Pierce Lemma (we recall it below for the quadratic
case) and will allows us to put a finishing touches to the proof of the main result of the paper, stated in
Theorem 3.6.

Theorem 2.1. (a) (Zador, see [2, 10]). Let X be an Rd-valued random vector such that E|X|r+η <
+∞ for some η > 0 and let PX = f · λd + Ps be the Lebesgue decomposition of PX with respect to

the Lebesgue measure λd and Ps denotes its singular part. Then

lim
N→+∞

N
1
d eN,r(P ) = Q̃r(PX) (19)

with

Q̃r(PX) = J̃r,d

(∫

Rd

f
d

d+r dλd

) 1
r
+ 1

d

= J̃r,d ‖f‖1/rd
d+r

∈ [0,+∞),

J̃r,d = inf
N≥1

N
1
d eN,r(U([0, 1]d)) ∈ (0,+∞)

where U([0, 1]d) denotes the uniform distribution over the hypercube [0, 1]d.

(b) (Pierce, see [2, 5]). Let η > 0. There exists a universal constant K2,d,η such that for every random

vector X : (Ω,A,P) → Rd,

inf
|Γ|≤N

‖X − X̂Γ‖2 ≤ K2,d,η σ2,η(X)N− 1
d (20)

where

σ2,η(X) = inf
ζ∈Rd

‖X − ζ‖2+η
≤ +∞.

From the Numerical Probability point of view, finding an optimal N -quantizer Γ may be a chal-
lenging task. In practice (we will only consider the quadratic case, i.e. r = 2 for numerical imple-
mentations) we are sometimes led to find some “good” quantizations X̂Γ which are close to X in
distribution, so that for every continuous function f : Rd → R, we can approximate Ef(X) by

Ef
(
X̂Γ
)
=

N∑

i=1

pif(xi), (21)

where pi = P(X̂Γ = xi). When we approximate Ef(X) by (21), this induced an error which bound
depends on the regularity of the function f (see e.g. [7] for more details).

We recall below the stationarity property for a quantizer.
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Definition 2.1. A quantizer Γ = {x1, . . . , xN} of size N inducing the Voronoi quantization X̂Γ of X
is stationary if P (X∈ ∪i∂Ci(Γ)) = 0, P (X∈ Ci(Γ)) > 0, i = 1, . . . , N , and

E
(
X|X̂Γ

)
= X̂Γ

P-a.s. ⇐⇒ xi =
E(X1{X∈Ci(Γ)})

P(X∈ Ci(Γ))
, i = 1, . . . , N. (22)

The notion of stationarity is related to the critical point of the so-called distortion function defined
on (Rd)N by

DN,2(x) = E
(

min
1≤i≤N

|X − xi|2
)
=

∫

Rd

|ξ − xi|2PX(dξ), x = (x1, . . . , xN
)∈ (Rd)N . (23)

As any grid of size at most N can be “represented” by some N -tuples (by repeating, if necessary, some
of its elements), we will often put grids of all size N as an argument of the distortion function D2,N

as well as for its gradient and Hessian matrix when its Voronoi boundary is negligible. It is also clear,
from the definition of the quantization error, that

e2N,2(X) = inf
(x1,...,xN )∈(Rd)N

DN,2(x1, . . . , xN ).

Furthermore, the function DN,2 is continuous and differentiable at any N -tuple having pairwise distinct
components with a P-negligible Voronoi partition boundary and the following result makes this more
precise.

Proposition 2.2. (see [2, 6]) (a) The function DN,2 is differentiable at any N -tuple (x1, . . . , xN
) ∈

(Rd)N having pairwise distinct components and such that P (X∈ ∪i∂Ci(Γ)) = 0. Furthermore, we

have

∇DN,2(x1, . . . , xN
) = 2

(∫

Ci(Γ)
(xi − x)dPX(x)

)
i=1,...,N

(24)

= 2
(
P(X∈ Ci(Γ))xi − E(X1{X∈Ci(Γ)})

)
i=1,...,N

. (25)

(b) A grid Γ = {x1, . . . , xN
} of full size N is stationary if and only if

P (X∈ ∪i∂Ci(Γ)) = 0 and ∇DN,2(Γ) = 0. (26)

(c) If the support of P
X

has at least N elements, any L2-optimal quantizer at level N has full size and

a P-negligible Voronoi boundary. Hence it is a stationary N -quantizer.

For numerical implementations, the search of stationary quantizers is based on zero search recur-
sive procedures like Newton-Raphson algorithm for real valued random variables, and some algorithms
like Lloyd’s I algorithms (see e.g. [1, 9]), the Competitive Learning Vector Quantization (CLVQ) al-
gorithm (see [1]) or stochastic algorithms (see [7]) in the multidimensional framework. Optimal quan-
tization grids associated to multivariate Gaussian random vectors can be downloaded on the website
www.quantize.math-fi.com.

3 Markovian product quantization of an Rd-valued Euler process

Let (Xt)t≥0 be a stochastic process taking values in a d-dimensional Euclidean space Rd and solution
to the stochastic differential equation:

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs, x0 ∈ R

d, (27)
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where W is a standard q-dimensional Brownian motion starting at 0 and where b : [0, T ] × Rd → Rd

and the matrix diffusion coefficient function σ : [0, T ]×Rd → M(d, q,R) are measurable and satisfy
the global Lipschitz and linear growth conditions: for every t ∈ [0, T ],

|b(t, x)− b(t, y)| ≤ [b]Lip|x− y| (28)

‖σ(t, x) − σ(t, y)‖ ≤ [σ]Lip|x− y| (29)

|b(t, x)| ≤ L(1 + |x|) and ‖σ(t, x)‖ ≤ L(1 + |x|). (30)

L > 0. This guarantees the existence and pathwise uniqueness of a strong solution of (27), adapted to
the (augmented) filtration of W . We also suppose that the matrix σ is positive definite. Throughout the
paper we will suppose that Rd is equipped with the canonical Euclidean norm.

3.1 The algorithm and the Markov property of the quantized process

Recall that the Euler scheme of the stochastic process (Xt)t≥0 is defined recursively from the following
procedure:

X̄tk+1
= X̄tk +∆b(tk, X̄tk ) + σ(tk, X̄tk )(Wtk+1

−Wtk), X̄0 ∈ R
d,

where ∆ = ∆n = T
n and tk = kT

n , for every k ∈ {0, · · · , n}. To simplify notations, we will often
set Xk := Xtk to denote the process X evaluated at time tk. We also set bk(x) := b(tk, x) and
σk(x) = σ(tk, x) for x ∈ Rd. Recall also that the operator associated to the conditional distribution of
X̄k+1 given X̄k = x is defined by

Ek(x, z) := x+∆b(tk, x) +
√
∆σ(tk, x)z, x∈ R

d, z∈ R
q

and that if Γk+1 is an Nk+1-quantizer for X̄k+1, the distortion function D̄k+1 associated to X̄k+1 may
be written for every k = 0, · · · , n− 1, as

D̄k+1(Γk+1) = E
(
(dist(X̄k+1,Γk+1)

2
)

= E
[
dist(Ek(X̄k, Zk+1),Γk+1)

2
]

where Zk+1 ∼ N (0; Iq) is independent from X̄k. The previous way to write the distortion function has
been used in [8] to propose a fast recursive (and Markovian) quantization of the Euler process (using
the Newton-Raphson algorithm for the numerical computation of the optimal grids) when d = 1. The
proposed algorithm extends to the dimension d. However, when d ≥ 2, it makes use of stochastic or
Lloyd (fixed point) like algorithms. These algorithms are very time consuming so that we cannot speak
of fast quantization of the Euler process (X̄k)k≥0 when d ≥ 2. Our aim is to propose a faster way of
getting the optimal quantizers when d ≥ 2.

Keep in mind that the conditional distribution of the discrete Euler process X̄ is Gaussian and that
one of the properties of a Gaussian vector is that any sub-component of the vector remains a Gaussian
random vector. So, a natural alternative way to quantize the vector X̄k ∈ Rd is to quantize each
component X̄ℓ

k by a grid Γℓ
k of size N ℓ

k, for ℓ = 1, . . . , d, and then to define its product quantization
X̂k associated with the product quantizer Γk =

⊗d
ℓ=1 Γ

ℓ
k of size Nk = N1

k× . . .×Nd
k , as X̂k =

(X̂1
k , . . . , X̂

d
k ).

The question is now to know how to quantize the X̄i
k’s. On the other hand, since the components

of the vector X̄k are not independent it is also a challenging question to know how to compute (from
closed formula) the companions weights and transition probabilities associated with the quantizations
of the X̄i

k’s and the vector X̄k. We describe below the componentwise recursive Markovian quantiza-
tion of the process {X̄k, k = 0, . . . , n}.
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It is clear that for every ℓ = 1, . . . , d, and for every k = 0, . . . , n − 1, the transition operator
Eℓ
k(x, z) associated with the distribution of X̄ℓ

k+1 given X̄k = x reads as

Eℓ
k(x, z) := mℓ

k(x) +
√
∆
(
σℓ•
k (x)|z

)
, x∈ R

d, z∈ R
q,

where
mℓ

k(x) := xℓ +∆bk(x).

For every k = 0, . . . , n, for every given ℓ ∈ {1, . . . , d}, we denote by X̂ℓ
k the quantization of X̄ℓ

k

on the grid Γℓ
k = {xℓ,iℓk , iℓ = 1, . . . , N ℓ

k}. We propose in what follows a recursive and componentwise
product quantization of the process {X̄k, k = 0, . . . , n}. In fact, for every ℓ = 1, . . . , d, we denote
by Γℓ

k an N ℓ
k-quantizer (we suppose that we have access to it) of the ℓ-th component X̄ℓ

k of the vector
X̄k and by X̂ℓ

k, the resulting quantization of X̄ℓ
k. Then, we define a componentwise recursive product

quantizer Γk =
⊗d

ℓ=1 Γ
ℓ
k of size Nk = N1

k× . . .×Nd
k of the vector X̄k = (X̄ℓ

k)ℓ=1,...,d by

Γk =
{
(x1,i1k , . . . , xd,idk ), iℓ ∈

{
1, . . . , N ℓ

k

}
, ℓ ∈ {1, . . . , d}

}
.

To define the Markovian product quantization, suppose that X̄k has already been quantized and
that we have access to the companion weights P(X̂k = xik), i ∈ Ik, where Ik and xik are defined
by Equations (11) and (12). Setting X̃ℓ

k = Eℓ
k(X̂k, Zk+1), we may approximate the distortion function

D̄ℓ
k+1 associated to the ℓ-th component of the vector X̄ℓ

k+1 by

D̃ℓ
k+1(Γ

ℓ
k+1) := E

[
dist(X̃ℓ

k+1,Γ
ℓ
k+1)

2
]

= E
[
dist(Eℓ

k(X̂k, Zk+1),Γ
ℓ
k+1)

2
]

=
∑

i∈Ik

E
[
dist(Eℓ

k(x
i
k, Zk+1),Γk+1)

2
]
P
(
X̂k = xik

)
.

This allows us to consider the sequence of product recursive quantizations of (X̂k)k=0,··· ,n, defined
for every k = 0, . . . , n− 1, by the following recursion:





X̃0 = X̂0, X̂ℓ
k = ProjΓℓ

k
(X̃ℓ

k), ℓ = 1, . . . , d,

X̂k = (X̂1
k , . . . , X̂

d
k ) and X̃ℓ

k+1 = Eℓ
k(X̂k, Zk+1), ℓ = 1, . . . , d,

Eℓ
k(x, z) = mℓ

k(x) +
√
∆(σℓ•(tk, x)|z), z = (z1, . . . , zq) ∈ Rq,

x = (x1, . . . , xd), b = (b1, . . . , bd) and (σℓ•(tk, x)|z) =
∑q

m=1 σ
ℓm(tk, x)z

m.

(31)

where (Zk)k=1,··· ,n is i.i.d., N (0; Iq)-distributed, independent of X̄0.

In the following result, we show that the sequence (X̂k)k≥0 of Markovian and product quantiza-
tions is in fact a Markov chain. Its transition probabilities will be computed further on.

Proposition 3.1. The process (X̂k)k≥0 is a Markov chain on Rd.

Proof. Set Ek(X̂k, Zk+1) = (E1
k (X̂k, Zk+1), . . . , Ed

k (X̂k, Zk+1)), for every k ≥ 0. Then, it follows
from the definition of X̂k+1 that

X̂k+1 =
∑

j∈Ik+1

xjk+11{Ek(X̂k,Zk+1)∈
∏d

ℓ=1 Cjℓ
(Γℓ

k+1)}
.
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For any bounded function f : Rd → R, we have

E(f(X̂k+1)|X̂k) =
∑

j∈Ik+1

E

(
f(xjk+1)1{X̂k+1=xj

k+1}
|X̂k

)

=
∑

j∈Ik+1

f(xjk+1)E
(
1{Ek(X̂k ,Zk+1)∈

∏d
ℓ=1 Cjℓ

(Γℓ
k+1)}

|X̂k

)

=
∑

j∈Ik+1

f(xjk+1)hj(X̂k)

where for every x ∈ Rd,

hj(x) = P
(
Ek(x,Zk+1) ∈

d∏

ℓ=1

Cjℓ(Γ
ℓ
k+1)

)
.

As a consequence, E(f(X̂k+1)|X̂k) = ϕ(X̂k), so that (X̂k)k≥0 is a Markov chain.

Now, for a given componentwise (quadratic) optimal quantizers Γk =
⊗d

ℓ=1 Γ
ℓ
k, let us explain

how to compute the companion transition probability weights associated with the quantizations of the
X̄ℓ

k’s and the whole vector X̄k. We write all the quantities of interest as an expectation of a function
of a standard Rq−1-valued Normal distribution. These transformations are the key step of this work.
In fact, since the optimal quantization grids associated to standard Normal random vectors (up to
dimension 10) and their companion weights are available on www.quantize.maths-fi.com,
these quantities of interest may be computed instantaneously using a cubature formula.

3.2 Computing the companion weights and transition probabilities of the marginal

quantizations

First of all we define the following quantities which will be needed in the sequel. For every k ∈
{0, . . . , n− 1} and for every j ∈ Ik+1 we set

x
ℓ,jℓ−1/2
k+1 =

xℓ,jℓk+1 + xℓ,jℓ−1
k+1

2
, x

ℓ,jℓ+1/2
k+1 =

xℓ,jℓk+1 + xℓ,jℓ+1
k+1

2
, with x

ℓ,1/2
k+1 = −∞, x

ℓ,Nℓ
k+1+1/2

k+1 = +∞,

and if Z(2:q)
k = z ∈ Rq−1 and x ∈ Rd, we set (if σℓ1

k (x) 6= 0)

xℓ,jℓ−k+1 (x, z) :=
x
ℓ,jℓ−1/2
k+1 −mℓ

k(x)−
√
∆
(
σ
(ℓ,2:q)
k (x)|z

)
√
∆σℓ1

k (x)

and xℓ,jℓ+k+1 (x, z) :=
x
ℓ,jℓ+1/2
k+1 −mℓ

k(x)−
√
∆
(
σ
(ℓ,2:q)
k (x)|z

)
√
∆σℓ1

k (x)
.

We also define the hyper-bounds

J
0
k,jℓ

(x) =
{
z ∈ R

q−1,
√
∆
(
σ
(ℓ,2:q)
k (x)

∣∣z
)
∈
(
x
ℓ,jℓ−1/2
k+1 −mℓ

k(x), x
ℓ,jℓ+1/2
k+1 −mℓ

k(x)
)}

and

J
0
k(x) =

{
ℓ ∈ {1, . . . , d}, σℓ1

k (x) = 0
}

J
−
k (x) =

{
ℓ ∈ {1, . . . , d}, σℓ1

k (x) < 0
}

J
+
k (x) =

{
ℓ ∈ {1, . . . , d}, σℓ1

k (x) > 0
}
.

The following result allows us to compute (the weights and) the transition probability weights
associated to the quantizations X̂k, k = 0, . . . , n.
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Proposition 3.2. Let {X̂k, k = 0, . . . , n} be the sequence defined from the algorithm (31).

1. The transition probability P(X̂k+1 = xjk+1|X̂k = xik), i ∈ Ik, j ∈ Ik+1, is given by

P
(
X̂k+1 = xjk+1|X̂k = xik

)
= E

∏

ℓ∈J0
k
(xi

k
)

1{ζ∈J0
k,jℓ

(xi
k
)}

(
Φ0(βj(x

i
k, ζ))− Φ0(αj(x

i
k, ζ))

)
+

(32)

where ζ ∼ N (0; Iq−1) and where for every x ∈ Rd and z ∈ Rq−1,

αj(x, z) = max
(

sup
ℓ∈J+

k
(x)

xℓ,jℓ−k+1 (x, z), sup
ℓ∈J−

k
(x)

xℓ,jℓ+k+1 (x, z)
)

and βj(x, z) = min
(

inf
ℓ∈J+

k
(x)

xℓ,jℓ+k+1 (x, z), inf
ℓ∈J−

k
(x)

xℓ,jℓ−k+1 (x, z)
)
,

with the convention that
∏

ℓ∈∅ = 1.

2. For every j ∈ Ik+1,

P
(
X̂k+1 = xjk+1

)
=
∑

i∈Ik

P
(
X̂k+1 = xjk+1|X̂k = xik

)
P
(
X̂k = xik), (33)

where the conditional probabilities are computed using the formula (32).

Remark when d = 1, the results of Proposition 3.2 coincide with the results of Proposition 4.1.
in [8].

Proof. We will only show the first assertion. The second assertion is a consequence of the first one.

Let us set vℓ,jℓ+ := x
ℓ,jℓ+1/2
k+1 and vℓ,jℓ− = x

ℓ,jℓ−1/2
k+1 . We have

P(X̂k+1 = xjk+1|X̂k = xik) = P

( d⋂

ℓ=1

{
X̃ℓ

k+1 ∈
(
vℓ,jℓ−, vℓ,jℓ+

)}∣∣X̂k = xik

)

= P

( d⋂

ℓ=1

{
Eℓ
k(x

i
k, Zk+1) ∈

(
vℓ,jℓ−, vℓ,jℓ+

)})

= E

(
E

(
1⋂d

ℓ=1

{
Eℓ
k
(xi

k
,Zk+1)∈

(
vℓ,jℓ−,vℓ,jℓ+

)}
)∣∣Z(2:q)

k+1

)

= E
(
Ψ(xik, Z

(2:q)
k+1 )

)
,

where for every u ∈ Rq−1,

Ψ(x, u) = P

( d⋂

ℓ=1

{
mℓ

k(x) +
√
∆σℓ1

k (x)Z1
k+1 +

√
∆
(
σ
(ℓ,2:q)
k (x)|u

)
∈
(
vℓ,jℓ−, vℓ,jℓ+

)})
.

Let us set

Aℓ,k =
{
mℓ

k(x) +
√
∆σℓ1

k (x)Z1
k+1 +

√
∆
(
σ
(ℓ,2:q)
k (x)|u

)
∈
(
vℓ,jℓ−, vℓ,jℓ+

)}
.

We know that if ℓ ∈ J
0
k(x) then Aℓ,k = {u ∈ J

0
k,jℓ

(x)} and we deduce that

Ψ(x, u) =
∏

ℓ0∈J0
k
(x)

1{u∈J0
k,jℓ0

(x)}P

(
( ⋂

ℓ−∈J−
k
(x)

Aℓ−,k

)
∩
( ⋂

ℓ+∈J+
k
(x)

Aℓ+,k

)
)
.
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Notice that Ψ(x, u) = 0 if Aℓ−,k or Aℓ+,k is empty. Furthermore, we note that if ℓ+ ∈ J
+
k (x), then

Aℓ+,k = {Z1
k+1 ∈ (xℓ,jℓ−k+1 (x, u), xℓ,jℓ+k+1 (x, u))}

and if ℓ− ∈ J
−
k (x), then

Aℓ−,k = {Z1
k+1 ∈ (xℓ,jℓ+k+1 (x, u), xℓ,jℓ−k+1 (x, u))}.

It follows that (having in mind that the sets J−
k (x) or J+

k (x) may be empty)

P

(
( ⋂

ℓ−∈J−
k
(x)

Aℓ−,k

)
∩
( ⋂

ℓ+∈J+
k
(x)

Aℓ+,k

)
)

= P

(
Z1
k+1 ∈

(
sup

ℓ∈J+
k
(x)

xℓ,jℓ−k+1 (x, u), inf
ℓ∈J+

k
(x)

xℓ,jℓ+k+1 (x, u)
)

∩
(

sup
ℓ∈J−

k
(x)

xℓ,jℓ+k+1 (x, u), inf
ℓ∈J−

k
(x)

xℓ,jℓ−k+1 (x, u)
))

.

This completes the proof since Z
(2:q)
k+1 ∼ N (0; Iq−1).

Now, we focus on in the particular case where the matrix σ(t, x), for (t, x) ∈ [0, T ]×Rd, is diagonal
with positive diagonal entries σℓℓ(t, x), ℓ = 1, . . . , d. The following result says how to compute the
transition probability weights of the X̂k’s. Let us set for every x ∈ Rd, every ℓ ∈ {1, . . . , d} and
jℓ ∈ {1, . . . , N ℓ

k+1},

xℓ,jℓ−k+1 (x, 0) :=
x
ℓ,jℓ−1/2
k+1 −mℓ

k(x)√
∆σℓℓ

k (x)
and xℓ,jℓ+k+1 (x, 0) :=

x
ℓ,jℓ+1/2
k+1 −mℓ

k(x)√
∆σℓℓ

k (x)
.

Proposition 3.3. Let {X̂k, k = 0, . . . , n} be the sequence of quantizers defined by the algorithm (31)
and associated with the solution (Xt) of (27). Suppose that the volatility matrix σ(t, x) of (Xt)t≥0 is

diagonal with positive diagonal entries σℓℓ(t, x), ℓ = 1, . . . , d. Then, the transition probability weights

P(X̂k+1 = xjk+1|X̂k = xik), i ∈ Ik, j ∈ Ik+1, are given by

P
(
X̂k+1 = xjk+1|X̂k = xik

)
=

d∏

ℓ=1

P
(
X̂ℓ

k+1 = xjℓk+1|X̂k = xik
)

(34)

=

d∏

ℓ=1

[
Φ0

(
xℓ,jℓ+k+1 (xik, 0)

)
− Φ0

(
xℓ,jℓ−k+1 (xik, 0)

)]
, (35)

and the companions probabilities P
(
X̂k+1 = xjk+1

)
are given for every k = 0, . . . , n − 1 and every

j ∈ Ik+1 by

P
(
X̂k+1 = xjk+1

)
=
∑

i∈Ik

d∏

ℓ=1

[
Φ0

(
xℓ,jℓ+k+1 (xik, 0)

)
− Φ0

(
xℓ,jℓ−k+1 (xik, 0)

)]
P(X̂k = xik). (36)

Proof. 1. Set vℓ,jℓ+ := x
ℓ,jℓ+1/2
k+1 and vℓ,jℓ− = x

ℓ,jℓ−1/2
k+1 , for j ∈ Ik+1 and ℓ = 1, . . . , d. We have

P(X̂k+1 = xjk+1|X̂k = xik) = P

( d⋂

ℓ=1

{
X̃ℓ

k+1 ∈
(
vℓ,jℓ−, vℓ,jℓ+

)}∣∣X̂k = xik

)

= P

( d⋂

ℓ=1

{
Eℓ
k(x

i
k, Zk+1) ∈

(
vℓ,jℓ−, vℓ,jℓ+

)})
.
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Since for every k = 0, . . . , n−1, σ(tk, x) is a diagonal matrix, it follows that the operators Eℓ
k(x

i
k, Zk+1) =

Eℓ
k(x

i
k, Z

ℓ
k+1), for ℓ = 1, . . . , d, are independent, so that

P(X̂k+1 = xjk+1|X̂k = xik) =

d∏

ℓ=1

P

(
Eℓ
k(x

i
k, Z

ℓ
k+1) ∈

(
vℓ,jℓ−, vℓ,jℓ+

))

=
d∏

ℓ=1

[
Φ0

(
xℓ,jℓ+k+1 (xik)

)
− Φ0

(
xℓ,jℓ−k+1 (xik)

)]
.

The second assertion immediately follows.

The following result is useful in the situation where we need to approximate the expectation of a
function of one component of the vector X̄k as for example in the pricing of European options in the
Heston model.

Proposition 3.4. Let Γℓ
k+1 be an optimal quantizer for the random variable X̃ℓ

k+1. Suppose that the

optimal product quantizer Γk for X̃k and its companion weights P(X̂k = xik), i ∈ Ik, are computed.

1. For any ℓ ∈ {1, . . . , d} and any jℓ ∈ {1, . . . , N ℓ
k+1}, the transition probability weights P(X̃ℓ

k+1 ∈
Cjℓ(Γ

ℓ
k+1)|X̂k = xik) are given by

P
(
X̃ℓ

k+1 ∈ Cjℓ(Γ
ℓ
k+1)|X̂k = xik

)
= Φ0

(
x
ℓ,jℓ+1/2
k+1 −mℓ

k(x
i
k)√

∆|σℓ•
k (xik)|2

)
− Φ0

(
x
ℓ,jℓ−1/2
k+1 −mℓ

k(x
i
k)√

∆|σℓ•
k (xik)|2

)
. ,(37)

2. The companion probability P(X̃ℓ
k+1 ∈ Cjℓ(Γk+1)) is given, for every ℓ ∈ {1, . . . , d} and for

every jℓ ∈ {1, · · · , N ℓ
k+1}, by

P
(
X̃ℓ

k+1 ∈ Cjℓ(Γ
ℓ
k+1)

)
=
∑

i∈Ik

[
Φ0

(
x
ℓ,jℓ+1/2
k+1 −mℓ

k(x
i
k)√

∆|σℓ•
k (xik)|2

)

− Φ0

(
x
ℓ,jℓ−1/2
k+1 −mℓ

k(x
i
k)√

∆|σℓ•
k (xik)|2

)]
P
(
X̂k = xik). (38)

Proof. 1. For every k ∈ {1, . . . , n − 1}, for every ℓ = 1, . . . , d and for every jℓ = 1, . . . , N ℓ
k+1, we

have

P
(
X̃ℓ

k+1 ∈ Cjℓ(Γ
ℓ
k+1)|X̂k = xik

)
= P

(
X̃ℓ

k+1 ≤ x
ℓ,jℓ+1/2
k+1 |X̂k = xik

)
− P

(
X̃ℓ

k+1 ≤ x
ℓ,jℓ−1/2
k+1 |X̂k = xik

)

= P
(
Eℓ
k(x

i
k, Zk+1) ≤ x

ℓ,jℓ+1/2
k+1

)
− P

(
Eℓ
k(x

i
k, Zk+1) ≤ x

ℓ,jℓ−1/2
k+1

)
.

Now, since Zk+1 ∼ N (0; Iq), we have for every x ∈ R,

P
(
Eℓ
k(x

i
k, Zk+1) ≤ x

)
= E

(
1{Eℓ

k
(xi

k
,Zk+1)≤x}|Z

(2:d)
k+1

)
= E

(
Ψ(x,Z)

)

where Z ∼ N (0; Iq−1) and, for every u ∈ Rq−1 and x ∈ R,

Ψ(x, u) = P
(
mℓ

k(x
i
k) +

√
∆σℓ1

k (xik)Z
1
k+1 +

√
∆
(
σ
(ℓ,2:q)
k (xik)|u

)
≤ x

)

= Φ0

(
x−mℓ

k(x
i
k)−

√
∆
(
σ
(ℓ,2:q)
k (xik)|u

)
√
∆σℓ1

k (xik)

)
.
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Temporarily set

aℓp =
√
∆σℓp(tk, x

i
k), σ2 =

q∑

p=2

a2ℓp and b(x) = x−mℓ
k(x

i
k).

Note that, if Z ∼ N (0; Iq−1), then −
√
∆
(
σ
(ℓ,2:q)
k (xik)|Z

)
∼ N

(
0;
∑q

p=2 a
2
ℓp

)
. Consequently, making

a change of variable and using Fubini’s Theorem yields, for every x ∈ R,

EΨ(x,Z) =
1

σ
√
2π

∫
Φ0

(b(x) + v

aℓ1

)
e−

v2

2σ2 dv

=
1√
2π

∫
Φ0

(b(x) + σv

aℓ1

)
e−

1
2
v2dv

=
1

2π

∫ ∫ b(x)+σv

aℓ1

−∞
e−

1
2
(v2+w2)dvdw

= E
(
1
{V≤ b(x)+σW

aℓ1
}

)

= P
(
aℓ1V − σW ≤ b(x)

)

where V and W are two independent and standard scalar normal random variables. On the other hand,
since aℓ1V − σW ∼ N

(
0;∆|σℓ•

k (xik)|22
)
, it is clear that

P
(
aℓ1V − σW ≤ b(x)

)
= Φ0

( b(x)√
∆|σℓ•

k (xik)|2

)
.

This completes the proof of the first statement.

2. We have for every k ∈ {1, · · · , n− 1}, every i = 1, . . . , d, and every jℓ = 1, · · · , Nk+1,

P
(
X̃ℓ

k+1 ∈ Cjℓ(Γ
ℓ
k+1)

)
= E

[
P
(
X̃ℓ

k+1 ∈ Cjℓ(Γk+1)|X̂k

)]

=
∑

i∈Ik

P
(
X̃ℓ

k+1 ∈ Cjℓ(Γ
ℓ
k+1)|X̂k = xik

)
P(X̂k = xik).

We complete the proof using the arguments of the first statement.

Remark that, although the process (X̂k)k≥0 is a Markov chain, its ℓ-th component process (X̂ℓ
k)k≥0

is not. We may however compute the transition probabilities

P(X̂ℓ
k+1 = xℓ,jℓk+1|X̂ℓ′

k = x
ℓ′,jℓ′
k ), ℓ, ℓ′ ∈ {1, . . . , d}, jℓ ∈ {1, . . . , N ℓ

k+1}, jℓ′ ∈ {1, . . . , N ℓ′

k }.

This is the aim of the following remark which follows from Bayes formula.

Remark 3.1. For ℓ, ℓ′ ∈ {1, . . . , d}, jℓ ∈ {1, . . . , N ℓ
k+1} and jℓ′ ∈ {1, . . . , N ℓ′

k }, we have

P
(
X̂ℓ

k+1 = xℓ,jℓk+1|X̂ℓ′

k = x
ℓ′,jℓ′
k

)
=
∑

i∈Ik

1{iℓ′=jℓ′}

P(X̂ℓ
k+1 = xℓ,jℓk+1|X̂k = xik)

P(X̂ℓ′
k = x

ℓ′,jℓ′
k )

P(X̂k = xik) (39)

where the terms P(X̂k = xik), P(X̂
ℓ
k+1 = xℓ,jℓk+1|X̂k = xik) and P(X̂ℓ′

k = x
ℓ′,jℓ′
k ) are computed from

(33), (37) and (38), respectively.
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As a matter of fact, applying Bayes formula and summing over i ∈ Ik yields:

P
(
X̂ℓ

k+1 = xℓ,jℓk+1|X̂ℓ′

k = x
ℓ′,jℓ′
k

)
=
∑

i∈Ik

P(X̂ℓ
k+1 = xℓ,jℓk+1, X̂

ℓ′

k = x
ℓ′,jℓ′
k , X̂k = xik)

P(X̂ℓ′
k = x

ℓ′,jℓ′
k )

=
∑

i∈Ik

1{iℓ′=jℓ′}

P(X̂ℓ
k+1 = xℓ,jℓk+1, X̂k = xik)

P(X̂ℓ′
k = x

ℓ′,jℓ′
k )

=
∑

i∈Ik

1{iℓ′=jℓ′}

P(X̂ℓ
k+1 = xℓ,jℓk+1|X̂k = xik)

P(X̂ℓ′
k = x

ℓ′,jℓ′
k )

P(X̂k = xik)

In the foregoing, we assume that we have access to the N ℓ
k-quantizers Γℓ

k of the ℓ-th component X̄ℓ
k

of the vector X̄k, for every ℓ = 1, . . . , d. We show how to compute the distortion functions associated
with every component of the vector X̃k+1, k = 0, . . . , n−1. From the numerical point of view, this will
allow us to use the Newton-Raphson algorithm to compute the optimal quantizers associated to each
component X̃ℓ

k+1, ℓ = 1, . . . , d, of the vector X̃k+1, for k = 0, . . . , n−1. Then, the quantization X̂k+1

of X̃k+1 is defined as the product quantization X̂k = (X̂1
k , . . . , X̂

d
k ), where X̂ℓ

k = ProjΓℓ
k+1

(X̃ℓ
k+1).

3.3 Computing the distortion, the gradient and the Hessian matrix associated to a com-

ponentwise quantizer

Our aim, for numerical computation of the componentwise optimal quantizations, is to use the Newton-
Raphson’s algorithm in RNk which involves the gradient and the Hessian matrix of the distortion
functions D̃ℓ

k, k = 0, . . . , n; ℓ = 1, . . . , n. In the following, we give useful expressions for the
distortion functions D̃ℓ

k, for their gradient vectors ∇D̃ℓ
k and their Hessian matrices ∇2D̃ℓ

k. We state
these results in the next proposition.

Above all, recall that for every ℓ = 1, . . . , d, for every k = 0, . . . , n− 1,

D̃ℓ
k+1(Γ

ℓ
k+1) =

∑

i∈Ik

E
[
d(Eℓ

k(x
i
k, Zk+1),Γ

ℓ
k+1)

2
]
P
(
X̂k = xik

)

and notice that using Proposition 2.2, the distortion function D̃ℓ
k+1(Γ

ℓ
k+1) is continuously differentiable

as a function of the Nk+1-quantizer Γℓ
k+1 = {xℓ,jℓk+1, jℓ = 1, . . . N ℓ

k+1} (having pairwise distinct
components so that it can be viewed as an N ℓ

k+1-tuple) and its gradient vector reads

∇D̃ℓ
k+1(Γ

ℓ
k+1) = 2

[
∑

i∈Ik

E

(
1{Eℓ

k
(xi

k
,Zk+1)∈Cjℓ

(Γℓ
k+1)}

(
xℓ,jℓk+1−Eℓ

k(x
i
k, Zk+1)

))
P(X̂k = xℓk)

]

jℓ=1,··· ,Nℓ
k+1

.

We recall that key point of our method is to deal with the product quantization of the components
of the process (X̄k)0≤k≤n. From a numerical point of view, each component will be quantized using
the Newton-Raphson algorithm. To this end, we have to compute (explicitly) the distortion function
D̃ℓ

k+1(·), the components of its gradient vector and the components its Hessian matrix. This is the
purpose of the following proposition. Its proof relies on tedious though easy computation. Therefore,
we have deliberately omitted the proof.

Proposition 3.5. Set vℓ,1k (x) =
√
∆σℓ1

k (x), v
(ℓ,2:q)
k (x) =

√
∆σ

(ℓ,2:q)
k (x), x ∈ Rd.

a) Distortion. We have for every ℓ = 1, . . . , d and every k = 0, . . . , n− 1,

D̃ℓ
k+1(Γ

ℓ
k+1) =

∑

i∈Ik

Nℓ
k+1∑

jℓ=1

E
[
Ψℓ,jℓ(x

i
k, ζ)

]
P
(
X̂k = xik

)
, (40)
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where ζ ∼ N (0; Iq−1) and, for every x ∈ Rd and u ∈ Rq−1,

Ψℓ,jℓ(x, u)=
((

mℓ
k(x) +

(
v
(ℓ,2:q)
k (x)|u

)
− xℓ,jℓk+1

)2
+ vℓ,1k (x)2

)(
Φ0

(
xℓ,jℓ+k+1 (x, u)

)
− Φ0

(
xℓ,jℓ−k+1 (x, u)

))

+ 2vℓ,1k (x)
(
xℓ,jℓk+1 −mℓ

k(x)−
(
v
(ℓ,2:q)
k (x)|u

))(
Φ′
0

(
xℓ,jℓ+k+1 (x, u)

)
− Φ′

0

(
xℓ,jℓ−k+1 (x, u)

))

− vℓ,1k (x)2
(
xℓ,jℓ+k+1 (x, u)2Φ′

0

(
xℓ,jℓ+k+1 (x, u)

)
− xℓ,jℓ−k+1 (x, u)2Φ′

0

(
xℓ,jℓ−k+1 (x, u)

))
.

b) Gradient. The components of the gradient ∇D̃ℓ
k+1(Γ

ℓ
k+1) are given for every jℓ = 1, . . . , N ℓ

k+1 by

∂D̃ℓ
k+1(Γ

ℓ
k+1)

∂xℓ,jℓk+1

=
∑

i∈Ik

E
[
Ψ′

jℓ
(xik, ζ)

]
P
(
X̂k = xik

)
, (41)

where ζ ∼ N (0; Iq−1) and, for every x ∈ Rd, for every u ∈ Rq−1,

Ψ′
jℓ
(x, u)=

(
xℓ,jℓk+1 −mℓ

k(x)
)(

Φ0

(
xℓ,jℓ+k+1 (x, u)

)
− Φ0

(
xℓ,jℓ−k+1 (x, u)

))

+ vℓ,1k (x)
(
Φ′
0

(
xℓ,jℓ+k+1 (x, u)

)
− Φ′

0

(
xℓ,jℓ−k+1 (x, u)

))
.

c) Hessian. The sub-diagonal, the super-diagonals and the diagonal terms of the Hessian matrix are

given respectively by

∂2D̃ℓ
k+1(Γ

ℓ
k+1)

∂xℓ,jℓk+1∂x
ℓ,jℓ−1
k+1

=
∑

i∈Ik

E
[
Ψ′′

jℓ,jℓ−1(x
i
k, ζ)

]
P
(
X̂k = xik

)
,

∂2D̃ℓ
k+1(Γ

ℓ
k+1)

∂xℓ,jℓk+1∂x
ℓ,jℓ+1
k+1

=
∑

i∈Ik

E
[
Ψ′′

jℓ,jℓ+1(x
i
k, ζ)

]
P
(
X̂k = xik

)
,

and
∂2D̃ℓ

k+1(Γ
ℓ
k+1)

∂2xℓ,jℓk+1

=
∑

i∈Ik

E
[
Ψ′′

jℓ,jℓ
(xik, ζ)

]
P
(
X̂k = xik

)
,

where ζ ∼ N (0; Iq−1) and, for every x ∈ Rd, for every u ∈ Rq−1,

Ψ′′
jℓ,jℓ−1(x, u) = −1

4

1

vℓ,1k (x)
(xℓ,jℓk+1 − xℓ,jℓ−1

k+1 )Φ′
0

(
xℓ,jℓ−k+1 (x, u)

)
,

Ψ′′
jℓ,jℓ+1(x, u) = −1

4

1

vℓ,1k (x)
(xℓ,jℓ+1

k+1 − xℓ,jℓk+1)Φ
′
0

(
xℓ,jℓ+k+1 (x, u)

)
,

Ψ′′
jℓ,jℓ

(x, u) = Φ0

(
xℓ,jℓ+k+1 (x, u)

)
− Φ0

(
xℓ,jℓ−k+1 (x, u)

)
+Ψ′′

jℓ,jℓ−1(x, u) + Ψ′′
jℓ,jℓ+1(x, u).

Once we have access to the gradient vector and the Hessian matrix associated with X̃ℓ
k+1 and to the

optimal grids and companions weights associated with the X̂p’s, p = 0, . . . , k, it is possible to write
down (at least formally) a Newton-Raphson zero search procedure to compute the optimal quantizer
Γℓ
k+1. The Newton-Raphson algorithm is in fact indexed by p ≥ 0, where a current grid Γℓ,p

k+1 is
updated as follows:

Γℓ,p+1
k+1 = Γℓ,p

k+1 −
(
∇2D̃ℓ

k+1(Γ
ℓ,p
k+1)

)−1∇D̃ℓ
k+1(Γ

ℓ,p
k+1), p ≥ 1, (42)

starting from a Γℓ,0
k+1∈ R

Nℓ
k+1 (with increasing components).
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Remark 3.2. (Stationarity property) If Γℓ
k+1 is a quantizer for X̃ℓ

k+1 and if X̂ℓ
k+1 denotes the quantiza-

tion of X̃ℓ
k+1 by the grid Γℓ

k+1, then Γℓ
k+1 is a stationary quantizer for X̃ℓ

k+1, means, E
(
X̃ℓ

k+1

∣∣X̂ℓ
k+1

)
=

X̂ℓ
k+1. Equivalently, this means that if Γℓ

k+1 = {xℓ,jℓk+1, jℓ = 1, . . . , N ℓ
k+1} with

xℓ,jℓk+1 =

∑
i∈Ik

E
(
Eℓ
k(x

i
k, Zk+1)1{Eℓ

k
(xi

k
,Zk+1)∈Cjℓ

(Γℓ
k+1)}

)
P(X̂k = xik)

pjℓk+1

(43)

and pjℓk+1 =
∑

i∈Ik

P
(
Eℓ
k(x

i
k, Zk+1) ∈ Cjℓ(Γ

ℓ
k+1)

)
P(X̂k = xik), jℓ = 1, . . . , N ℓ

k+1. (44)

3.4 The error analysis

Our aim is now to compute the quadratic quantization error bound ‖X̄T − X̂T ‖2 := ‖X̄n − X̂Γn
n ‖2 .

The analysis of this error bound is the subject of the following theorem, which is the main theoretical
result of the paper. We suppose that x0 = X0 = X̃0.

Theorem 3.6. Assume the coefficients b, σ satisfy the classical Lipschitz assumptions (28), (29) and

(30). Let, for every k = 0, . . . , n, Γk be a Markovian product quantizer for X̃k at level Nk. Then, for

every k = 0, · · · , n, for any η ∈]0, 1],

‖X̄k − X̂Γk

k ‖2 ≤ K2,eta

k∑

k′=1

e(k−k′)T
n
Cb,σak′

(
b, σ, tk, T/n, x0, L, 2 + η

)( d∑

ℓ=1

(N ℓ
k′)

−2/d
)1/2

(45)

where for every p ∈ (2, 3],

ak′(b, σ, tk, T/n, x0, L, θ) := e
Cb,σ

(tk−t
k′

)

p

[
e(κp+Kp)tk′ |x0|p +

eκp∆L+Kp

κp +Kp

(
e(κp+Kp)tk′ − 1

)] 1
p
,

with Cb,σ = [b]Lip +
1
2 [σ]

2
Lip, K2,η := K2,1,η is a universal constant defined in Equation (20);

κθ :=
((θ + 1)(θ − 2)

2
+ 2θL

)
and Kθ := 2θ−1Lθ

(
1 + θ +∆

θ
2
−1
)
E|Z|θ, Z ∼ N (0; Id).

Before dealing with the proof let us notice that if we take the same grid size N ℓ
k = Nk, for every

ℓ ∈ {1, . . . , d}, the error bound (45) becomes

‖X̄k − X̂Γk

k ‖2 ≤ K2,η

√
d

k∑

k′=1

ak′(b, σ, tk, T/n, x0, L, 2 + η)N
−1/d
k′ . (46)

Proof. (of Theorem 3.6). Recall that for every k ≥ 0, X̂k = (X̂1
k , . . . , X̂

d
k ), where X̂ℓ

k is the quantiza-
tion of the ℓ-th component X̄ℓ

k of the vector X̄k. Therefore, following step by step the proof of Lemma
3.2. in [8], we obtain for every k ≥ 1:

‖X̄k − X̃k‖2 ≤
k∑

k=1

e(tk−tk′ )Cb,σ‖X̃k′ − X̂
Γk′

k′ ‖2 ,

where Cb,σ = [b]Lip+
1
2 [σ]

2
Lip. Using the definition of X̂k combined with Pierce’s Lemma (of Theorem

2.1 (b)) yields for every k = 1, . . . , n, for any η ∈ (0, 1],

‖X̄k − X̂k‖2 ≤ e(tk−tk′ )Cb,σ

( d∑

ℓ=1

‖X̃ℓ
p − X̂ℓ

p‖22
)1/2

≤ K2,η

k∑

k′=1

e(tk−tk′ )Cb,σ

( d∑

ℓ=1

‖X̃ℓ
k′‖22+η

(N ℓ
k′)

−2/d
)1/2

.
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Following the lines of the proof of Lemma 3.2. in [8], we easily show that for every ℓ ∈ {1, . . . , d},
‖X̃ℓ

k′‖2+η
≤ ak′(b, σ, tk, T/n, x0, L, 2 + η). Then, we deduce that

‖X̄k − X̂k‖2 ≤ K2,η

k∑

k′=1

e(tk−tk′ )Cb,σak′(b, σ, tk, T/n, x0, L, 2 + η)
( d∑

ℓ=1

(N ℓ
p)

−2/d
)1/2

.

This completes the proof.

4 Numerical examples

In this section, we illustrate the performances of our method through two examples. The first example
deals with the approximation of the price of a European Basket call option and the second one consists
in the pricing of a European call option in a Heston model. Computations are performed using Matlab
on a CPU 2:4 GHz and 8 Gb memory computer.

4.1 Pricing of a Basket call option

We consider a Basket call option with maturity T and with strike K , based on two stocks which prices
X1 and X2 and associated weights w1 and w2. We suppose that X1 and X2 evolve following the
dynamics {

dX1
t = rX1

t dt+ σ1X
1
t dW

1
t

dX2
t = rX2

t + ρ σ2X
2
t dW

1
t +

√
1− ρ2 σ2X

2
t dW

2
t , t ∈ [0, T ],

(47)

where W 1 and W 2 are two independent Brownian motions, r is the interest rate and ρ ∈ (−1, 1) is the
correlation term. We know that in this case, the non arbitrage price at time t = 0 in a complete market
of the call option is given by

e−rT
EF (XT ), X = (X1,X2), (48)

where the function F is defined, for every x = (x1, x2) ∈ R2, by F (x) = (w1x
1 + w2x

2 −K)+. We
choose w1 = w2 = 0.5. Using the Markovian product quantization, the price of the call option in the
Basket option is approximated by the cubature formula

e−rT
∑

j∈Ln

F (xjn)P(X̂n = xjn). (49)

We will consider two cases: the case where ρ = 0 and the case where ρ 6= 0. When ρ = 0, the
probabilities P(X̂n = xjn) in (49) are computed using the simpler Equation (36), otherwise, we rely on
Equation (33). For the numerical experiments, we use the following parameters:

r = 0.02, σ1 = 0.4, σ2 = 0.25, X1
0 = 100, X2

0 = 100, T = 1,

and make the strike K varying. In the correlated case, we choose ρ = 0.95. We put the length of the
time discretization mesh to n = 10 and take N1 = N2 = 50. We consider that the reference prices are
those obtained from Ju’s approximation method (see [4]). The numerical results are depicted in Table
1 (for ρ = 0) and in Table 2 (for ρ = 0.95). When ρ = 0, the results are obtained instantaneously (less
than 1 second) with associated absolute errors of order between 10−1 and 10−2. The absolute error is
of the same order when ρ = 0.95. However, the computation time increases to 6.8 seconds.
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Strike reference Quantization Absolute error
K = 90 15.8985 15.9216 2× 10−2

K = 95 12.9066 12.9120 6× 10−3

K = 100 10.3510 10.3315 1× 10−2

K = 105 8.2122 8.1654 4× 10−2

K = 110 6.4546 6.3797 7× 10−2

Table 1: Basket call option prices. Comparison of the reference prices (those obtained via Ju’s ap-
proximation method) and the Markovian and product quantization method for ρ = 0. We chose
N1

k = N2
k = 50, ∀k = 1, . . . , n, n = 10. Computational time for the quantization algorithm: less than

1 second.

Strike reference Quantization Absolute error
K = 90 18.7361 18.8135 8× 10−2

K = 95 16.0167 16.0981 8× 10−2

K = 100 13.6190 13.6767 5× 10−2

K = 105 11.5249 11.5533 2× 10−2

K = 110 9.7114 9.7123 1× 10−3

Table 2: Basket call option prices. Comparison of the reference prices (those obtained via Ju’s ap-
proximation method) and the Markovian and product quantization method for ρ = 0.95. We chose
N1

k = N2
k = 50, ∀k = 1, . . . , n, n = 10. Computational time for the quantization algorithm: 6.8

seconds.

4.2 Pricing of a European call option in a Heston model

In this example, we consider a call option with maturity T and strike K , in a Heston model where the
stock price S and its stochastic volatility V evolve following the dynamics

{
dSt = rStdt+

√
VtStdW

1
t

dVt = κ(θ − Vt)dt+ ρ σ
√
VtdW

1
t +

√
1− ρ2 σ

√
VtdW

2
t , t ∈ [0, T ].

(50)

In the previous equation, the parameter r still is the interest rate; κ > 0 is the rate at which V reverts
to the long run average variance θ > 0; σ > 0 is the volatility of the variance and ρ ∈ [−1, 1] denotes
the correlation term. In this case, the price of the call at time t = 0 reads

e−rT
EH(XT ), X = (S, V ), (51)

where H(x) = (x1 −K)+, for x = (x1, x2) ∈ R2.

Using the Markovian and product quantization method, the price of the call in the Heston model is
approximated as

e−rT

N1
n∑

j1=1

H(x1j1n )P(X̂1
n = x1j1n ), (52)

where P(X̂1
n = x1j1n ) is computed from formula (38).

For the numerical test in the Heston model we will use the following parameters:

r = 0.01 κ = 4 θ = 0.09 σ = 0.2 ρ = −0.5 S0 = 100 V0 = 0.0719 T = 1.

The number of time discretization steps n is set at 10. Since the pricing involves only the stock
process S and not the volatility V , we will assign more grid points to the quantization of the stock
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Figure 1: Distribution of the weights in the uncorrelated case at time t = T , N1 = N2 = 30.

process S than to the volatility V . More precisely, we take two grid points for the volatility process:
N2

k = 2, k = 1, . . . , n and take N1
k = 100 or N1

k = 400, k = 1, . . . , n, for the sizes of the stock
process quantization. The results are depicted in Table 3 and Table 4, where we compare the price
obtained by Markovian product quantization with those obtained using closed-form formulas in [3],
considered as the reference prices.

When N1
k = 100, we obtain absolute errors (w.r.t. the reference prices) of magnitude between

10−1 and 10−2, with computation times around 2 seconds.

When N1
k = 400, the computation times are around 19 seconds whereas the absolute errors are of

order 10−2.

More generally, we can improve all the accuracy by increasing the size of the grids.

Strike reference Quantization Absolute error
K = 100 17.3335 17.2658 6× 10−2

K = 102.5 15.8694 15.8353 3× 10−2

K = 105 14.4935 14.4950 1× 10−3

K = 107.5 13.2053 13.2436 3× 10−2

K = 110 12.0034 12.0788 7× 10−2

Table 3: Call price in a Heston model via closed formulas given in [3] (the reference prices) and the
Markovian product quantization method. N1

k = 100, ∀k = 1, . . . , n, n = 10. Computational time for
the quantization algorithm: 2.02 seconds.
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Strike reference Quantization Absolute error
K = 100 17.3335 17.3450 1× 10−2

K = 102.5 15.8694 15.8721 1× 10−2

K = 105 14.4935 14.4950 1× 10−3

K = 107.5 13.2053 13.2131 8× 10−3

K = 110 12.0034 12.0018 2× 10−3

Table 4: Call price in a Heston model via closed formulas given in [3] (the reference prices) and the
Markovian product quantization method. N1

k = 400, ∀k = 1, . . . , n, n = 10. Computational time for
the quantization algorithm: 19.13 seconds.
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