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Pattern Avoidance in Task-Precedence Posets

We have extended classical pattern avoidance to a new structure: multiple taskprecedence posets whose Hasse diagrams have three levels, which we will call diamonds. The vertices of each diamond are assigned labels which are compatible with the poset. A corresponding permutation is formed by reading these labels by increasing levels, and then from left to right. We used Sage to form enumerative conjectures for the associated permutations avoiding collections of patterns of length three, which we then proved. We have discovered a bijection between diamonds avoiding 132 and certain generalized Dyck paths. We have also found the generating function for descents, and therefore the number of avoiders, in these permutations for the majority of collections of patterns of length three. An interesting application of this work (and the motivating example) can be found when task-precedence posets represent warehouse package fulfillment by robots, in which case avoidance of both 231 and 321 ensures we never stack two heavier packages on top of a lighter package.

Introduction

In this paper, we continue a rich tradition of extending the notion of classical pattern avoidance in permutations to other structures. Given permutations π = π 1 π 2 • • • π n and ρ = ρ 1 ρ 2 • • • ρ m we say that π contains ρ as a pattern if there exist 1 ≤ i 1 < i 2 < • • • < i m ≤ n such that π ia < π i b if and only if ρ a < ρ b . In this case we say that π i 1 π i 2 • • • π im is orderisomorphic to ρ and that π i 1 π i 2 • • • π im reduces to ρ. If π does not contain ρ, then π is said to avoid ρ. The classical definition of pattern avoidance in permutations has shown itself to 1 be worthwhile in many fields including algebraic geometry and theoretical computer science. Analogues of pattern avoidance have been developed for a variety of combinatorial objects including Dyck paths [START_REF] Bernini | Pattern-avoiding Dyck paths[END_REF], tableaux [START_REF] Lewis | Pattern avoidance for alternating permutations and reading words of tableaux[END_REF], set partitions [START_REF] Sagan | Pattern avoidance in set partitions[END_REF], trees [START_REF] Rowland | Pattern avoidance in binary trees[END_REF], and many more. In this paper, we extend the concept of pattern avoidance to a particular ordered graph structure. We use a definition of pattern avoidance that is similar to that used in the study of heaps [START_REF] Levin | Pattern avoidance in k-ary heaps[END_REF], but separate from that used in previous studies of trees. Definition 1.1. A task-precedence poset is a poset which represents the order relations between several tasks to be completed.

We are particularly interested in considering d identical task-precedence posets, and here we focus our attention on those sets of tasks that require one task be completed before any others, and one final concluding task after any others, with no restrictions on the rest of the tasks in the list. When considering a list of 4 tasks, the Hasse diagram of this poset is a diamond, and as such we will refer to a task-precedence poset of this type with v tasks as a diamond with v vertices (each with v -2 vertices in the middle level). We then assign unique labels from {1, 2, . . . , vd} to each vertex such that the labels obey the order relations of each diamond. We then refer to the set of all such labelled collections of diamonds as D v,d .

Given an element D of D v,d we associate a permutation π D by recording the vertex labels as they are encountered reading the labels on each diamond consecutively, left to right by levels, beginning with the least element. For example, if D is as pictured in Figure 1, then π D = 256791348 [START_REF] Mountz | A day in the life of a Kiva robot[END_REF]. We say that D contains (respectively avoids) ρ as a pattern if π D contains (respectively avoids) ρ as a classical pattern, using the definition above. We will abuse notation and sometimes refer to an element of D v,d and its associated permutation interchangeably. Let D v,d (P ) be the elements of D v,d that avoid all patterns in list P. While Figure 1 contains 123, 132, 213, 231, 312, it is a member of D 5,2 (321). We were motivated to consider this question from a real-life application, namely a fleet of robots all completing the same sequence of tasks in a warehouse for package fulfillment. In 2011, instead of having human employees walk the warehouse floor retrieving items one after another to complete an order, Amazon began utilizing Kiva robots in their package fulfillment warehouses [START_REF] Mountz | A day in the life of a Kiva robot[END_REF]. Each robot executes 4 pieces of the larger task. First the robot drives to the appropriate rack and mounts the rack on its back. Then it can either drive through the warehouse highways to its picker (the human employee who will retrieve the item off the rack without leaving their station), or it can rotate itself so that the appropriate side of the rack is facing the picker. Both of these need to be completed before the final step: having the item picked off the rack. In this way, completing one order of d items from Amazon.com is exactly the task-precedence poset represented by d diamonds with 4 vertices each. If we furthermore assign the robots to the diamonds based on the weight of the item that is to be shipped (with the heaviest object being retrieved by the robot in diamond 1, and the lightest object by the final diamond), then avoiding 231 and 321 simultaneously is a sufficient condition to ensure the human picker does not receive two heavier objects to pack after a lighter object has already been packed.

One could consider other applications that arise from task-precedence problems, but our motivating example is best generalized by generalizing the 4 tasks per autonomous robot to v tasks. Definition 1.2. The generating f unction f or descents (P ) x des y d , and

(gf d) for D v,d (P ) is f P v,d (x, y) = D∈D v,d
f P v (x, y) = ∞ d=1 f P v,d (x, y).
For example, D 5,1 (213) is the set of diamonds with associated permutations 1 2 3 4 5, 1 2 4 3 5, 1 3 4 2 5, 1 4 2 3 5, and 1 4 3 2 5. So, Throughout this paper, the main question we answer is "How many elements are in D v,d (P )?" for any collection P of patterns of length 3. In general we fix v ≥ 4 and a set of patterns P and then determine a formula for the sequence {|D v,d (P )|} d≥1 , with key results for v = 4 shown in Table 1. The third column of the table gives entries from the Online Encyclopedia of Integer Sequences [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. Our results for pattern-avoiding diamonds have connections with many other combinatorial objects, as evidenced by the low reference numbers. Sequences A260331, A260332 and A260579, however, are new results particular to this study of task precedence posets.

f 213 5,1 (x, y) = y(1 + 3x + x 2
Our secondary question, which answers our primary question, is to find f P v,d (x, y). Then when we substitute x = 1 and take the coefficient of y d , we obtain |D v,d (P )|.

In Section 2 we consider collections of diamonds that avoid a single pattern of length 3. In Section 3 we consider collections of diamonds that avoid a pair of patterns of length 3, and in Section 4 we consider collections of diamonds avoiding three or more patterns of length 3.

Diamonds avoiding a single pattern of length 3

Before we count pattern-avoiding diamonds, it is useful to enumerate all diamonds.

Theorem 1. |D v,d (∅)| = (vd)! v d (v-1) d
Proof. Let v ≥ 4 and d ≥ 1, there are (v -2)! ways to arrange the internal vertices of any given diamond. For the first diamond there are vd v label possibilities times the (v -2)! possible permutations of the internal vertices. For the next diamond there are (v-1)d v (v -2)! label possibilities. Continuing in this way, we obtain

vd v (v -1)d v • • • 2v v (v -2)! d = (vd)! (v!) d ((v -2)!) d = (vd)! v d (v -1) d . Theorem 2. |D v,d (123)| = 0
Proof. It is impossible to avoid 123 while having a diamond since the pattern is inherent in all valid diamond labellings. Proof. The theorem is clear from how D v,d (p) rc is created from the reverse-complement of p.

Corollary 1. For k ≥ 1, D v,d (p 1 , p 2 , . . . , p k ) rc = D v,d (p rc 1 , p rc 2 , . . . , p rc k ). Thus we immediately see that 132 ∼ W 213, 231 ∼ W 312, {132, 312} ∼ W {213, 231}, {132, 321} ∼ W {213, 321}, and {231, 321} ∼ W {312, 321}.
Definition 2.3. Given a permutation π in S n , lis(π) is the length of the longest increasing subsequence in π.

For example, in the permutation 1 2 5 6 3 4 7 8 the longest increasing subsequence is 1 2 5 6 7 8 and lis = 6. Definition 2.4. Given a permutation π in S n , rlmax(π) is the number of right-left maxima in π.

For example, in the permutation 2 4 6 8 1 3 5 7 a maximum is reached when reading right-to-left twice and rlmax = 2. Definition 2.5. Let Dyck v,d be the set of all paths from (0, 0) to (d, vd) using only (0, 1) and (1, 0) steps (East and North steps) which stay weakly under y = vx. In figure 2.1, the longest distance from a corner in the Dyck path to the line y = 4x is seven (from [START_REF] Levin | Pattern avoidance in k-ary heaps[END_REF][START_REF] Fuss | Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat[END_REF] to [START_REF] Levin | Pattern avoidance in k-ary heaps[END_REF][START_REF] Rowland | Pattern avoidance in binary trees[END_REF]) and height(p) = 7.

Lemma 2. Any element of D v,d (132) has the elements on each diamond labelled in increasing order.

Indeed, otherwise the label of the first element of the diamond together with the first descent would form a 132.

Theorem 4. σ∈D v,d(132) w rlmax(σ) x des(σ) y d z lis(σ) = p∈Dyck v,d w touchpoints(p) x corners(p) y d z height(p) .
Proof. We define a map φ from Dyck v,d to D v,d (132). To find φ(p), first write out the heights of the East steps. For each height, include a subscript j that indicates how many East steps are at that height. Reverse this sequence and add 1 to every item in the list, leaving the subscripts unchanged. Each of the elements of this list becomes the first label of a diamond, and then place vj labels in increasing order using the smallest elements that have not already been used as labels.

As an example, refer to Figure 2.1. The heights of the East steps are 0, 4, 5, 12. When this sequence is reversed and 1 is added to each term, the resulting sequence is 13 1 , 6 1 , 5 1 , 1 1 . Thus the permutation associated with this Dyck path is 13 14 15 16 6 7 8 9 5 10 11 12 1 2 3 4.

The importance of the subscripts j are evident from the image of Figure 2.3. The heights of the East steps are 0, 3, 3, 10, and the resulting sequence is 11 1 , 3 2 , 1 1 . Thus the permutation associated to image is 11 12 13 14 4 5 6 7 8 9 10 15 1 2 3 16.

This map is certainly reversible, with the first label on each diamond forming a list, unless there is an increase between diamonds, in which case the first label is repeated. Then the list is reversed and 1 is subtracted from each element, giving us the heights of the East steps in the Dyck path.

This bijection is particularly natural when you examine common statistics on both paths and permutations. Following touchpoints, corners, and height through the bijection, we find they correspond exactly to right-left maximum, descents, and longest increasing sequence on the permutation.

Corollary 2. Thanks to our bijection, |D

v,d (132)| = |Dyck v,d | = ( d(v+1) d ) (vd+1) . [5] Theorem 5. |D v,d (132)| = ( d(v+1) d ) (vd+1)
Proof. By Theorem 4, 132 is d-Wilf-equivalent to 213. Definition 2.9. We define D d v,j to be the collection of labelled diamonds for d -1 full diamonds with v vertices each followed by an incomplete diamond with j vertices for j = 1, . . . , v -1. Likewise D d v,j (p) are those diamonds that avoid pattern p. Note, when j = 1 there exist no order relations in the final partial diamond.

The following figure is an example of an unlabelled member of D d v,j .

Definition 2.10. α d v,j (x) (or sometimes simply α d v,j for brevity) is the generating function for descents for D v,d (231). In other words,

α d v,j (x) = D∈D ( v,d 231)
x des(π D ) .

For example, D 

(x) = 1 + 4x + 4x 2 + x 3 . Theorem 6. f (231) v,d (x, 1) = α d v,v (x) = α d v,(v-1) + x d-1 i=1 α d-i v,(v-1) α i v,v
where

α 1 v,j =      1, if j = 1 C j-1 , if j = 2, . . . , v -1 C v-2 , if j = v and C i is the i th Catalan number.
Proof. We proceed by partitioning elements of D d v,j (231) by where the largest label occurs. Let m = v(d -1) + j where v(d -1) + j is the largest label in (d -1) diamonds with v vertices followed by an incomplete diamond with j vertices. Now, assume j = 1. The m th element can appear on the final least element or on the greatest element of any of the full diamonds. When m occurs on the final least element there are (d -1) diamonds with v vertices that precede m, we then have α d-1 v,v as the generating function for descents(gfd) for the vertices before m that will avoid (231). When m appears on the greatest element of the last complete diamond, α d-1 v,(v-1) is the gfd for the vertices before m, and α 1 v,1 is the gfd for the vertices following m. Because we have created a descent from m to the least element of the final diamond, we must multiply our gfd by x to account for this extra descent. Thus, the gfd when m appears on the greatest element of the last complete diamond is then

α d-1 v,(v-1) α 1 v,1 x. m α d-1 v,v α 1 v,1 Figure 2.4: α d v,1
When m appears on the greatest element of the second to last complete diamond, our gfd for the vertices before m is then α d-2 v,(v-1) and α 2 v,1 for the vertices following m. Once again, we have an extra descent in π D from m to the following least element, thus we multiply our generating function by x. When m appears on the greatest element of the second to last diamond, our gfd is then

α d-2 v,(v-1) α 2 v,1
x. This pattern continues and finally when m appears on the first complete diamond,

α 1 v,(v-1)
is the gfd for vertices before m and α d-1 v,1 for the vertices following m with an extra descent from m to the following least element. The gfd when m appears on the greatest element of the first diamond is then α 1 v,(v-1) α d-1 v,1 x. Hence

α d v,1 (x) = α d-1 v,v + x d-1 i=1 α d-i v,(v-1) α i v,1
Now, assume we have (d-1) diamonds followed by an incomplete diamond with j vertices where j = 2, . . . , v -1. The m th element can appear on any of the interior vertices but not on the least element of the incomplete diamond, or m can appear on the greatest element of any complete diamond. When m appears on any of the interior vertices of the final diamond we need to count the descents before m, after m, and from m. The descents that occur before m can be counted by α d v,j-g where g is the number of interior vertices following m including m. The descents following m are counted by α 1 v,g because the same number of descents can occur in the remaining interior vertices as when we have a single incomplete diamond. We then count the descent that results from m by multiplying our gfd by x, but we do not get a descent from m when it appears on the final interior vertex. We then sum over all possible g to give us the gfd when m appears on the interior vertices of the final diamond which gives

us α d v,j-1 α 1 v,1 + x j-1 g=2 α d v,j-g α 1 v,g . m α d v,(j-g) α 1 v,g Figure 2.5: α d v,j
Also, m can appear on the greatest element of any of the full diamonds. When m appears on the greatest element of the last complete diamond the gfd for vertices that appear before m is α d-1 v,(v-1) and α 1 v,j for the vertices following m. We count the descent from m by multiplying our gfd by x. The total gfd when m appears on the greatest element of the last diamond is then α d-1 v,(v-1) α 1 v,j x. This pattern continues so when m appears on the first complete diamond, the gfd for vertices before m is α 1 v,(v-1) and α d-1 v,j for the vertices following m. We once again count the descent from m by multiplying our gfd by x. The gfd when m appears on the greatest element of the last diamond is then

α 1 v,(v-1) α d-1 v,j x. Thus α d v,j (x) = α d v,j-1 α 1 v,1 + x j-1 g=2 α d v,j-g α 1 v,g + x d-1 i=1 α d-i v,(v-1) α i v,j
for j = 2, . . . , v -1. Lastly, we look at when we have d complete diamonds. The m th element can appear on any of the greatest elements. When m appears on the greatest element of the last diamond, the gfd is α d v,(v-1) which counts descents before m. When m appears on the greatest element of the second to last complete diamond, the gfd for vertices that appear before m is α d-2 v,(v-1) and α 1 v,v for vertices following m. We count the descent from m to the following least element by multiplying the gfd by x. The gfd when m appears on the greatest element of the last diamond is then α

d-2 v,(v-1) α 1 v,v (x) 
. This pattern continues so when m appears on the first complete diamond the gfd for vertices before m is α 1 v,(v-1) and α d-1 v,v for vertices following m. The descent from m to the following least element is counted by multiplying the gfd by x. The gfd when m appears on the greatest element of the last diamond is then

α 1 v,(v-1) α d-1 v,v (x). Hence α d v,v (x) = f (231) v,d (x, 1) = α d v,(v-1) + x d-1 i=1 α d-i v,(v-1) α i v,v
We can use this result to recursively obtain f The sequences we obtained for various v = 4, 5, 6, . . . after using this recursive technique were not found in OEIS. We added the sequence to the encyclopedia when v = 4 and we hope that in the future a connection is found to other combinatorial objects.

y d = α d v,v (1) = |D v,d (231) 

The pattern 321

We were unable to find a closed formula for the pattern 321. In Table 2.3, we present the first few terms of the sequence and the first few generating functions for descents. We believe that a technique recently used by Bevan,et.al. [2] could be successful in this case too. Their technique involved refining a bivariate generating function via a statistic called last inversion foot, using a result of Bousquet-Melou, and finding a functional equation, to eventually give a growth factor for the sequence. But for now, this remains open.

v=4 d |D v,d | f (321) v,d (x) 1 2 1 + x 2 106 1 + 71x + 29x 2 + 5x 3 3 5976 1 + 991x + 2747x 2 + 1765x 3 + 430x 4 + 42x 5
3 Diamonds avoiding a pair of patterns of length 3

Next, we study pairs of patterns of length 3. While there are 15 such pairs of patterns, we focus on the 8 pairs of patterns {σ, ρ} where |D v,d (σ, ρ)| is non-trivial.

Diamonds avoiding the set of patterns {132, 213}

Lemma 4. In order to avoid 132 and 213, the labels on each diamond must be increasing and consecutive.

Proof. By Lemma 2, the labels appear in increasing order on each diamond. Then any label "missing" from consecutive labelling would either create 213 if it occurred before its surrounding labels, or a 132 if it occurred after. Therefore the labels on each diamond must be consecutive and increasing.

Theorem 8. f (132,213) v,d (x, y) = ∞ d=1 σ∈D(132,213) y d x des(σ) = 1 -yx 1 -y(1 + x)
Proof. By Lemma 4, we know that the labels on each diamond are consecutive and increasing, so there is a diamond labelled 1, 2, . . ., v, another labelled v + 1, . . ., 2v, etc. So the only thing we must ensure is that the entire collection of diamonds avoids 132 and 213 between the respective diamonds. In their foundational paper, Simion and Schmidt enumerated permutations avoiding 132 and 213 [START_REF] Simion | Restricted permutations[END_REF], and the recursive nature of their proof can also be adapted to find our generating function for descents.

The labels v(d -1) + 1, . . . , vd must occur on either the first diamond, or the last. In the first case, they create a descent. In the second, they do not, giving a (1 + x) term in the generating function. We continue recursively and obtain:

D∈D v,d (132,213) y d x des(σ(D)) = 1 + ∞ d=1 y d (1 + x) d-1 = 1 + 1 1 + x -1 + 1 1 -y(1 + x) = x 1 + x + 1 (1 + x)(1 -y(1 + x)) = x(1 -y(1 + x)) + 1 (1 + x)(1 -y(1 + x)) = 1 -yx 1 -y(1 + x) Corollary 4. f (132,213) v,d
(1, y)

y d = |D v,d (132, 213)| = 2 d-1
3.2 Diamonds avoiding {132, 312} and {213, 231} Lemma 5. In order to avoid 132 and 312, the final diamond is labelled with either v(d -1) + 1, v(d -1) + 2, . . . , vd or 1, v(d -1) + 2, . . . , vd Proof. Since v ≥ 4, the label vd must appear on the final diamond in order to avoid 312. Likewise the interior vertices on the final diamond must be in consecutive increasing order in order to avoid 132, so the v -1 final vertices are v(d -1) + 2, . . . , vd. If the label on the first vertex of the last diamond were some number j other than 1 or v(d -1) + 1, then the first vertex of whichever diamond v(d -1) + 1, along with v(d -1) + 1, and j would form a 132.

Theorem 9. f (132,312) v,d (x, y) = ∞ d=1 σ∈D(132,312) y d x des(σ) = 1 -yx 1 -y(1 + x)
Proof. We proceed similarly to the proof of Theorem 8 with a recursive argument. By Lemma 4, the final diamond has only two possibilities, one of which forms a descent with the previous diamond, and one of which doesn't. Thus our descent generating function gains a (1 + x) term for each additional diamond, and exactly as in Theorem 8, the result follows. 

Diamonds avoiding {132, 321} or {213, 321}

Lemma 6. Any diamond avoiding 132 and 321 has at most one descent. Moreover, if there is a descent, it involves the label 1.

Proof. By examination of cases, any arrangement of two descents forms either a 132 or a 321. If a descent does not involve the 1, then either the 1 occurs before, causing a 132, or the 1 occurs after, causing a 321.

Theorem 10. f (132,321) v,d (x, y) = ∞ d=1 σ∈D(132,321) y d x des(σ) = 1 -2y + y 2 + vxy 2 (1 -y) 3
Proof. By Lemma 6, we need only enumerate those diamonds with one descent where the descent involves the 1. Everything after the 1 increases, as does everything before the 1. In fact, the permutations associated to diamonds that avoid 132 and 321 look like a portion of the identity permutation was cut off the front and inserted after position vi, for i = 1, . . . , d -1. When i = d -1, there are v possibilities for how many numbers appear consecutively with 1, including 1. When i = d -2, there are 2v possibilities, etc. When i = 1, there are (d -1)v possibilities. Thus we have v 2 d(d -1) diamonds with one descent, and one with zero descents. Thus, 

y d x des(σ) = ∞ d=0 y d [1 + v 2 d(d -1)x] = ∞ d=0 y d + vx 2 ∞ d=0 y d d(d -1) = 1 1 -y + vx 2 (y 2 ) 2 (1 -y) 3 = 1 1 -y + vxy 2 (1 -y) 3 = (1 -y) 2 (1 -y) 3 + vxy 2 (1 -y) 3 = 1 -2y + y 2 + vxy 2 (1 -y) 2 Corollary 8. f (132,321) v,d (1, y) 
y d x des(σ) = x + yx(1 + x) v-2 + 1 (1 + x)(1 -y(1 + x) v-2 )
Proof. Let n = vd be the largest label on a diamond D ∈ D v,d (231, 312). Avoiding the pattern 231 means the 1 must be at the beginning and avoiding the pattern 312 implies everything after n must be decreasing which forces n to the end of the permutation. By a result of Simion and Schmidt on permutations, there are 2 v-3 ways to arrange the middlelevel vertices within each of the d diamonds in order to avoid both 231 and 312 creating between 0 and v -3 descents [START_REF] Simion | Restricted permutations[END_REF]. There are also two ways to either swap or not the last element of each diamond with the first element of the next. This gives the generating function as follows.

D∈D v,d (231,312)

y d x des(σ(D)) = 1 + ∞ d=1 y d (1 + x) (v-2)d-1 = 1 + 1 (1 + x) ∞ d=1 (y(1 + x)) (v-2)d = 1 - 1 (1 + x) + 1 (1 + x)(1 -y(1 + x) v-2 ) = x + yx(1 + x) v-2 + 1 (1 + x)(1 -y(1 + x) v-2 ) Corollary 11. f (231,312) v,d
(1, y)

y d = |D v,d (231, 312)| = 2 d(v-2)-1

Avoiding {231, 321}

Lemma 7. All labels that appear after n = vd must be consecutive and increasing, and if a n = n, then a n = n -1. 

f (231,321) v,d (x, 1) = β d v,v = β d v,(v-1) + x d-1 i=1 β d-i v,(v-1)
where

β 1 v,j =      1, if j = 1 2 j-1 , if j = 2, . . . , v -1 2 v-2 , if j = v
is the generating function for descents for D v,d (231, 321).

Proof. We approach the proof similarly to that of Theorem 6 and partition our diamonds by the position of the largest element and proceed recursively. Because the proofs are very similar, we omit the details of this proof for brevity. The only differences are that since we are now avoiding 321, we have no descents after the appearance of the largest label, and we have different initial conditions on one diamond.

The table below is an example of using this recursive technique to find the generating function for descents for D 5,3 (231, 321). (1, y) 

v=5 d 1 2 3 α d 5,1 1 1 + 4x + 3x 2 1 + 13x + 41x 2 + 37x 3 + 12x 4 α d 5,2 1 1 + 5x + 6x 2 1 + 15x + 54x 2 + 62x 3 + 24x 4 α d 5,3 1 + x 1 + 7x + 13x 2 + 3x 3 1+18x+80x 2 +128x 3 + 73x 4 + 12x 5 α d 5,4 1 + 3x 1 + 10x + 25x 2 + 12x 3 1+22x+121x 2 +248x 3 + 184x 4 + 48x 5 α d 5,5 1 + 3x 1 + 11x + 28x 2 + 12x 3 1+24x+134x 2 +273x 3 + 196x 4 + 48x 5
y d = α d v,v (1) 

Diamonds avoiding three or four patterns of length 3

There are only two nontrivial cases to examine when we avoid three patterns of length 3: (132, 213, 321) and (231, 312, 321). Proof. Let n = vd be the largest label in d diamonds with v vertices. Avoiding the pattern (132) forces all labels before n to be larger than all labels after. Avoiding the pattern (213) forces all labels before n to be increasing. Avoiding the pattern (321) forces all labels after n to be increasing. This indicates that all vertices that appear before n will be the consecutive numbers prior to n and all vertices after n will be the remaining elements ordered consecutively. A label a i = n iff i = vs for some s = 1, . . . , d, and there is only one arrangement for the rest of the elements. Therefore, there can only be, at most, one descent and it occurs between diamonds. So, Since any permutation can be created from the identity using swaps, restricting our changes to swaps will not exclude any possibilities. Lemma 9. All swaps must be disjoint in order to avoid (321).

y d x des(σ) = 1 + ∞ d=1 y d (1 + (d -1)x) = 1 1 -y + xy 2 ∞ d=1 (d -1)y d-2 = 1 -y + xy 2 (1 -y)
Proof. We simply examine the cases when two swaps overlap in some way, either with two swaps executed on 3 elements, or two overlapping swaps on 4 elements. 

(x) = (1 + x) d-1 d ⌊ v-2 2 ⌋ k=0 v -2 -k k x k
Proof. Every final element of a diamond can either remain unchanged or be swapped with the least element of the next diamond. This then gives the generating function (1 + x) d-1 for each possible swap. Let k represent the nonconsecutive positions from which to choose a swap among the interior vertices. Note that in a diamond there are v -3 positions to swap since there are v -2 interior vertices. By Lemma 8 and Lemma 9 any consecutive interior vertices can be swapped disjointly, and can only be swapped disjointly. Since the swaps must be nonconsecutive, k must be chosen from v -3 -(k -1). This gives v-2-k k . We then sum over all k in order to generate all possible descents for a single diamond. Since we have d diamonds in which to execute these swaps, we raise to the d th power. The gfd for D v,d (231, 312, 321) is then Proof. The base cases are |D 3,1 | = 1 which is the identity, and |D 4,1 | = 2. which is the identity permutation and the permutation with the interior vertices swapped. Let there be a single diamond with v vertices, where are v -2 interior vertices that can be swapped which gives the the D v,1 permutations that avoid the three patterns. Now consider a single diamond with v + 1 vertices. The final interior vertex will either be the v element when there is no descent in the last two interior vertices, or the v -1 element when there is a descent between the final two interior vertices. When v is the final interior vertex, there are v -2 vertices that can be re-arranged. Thus there are the D v,1 permutations. When there is a descent in the final two interior vertices, there are v -3 interior vertices that can be re-arranged, thus there are the Proof. Let n be the largest label in any permutation. Due to the structure of the diamonds, any set of permutations involving 123 cannot be avoided. For any other collection of 4 or more patterns, the result is easily seen using the lemmas for avoiding a single pattern earlier in the paper.

(1 + x) d-1 Σ ⌊ v-2 2 ⌋ k=0 v-2-k k x k d .

Figure 1 . 1 :

 11 Figure 1.1: An element of D 5,2 (321).

2. 1 Definition 2 . 2 .Lemma 1 .

 1221 The patterns 132 and 213 Definition 2.1. We let p rc be the reverse-complement of a pattern p, and D ∈ D v,d (p) rc be the reverse-complement of D ∈ D v,d (p), by which we mean that D is labelled with π rc D instead of π D . Two patterns on diamonds, α and β, are said to be d-Wilf-equivalent if they have the same enumeration, that is, if |D v,d (α)| = |D v,d (β)| for all v and d. If so, we write α ∼ W β. The reverse-complement of a task precedence poset remains a legal poset. Theorem 3. D v,d (p) rc = D v,d (p rc )

Definition 2 . 6 .Definition 2 . 7 .Definition 2 . 8 .

 262728 Given any p ∈ Dyck v,d , touchpoints(p) is the number of times p touches the line y = vx, excluding the point (v, dv).In Figure2.1, the Dyck path touches the line y = 4x four times and touchpoints(p) = 4. Given any p ∈ Dyck v,d , corners(p) is the number of North steps that are followed by one or more East steps in p.In figure2.1, there are four places where the Dyck path has one or more North steps followed by one or more East steps and corners = 4. Given any p ∈ Dyck v,d , height(p) is the greatest vertical distance from any point on p to the line y = vx.

2. 2 Figure 2 Figure 2 . 2 :Figure 2 . 3 :

 222223 Figure 2.1: A Dyck path from (0,0) to (4,16)

(

  v,d 231)(x, 1) for any v and d.Corollary 3. f (231) v,d(1, y) 

Table 3 : 1 , 2 , 3 . 7 .

 31237 The total number of permutations for D 5,d that avoid the pattern (231) for d = Theorem |D v,d (231)| = |D v,d (312)| Proof. By Theorem 1, 231 is d-Wilf-equivalent to 312.

=

  |D v,d (132, 312)| = 2 d-1 . Corollary 6. By Theorem 1, (213, 231) is d-Wilf-equivalent to (132, 312).

  Corollary 7. f (213,231) v,d(1, y)y d = |D v,d (213, 231)| = 2 d-1 .

= 2 Corollary 9 . 2 3

 292 |D v,d (132, 321)| = 1 + v d(d-1) D v,d (213, 321) and D v,d (132, 321) are d-Wilf Equivalent by Theorem 1. Corollary 10. f (213,321) v,d (1, y) y d = |D v,d (213, 321)| = 1 + v d(d-1)

Definition 3 . 1 .

 31 Let β d v,j be the generating function for descents for D v,d (231, 321). Recall Figure 2.2 is an example of d -1 full diamonds with v vertices followed by an incomplete diamond with j vertices for j = 1, . . . , v -1. Theorem 12.

4. 1

 1 Diamonds avoiding {132, 213, 321} Theorem 13. f (132,213,321) v,d (x, y) = ∞ d=1 σ∈D(132,213,321) y d x des(σ) = 1y + xy 2 (1y) 2

Definition 4 . 1 .

 41 A swap is when two consecutive labels from the identity permutation switch positions in the permutation.

Theorem 14 .

 14 The generating function for descents for D v,d (231, 312, 321) is f (231,312,321) v,d

=

  |D v,d (231, 312, 321)| = 2 * 4 d-1 . Corollary 16. |D v,1 (231, 312, 321)| is the Fibonacci numbers.

  D v-1,1 permutations. Hence |D v+1,1 | = |D v,1 | + |D v-1,1 |.Therefore, |D v,1 (231, 312, 321)| follows the Fibonacci numbers.

4. 3 3 Theorem 15 .

 3315 Diamonds avoiding four patterns of length Let S be a set of at least 4 distinct permutations of length 3.Then |D v,d (S)| = 0, if 123 ∈ S 1, if 123 ∈ S

Table 1 :

 1 ). Enumeration of pattern-avoiding diamonds when v = 4

	Patterns P	{|D 4,d (P )|} d≥1	OEIS	Result
	∅	2, 280, 277200, 10090080000, . . .	A260331 Theorem 1
	123	0, 0, 0, 0, 0, 0, 0, 0, 0, . . .	A000007 Theorem 2
	132 213	1, 5, 35, 285, 2530, 23751, 231880, 2330445, . . . A002294	Theorem 4 Theorem 5
	231 312	2, 18, 226, 3298, 52450, 881970, . . .	A260332	Theorem 6 Theorem 7
	321	2, 106, 5976, . . .	A260579 OPEN
	{132, 213}	1, 2, 4, 8, 16, 32, 64, 128, 256, . . .	A000079 Theorem 8
	{132, 312} {213, 231}	1, 2, 4, 8, 16, 32, 64, 128, 256, . . .	A000079	Theorem 9 Theorem 6
	{132, 321} {213, 321}	1, 5, 13, 25, 41, 61, 85, 113, 145, . . .	A001844	Theorem 10 Theorem 9
	{231, 312}	2, 8, 32, 128, 512, 2048, . . .	A004171 Theorem 11
	{231, 321} {312, 321}	2, 14, 98, 686, 4802, 33614, 235298, . . .	A109808	Theorem 12 Theorem 13
	{132, 213, 321} 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .	A000027 Theorem 13
	{231, 312, 321} 2, 8, 32, 128, 512, 2048, 8192, 32768, 131072 . . . A081294 Theorem 14

Table 2 :

 2 The recursive steps necessary to find the generating function for descents for D 5,3 (231).

Table 4 :

 4 The recursive steps necessary to find the generating function for descents for D 5,3 (231, 321).

	(231,321) v,d Corollary 12. f

Table 5 :

 5 The total number of permutations for D 5,d that avoid the patterns (231, 321) when d = 1, 2, 3.

	= |D v,d (231, 321)|.

Corollary 13. By Theorem 1, (231, 321) is d-Wilf-equivalent to (312, 321).

  We will proceed by examining what changes can be made to the identity permutation while still avoiding 231, 312, and 321.

		2
	Corollary 14. f v,d (132,213,321)	(1, y)| y d = |D v,d (132, 213, 321)| = d.
	4.2 Diamonds avoiding 231, 312, 321

Lemma 8. If for labels a i , a j , a k if a i , a j < a k , then i < k or j < k in order to avoid the patterns (312) and (321).