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Abstract

Let S be a surface, perhaps with boundary, and either compact, or with a finite number of
points removed from the interior of the surface. We consider the inclusion t: F,(S) — [} S
of the n'" configuration space F,(S) of S into the n-fold Cartesian product of S, as well as the
induced homomorphism 1y: Py(S) — [[{ m1(S), where P,(S) is the n-string pure braid
group of S. Both 1 and 14 were studied initially by J. Birman who conjectured that Ker (14)
is equal to the normal closure of the Artin pure braid group Py, in P,(S). The conjecture
was later proved by C. Goldberg for compact surfaces without boundary different from the
2-sphere S? and the projective plane RP2. In this paper, we prove the conjecture for S?
and RP2. In the case of R P2, we prove that Ker (14) is equal to the commutator subgroup of
P,(RP?), we show that it may be decomposed in a manner similar to that of P, (S?) as a dir-
ect sum of a torsion-free subgroup L, and the finite cyclic group generated by the full twist
braid, and we prove that L, may be written as an iterated semi-direct product of free groups.
Finally, we show that the groups B,,(S?) and P,(S?) (resp. B,(RP?) and P,(RP?)) have
finite virtual cohomological dimension equal to n — 3 (resp. n — 2), where B, (S) denotes
the full n-string braid group of S. This allows us to determine the virtual cohomological
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dimension of the mapping class groups of the mapping class groups of S* and RP? with
marked points, which in the case of S?, reproves a result due to ]. Harer.

1 Introduction

Let S be a connected surface, perhaps with boundary, and either compact, or with a
finite number of points removed from the interior of the surface. The n'" configuration
space of S is defined by:

Fu(S) = {(x1,...,xn) € S" | x; # xjifi # j}.

It is well known that 711 (F,(S)) = P,(S), the pure braid group of S on n strings, and that
111(Fa(S)/Sn) = Byu(S), the braid group of S on n strings, where F,(S)/S;, is the quotient
space of F,(S) by the free action of the symmetric group S, given by permuting coordin-
ates [FaN, FoN]. If S is the 2-disc D? then B,,(D?) (resp. P,(D?)) is the Artin braid group
B, (resp. the Artin pure braid group P,). The canonical projection F,;(S) — F,;(S)/Sx
is a regular n!-fold covering map, and thus gives rise to the following short exact se-
quence:

1—> Py(S) — Bu(S) — Sn — 1. 1)

If D? is a topological disc lying in the interior of S and that contains the basepoints of the
braids then the inclusion j: D? — S induces a group homomorphism jy: B, —> By (S).
This homomorphism is injective if S is different from the 2-sphere S? and the real pro-
jective plane RP? [Bil, G]. Let ju|p, : P, — P4(S) denote the restriction of ju to the
corresponding pure braid groups. If § € B, then we shall denote its image j4(B) in
B,(S) simply by B. It is well known that the centre of B, and of P, is infinite cyclic,
generated by the full twist braid that we denote by A2, and that A2, considered as an
element of B, (S?) or of B,(RP?), is of order 2 and generates the centre. If G is a group
then we denote its commutator subgroup by I'»(G), its Abelianisation by GA?, and if H
is a subgroup of G then we denote its normal closure in G by {H ).

Let [[{ S = S x --- x S denote the n-fold Cartesian product of S with itself, let
tn: Fu(S) — T1{ S be the inclusion map, and let t,4: 711 (F,(S)) — 711 ([ I{ S) denote
the induced homomorphism on the level of fundamental groups. To simplify the nota-
tion, we shall often just write : and 1 if n is given. The study of 14 was initiated by
Birman in 1969 [Bil]. She had conjectured that { Im (j | P,,)>pn(s) = Ker (1) if S is a com-
pact orientable surface, but states without proof that her conjecture is false if S is of
genus greater than or equal to 1 [Bil, page 45]. However, Goldberg proved the con-
jecture several years later in both the orientable and non-orientable cases for compact
surfaces without boundary different from S? and RP? [G, Theorem 1]. In connection
with the study of Vassiliev invariants of surface braid groups, Gonzlez-Meneses and
Paris showed that Ker (14) is also normal in B,(S), and that the resulting quotient is
isomorphic to the semi-direct product 7t1 ([ [{ S) % S,, where the action is given by
permuting coordinates (their work was within the framework of compact, orientable
surfaces without boundary, but their construction is valid for any surface S) [GMP]. In
the case of RP?, this result was reproved using geometric methods [T].



If S = S?, Ker (1y) is clearly equal to P,(S?), and so by [GG1, Theorem 4], it may be
decomposed as:

Ker (1x) = Pu(S?) = P,_3(S?\ {x1, X2, X3}) x Z5, 2)

where the first factor of the direct product is torsion free, and the Z,-factor is generated
by AZ.

The aim of this paper is to resolve Birman’s conjecture for surfaces without bound-
ary in the remaining cases, namely S = S? or RP?, to determine the cohomological
dimension of B,(S) and P,(S), where S is one of these two surfaces, and to elucidate
the structure of Ker (14) in the case of RP?. In Section 2, we start by considering the
case S = RP?, we study Ker (14), which we denote by K;,, and we show that it admits a
decomposition similar to that of equation (2).

PROPOSITION 1. Let n € N.

(a) (i) Up to isomorphism, the homomorphism vy: 111 (Fy(RP?)) —> 711 (LT} (RP?)) coincides
with Abelianisation. In particular, K, = T2 (P, (RP?)).

(ii) If n > 2 then there exists a torsion-free subgroup L, of Ky, such that K, is isomorphic to the
direct sum of L, and the subgroup (A% generated by the full twist that is isomorphic to Z,.
(b) If n > 2 then any subgroup of P,(RP?) that is normal in B,(RP2) and that properly
contains K,, possesses an element of order 4.

Note that if n = 1 then Bj(RP?) = P;(RP?) =~ Z, and A? is the trivial element,
so parts (a)(ii) and (b) do not hold. Part (a)(i) will be proved in Proposition 8. We
shall see later on in Remark 14 that there are precisely 2"("~2) subgroups that satisfy
the conclusions of part (a)(ii), and to prove the statement, we shall exhibit an explicit
torsion-free subgroup L,. We then prove Birman’s conjecture for S?> and RP?, using
Proposition 1(a)(i) in the case of RP2.

THEOREM 2. Let S be one of S? or RP?, and let n > 1. Then { Im (ju P Db, s) = Ker (14).

In Section 3, we analyse L, in more detail, and we show that it may be decomposed
as an iterated semi-direct product of free groups.

THEOREM 3. Let n > 3. Consider the Fadell-Neuwirth short exact sequence:
1 —> Py_»(RP?\ {x1, x2}) — P(RP?) 2% py(RP?) — 1, 3)

where gy is given geometrically by forgetting the last n — 2 strings. Then L, may be identified
with the kernel of the composition

Py_2(RP*\ {x1,x2}) —> Py(RP?) =15 Z5 x -+ x Z,,
\—\/'_/
n copies

where the first homomorphism is that appearing in equation (3). The image of this composition is
the product of the last n — 2 copies of Z». In particular, Ly, is of index 2" =2 in P, _o(RP?\ {x1, x2}).
Further, L, is isomorphic to an iterated semi-direct product of free groups of the form Fp,_3
(Fop—s % (- x (F5 x F3) - - -)), where for all m € N, F,,, denotes the free group of rank m.
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In the semi-direct product decomposition of L, note that every factor acts on each
of the preceding factors. This is also the case for P, »(RP?\ {x1, x5}) (see equation (12)),
and as we shall see in Remarks 13(a), this implies an Artin combing-type result for this
group. Analysing these semi-direct products in more detail, we obtain the following
results.

PROPOSITION 4. If n > 3 then:
(@) (Pu—a(RP?\ {x1,x2}))A = Z2("=2),
(b) (Ln)Ab ~ Zn(n—Z)_

In two papers in preparation, we shall analyse the homotopy fibre of , as well as
the induced homomorphism 14 when S = S? or RP? [GGY], and when S is a space form
manifold of dimension different from two [GGG]. In the first of these papers, we shall
also see that L, is closely related to the fundamental group of an orbit configuration
space of the open cylinder.

In Section 4, we study the virtual cohomological dimension of the braid groups of
$? and RP?. Recall from [Br, page 226] that if a group T is virtually torsion-free then
all finite index torsion-free subgroups of I have the same cohomological dimension by
Serre’s theorem, and this dimension is defined to be the virtual cohomological dimension
of I'. Using equations (2) and (3), we prove the following result, namely that if S = S?
or RP?, the groups B,(S) and P,(S) have finite virtual cohomological dimension, and
we compute these dimensions.

THEOREM b.

(a) Let n > 4. Then the virtual cohomological dimension of both B,,(S?) and P, (S?) is equal to
the cohomological dimension of the group P,_3(S?\ {x1, x2, x3}). Furthermore, for all m > 1,
the cohomological dimension of the group Py, (S?\ {x1, X2, x3}) is equal to m.

(b) Let n = 3. Then the virtual cohomological dimension of both B,(RP?) and P,(RP?) is
equal to the cohomological dimension of the group P,_»(RP?\ {x1, x2}). Furthermore, for all
m > 1, the cohomological dimension of the group Py (RP?\ {x1, x2}) is equal to m.

The methods of the proof of Theorem 5 have recently been applied to compute the
cohomological dimension of the braid groups of all other compact surfaces (orientable
and non orientable) without boundary [GGM]. Theorem 5 also allows us to deduce
the virtual cohomological dimension of the punctured mapping class groups of S? and
RP2 If n > 0, let MCG(S, n) denote the mapping class group of a connected, compact
surface S relative to an n-point set. If S is orientable then Harer determined the virtual
cohomological dimension of MCG(S, n) [H, Theorem 4.1]. In the case of S? and D?, he
obtained the following results:

(a) if n > 3, the virtual cohomological dimension of MCG(S?, 1) is equal to n — 3.

(b) if n > 2, the cohomological dimension of MCG(D?, 1) is equal to n — 1 (recall that
MCG(D?,n) is isomorphic to B, [Bi2]).

As a consequence of Theorem 5, we are able to compute the virtual cohomological
dimension of MCG(S,n) for S = S?> and RP?.

COROLLARY 6. Let n > 4 (resp. n = 3). Then the virtual cohomological dimension of
MCG(S?,n) (resp. MCG(RP?,n)) is finite, and is equal to n — 3 (resp. n — 2).
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If S = S? or RP? then for the values of 1 given by Theorem 5 and Corollary 6, the
virtual cohomological dimension of MCG (S, n) is equal to that of B,(S). If S = S$?, we
thus recover the corresponding result of Harer.
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2 The structure of K,,, and Birman’s conjecture for S? and
R P?

Let n € N. As we mentioned in the introduction, if S is a surface different from S? and
RP?, the kernel of the homomorphism 1: P, (S) — 711 ([[{ S) was studied in [Bil, G],
and that if S = S? then Ker (1#) = P,(S?). In the first part of this section, we recall
a presentation of P,(RP?), and we prove Proposition 1(a)(i). The second part of this
section is devoted to proving the rest of Proposition 1 and Theorem 2, the latter being
Birman's conjecture for S? and RP?.

Consider the model of RP? given by identifying antipodal boundary points of D?.
We equip F,(RP?) with a basepoint (x1,...,x,). For1 <i < j < n (resp. 1 < k < n),
we define the element A; ; (resp. 7, i) of P,(RP?) by the geometric braids depicted in
Figure 1. Note that the arcs represent the projections of the strings onto RP?, so that

Figure 1: The elements A, j, 7, and py of P,(RP?).



all of the strings of the given braid are vertical, with the exception of the j (resp. k)
string that is based at the point x; (resp. xy).

THEOREM 7 ([GG4, Theorem 4]). Let n € N. The following constitutes a presentation of the
pure braid group P,(RP?):

generators: A;;, 1<i<j<mn, and 1, 1 < k < n.

relations:

(a) the Artin relations between the A; ; emanating from those of Py:

Aij fi<r<s<jorr<s<i<j
“TA-1A A A : L
e Ai,j Ar,].AlJAr,]AL] ifr<i=s<]j .
r,s i,j r,s: -1 e . ()
Ay i AijAs ifi=r<s<]j

AA-1A A A A-LaA=1p A . . -
ASI]. Ar,]. AS,]AMA,,]AY,]. AS,]. ApjAsj ifr<i<s<i].

o ol 1 p-12
(b) foralll1 <i<j<n 47T, =T Ai,]'Tj-
(c) fOT’ all1<i<n, TZZ = Al,i s Ai—l,iAi,i+1 3 'Ai,n-

(d) foralll<i<j<nandl1<k<nk+#j,
Ai,]'

1 _ )11 o

TkAi,ka = T] Ai,jT] ka—l

ifj <kork<i

I EE /U S I S ;
T Ak,]-T]Ak,]-AI,]Ak’]Tj ApiTi ifi<k<j.

This enables us to prove that 1 is in fact Abelianisation, which is part (a)(i) of Pro-
position 1.

PROPOSITION 8. Let n € N. The homomorphism 1s: P,(RP?) — 7r1([ [{ RP?) is defined
on the generators of Theorem 7 by 14(A; ;) = 0,...,0) forall 1 <i<j<mn, and (1) =
0,...,0,_ 1 ,0,...,0) forall 1 <k < n. Further, 14 is Abelianisation, and Ker (14) = K, =

k™" position

[p(Py(RP?)).

Proof. For1 <k < n,letpy: F,(RP?) — RP? denote projection onto the k' coordinate.
Observe that i = p1g x - -+ X pu#, where pyy: P,(RP?) — mr1(RP?) is the induced ho-
momorphism on the level of fundamental groups. Identifying 7r1(RP?) with Z, and
using the geometric realisation of Figure 1 of the generators of the presentation of
P,(RP?) given by Theorem 7, it is straightforward to check that for all 1 < k,I < n
and 1 < i <j<n pw(Aij) =0, p(t) = 0if | # k and p(t) = 1, and this yields
the first part of the proposition. The second part follows easily from the presentation
of the Abelianisation (P,(RP?))AP of P,(RP?) obtained from Theorem 7. More pre-
cisely, if we denote the Abelianisation of an element x € P,(RP?) by X, relations (b)
and (c) imply respectively that forall 1 < i < j < nand1 < k < n, A;j and T

represent the trivial element of (P,(RP?))AP. Since the remaining relations give no
other information under Abelianisation, it follows that (P,(RP2)AP =~ 72, @ - @ Z,,
where 7 = (0,...,0,_ 1 ,0,...,0)and A; j= (0,...,0) via this isomorphism, and the
—— ,
k™ position
Abelianisation homomorphism indeed coincides with 4 on P, (RP?). O
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REMARKS 9.

(a) Since K,, = T'»(P,(RP?)), it follows immediately that K, is normal in B,,(RP?), since
I5(P,(RP?)) is characteristic in P,(RP?), and P,(RP?) is normal in B, (RP?).

(b) A presentation of K;; may be obtained by a long but routine computation using the
Reidemeister-Schreier method, although it is not clear how to simplify the presentation.
In Theorem 3, we will provide an alternative description of K;, using algebraic methods.
(c) In what follows, we shall use Van Buskirk’s presentation of B,(RP?) [VB, page 83]
whose generating set consists of the standard braid generators o7y, ..., 0,1 emanating
from the 2-disc, as well as the surface generators py, ..., p, depicted in Figure 1. We
have the following relation between the elements 7 and p:

T = pp "Agjs1 Ay foralll <k <m,

whereforl <i<j<mn Ajj=0j1" -c7i+1c71-2c7ijrll . -cr]lll. In particular, it follows from
Proposition 8 that:

L#(pk)ZL#(Tk)Z(O,...,O, 1 ,O,...,O) foralll <k < n. (5)

kth position

If n > 2, the full twist braid A2, which may be defined by A2 = (07 ---0;,_1)", is of
order 2 [VB, page 95], it generates the centre of Bn(IRPz) [M, Proposition 6.1], and is
the unique element of B, (RP?) of order 2 [GG2, Proposition 23]. Since A2 € P,(RP?),
it thus belongs to the centre of P,(RP?), and just as for the Artin braid groups and the
braid groups of S?, it generates the centre of P,(RP?):

PROPOSITION 10. Let nn = 2. Then the centre Z(P,(RP?)) of P,(RP?) is generated by AZ.

Proof. We prove the result by induction on n. If n = 2 then P,(RP?) ~ Qg [VB,
page 87], the quaternion group of order 8, and the result follows since A3 is the ele-
ment of P,(RP?) of order 2. So suppose that n > 3. From the preceding remarks,
(A% = Z(P,(RP?)). Conversely, let x € Z(P,(RP?)), and consider the following Fadell-
Neuwirth short exact sequence:

)M

1 — m(RP?\{x1,...,X,_1}) — P,(RP? P,_1(RP?) — 1,

where q(,_1)4 is the surjective homomorphism induced on the level of fundamental
groups by the projection g,,_1: F,(RP?) — F,_1(RP?) onto the first n — 1 coordinates.
Now g(,_1)u(x) € Z(P,_1(RP?)) by surjectivity, and thus An—1)u(x) = A2 | for some
e € {0, 1} by the induction hypothesis. Further, q(n_l)#(A%) = A2_,, hence

n—17
A %x e Ker(q(,—1y#) N Z(P,(RP?)),

and thus A, %x € Z(Ker(g(,—1)#)). But Z(Ker(g(,_1)#)) is trivial because Ker(q(,_1)#) is
a free group of rank n — 1. This implies that x € (A2 ) as required. O

We now prove Proposition 1.



Proof of Proposition 1. Letn > 3.

(a) Recall that part (a)(i) of Proposition 1 was proved in Proposition 8, so let us prove
part (ii). The projection go: F,(RP?) — F,(RP?) onto the first two coordinates gives
rise to the Fadell-Neuwirth short exact sequence (3). Since K;, = I'>(P,(RP?)) by Pro-
position 8, the image of the restriction go4|x, of g4 to K, is the subgroup [5(P,(RP?)) =
(A%, and so we obtain the following commutative diagram:

q2#| Ky
1 —— Ky n P,_»(RP?\ {x1,x2}) K, | (A% 1

| | | ©

Py_2(RP?\ {x1, x2}) P,(RP?) 2. p,(RP?) —— 1,

1

where the vertical arrows are inclusions. Now <A%> ~ 75, s0 K, is an extension of the
group Ker (q2#|x,) = Kn N Py—2(RP?\ {x1, x2}) by Z,. The fact that go4(A2) = A3 implies
that the upper short exact sequence splits, a section being defined by the correspond-
ence A3 —> A2, and since A% € Z(P,(RP?)), the action by conjugation on Ker (q2#|x,,)
is trivial. Part (a) of the proposition follows by taking L, = Ker (42#/x,) and by noting
that P,_»(RP?\ {x1, xp}) is torsion free.

(b) Recall first that any torsion element in P,(RP?)\{A2) is of order 4 [GG2, Corol-
lary 19 and Proposition 23], and is conjugate in B, (RP?) to one of a" or b"~!, where
a=pp0y_1---01and b = p,_10,_3 - - - 07 satisty:

a" = py---prand B = p,_1 -1 )

by [GG7, Proposition 10]. Let N be a normal subgroup of B, (RP?) that satisfies K, &
N c P,(RP?). We claim that for all u € 7ty ([ [] RP?) (which we identify henceforth with
Zy®--- @ Z3), exactly one of the following two conditions holds:

(i) Nn 1;1({u}) is empty.

(ii) 1;1({u}) is contained in N.

To prove the claim, suppose that x € N n 1;1({14}) # &, and let y € lf({bt}). Now
14(x) = 1(y) = u, so there exists k € K, such that x~'y = k. Since K, = N, it follows
that y = xk € N, which proves the claim. Further, ts(a") = (1,...,1) and (b"!) =
(1,...,1,0) by Proposition 8 and equations (5) and (7), so by the claim it suffices to
prove that there exists z € N such that i4(z) € {(1,...,1),(1,...,1,0)}, for then we are
in case (ii) above, and it follows that one of a” and b"~! belongs to N.

It thus remains to prove the existence of such a z. Let x € N\K},. Then 14(x) contains
an entry equal to 1 because K, = Ker (14). If 4(x) = (1,...,1) then we are done. So
assume that i4(x) also contains an entry that is equal to 0. By equation (5), there exist
1<r<mnandl <i; <--- <i, <nsuch that (p; ---p;) = w(x). It follows from the
claim and the fact that x € N that p; ---p;, € N also, and so without loss of generality,
we may suppose that x = p;, - - - p;,. Further, since 14(x) contains both a 0 and a 1, there
exists 1 < j < r such that pij#(x) =1land p(ijﬂ)#(x) = 0, the homomorphisms pys being
those defined in the proof of Proposition 8. Note that we consider the indices modulo ,
soif ij = n (soj = r) then we set i; +1 = 1. By [GG2, page 777], conjugation by



a~! permutes cyclically the elements pq, . . ., pn,pl_l, ..., Py of Py(RP?), so the (n — 1)1
(resp. ™) entry of x' = a~ ("= xq("=17¥)) js equal to T (resp. 0), and x" € N because N
is normal in B,,(RP?). Using the relation b = ¢,,_1a, we determine the conjugates of the
Pi by b1

b_lpzb =4a 10 1Pz(7n 1a=a pla = pl+1 foralll <i<n-2

-1 -1 -1 2
b pn_lbza 1pn 10h—14=a "0, 1pn1 10514

—1,2 -1.2
=alppa.ator_ja=ptator_qa,

where we have used the relations p;0,,_1 = 0;,_1p;if 1 <i<n-2and o, 1pn 10 11

pn of Van Buskirk’s presentation of B,(RP?), as well as the effect of conjugation by a-
on the pj- Now (7%_1 = Ay_1,4 € Ky, by Proposition 8, so a‘laz 111 € K, by Remarks 9(a),
and hence t4(b=1p,_1b) = (1,0,...,0). It then follows that l#( 1x'a) and L#(b_lx’b) have
the same entries except in the first and last positions, so if x” = a~!x’a. b~'x'b, we have
(x") = (1,0,...,0,1). Further, x” € N since N is normal in B,(RP?). Let n = 2m +¢,
where m € Nand ¢ € {0,1}. Then setting

—e. M€ (2+e)x//a2+s .

7 = a¢x"at a —(2(m—1)+¢) .1 ,2(m—1)+¢

a x'a ,

we see once more that z € N, and 1(z) = (1,...,1) if niseven and w(z) = (1,...,1,0)
if n is odd, which completes the proof of the existence of z, and thus that of Proposi-
tion 1(b). O

We end this section by proving Theorem 2.

Proof of Theorem 2. Let S = S? or RP2. If n = 1 then 14 is an isomorphism and Im (jx |p,)
is trivial so the result holds. If n = 2 and S = S? then P,(S?) is trivial, and there is
nothing to prove. Now suppose that S = S? and n > 3. As we mentioned in the intro-
duction, Ker () = P,(S?). Let (Ai j)1<i<j<n be the generating set of P, where A, j has a
geometric representative similar to that given in Figure 1. It is well known that the im-
age of this set by ju yields a generating set for P, (S?) (cf. [S, page 616]), so ju | p, is surject-
ive, and the statement of the theorem follows. Finally, assume that S = RP? and n > 2.
Once more, Im (jg |p,) = (A;j| 1 <i<j<n) andsince A;; € Ker (1) by Proposition 8,
we conclude that {(Im (j | pn>>Pn(S) c Ker (14). To prove the converse, first recall from
Proposition 8 that Ker (1) = I'>(P,(RP?)). Using the standard commutator identities
[x,vz] =[x, y][y, [x,z]][x,z] and [xy, z] = [, [y, z]][y, z][x, 2], T2 (P, (RP?)) is equal to the
normal closure in P, (RP?) of {[x,y] |x,y € {Aij px| 1<i<j<nandl<k<n}} It
then follows using the relations of Theorem 7 that the commutators [x, y] belonging
to this set also belong to ((A;; |1<i<j< n>>Pn (RP2) which is nothing other than
(Im (jg | P.))p,(s)- We conclude by normality that Ker (14) < (Im (g | P.))p,(s), and this
completes the proof of the theorem. O

3 Some properties of the subgroup L,

LetS = S? or S = RP?, and for all m,n > 1, let Ty, ,(S) = Pu(S\{x1,...,x,}) denote
the m-string pure braid group of S with n points removed. In this section, we study
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P,_2(RP?\ {x1,x3}), which is T';,_2,(RP?), in more detail, and we prove Theorem 3
and Proposition 4 that enable us to understand better the structure of the subgroup
L, defined in the proof of Proposition 1(a)(ii).

We start by exhibiting a presentation of the group I’ ,(RP?) in terms of the gener-
ators of Py, (RP?) given by Theorem 7. A presentation for Fm,n(Sz) is given in [GGS3,
Proposition 7] and will be recalled later in Proposition 15, when we come to proving
Theorem 5. For 1 <i <j<m+mn,let

1 1
Cij = Al A A A Ajy (8)

Geometrically, in terms of Figure 1, C; ; is the image of A;jl under the reflection about
the straight line segment that passes through the points xy, ..., X 4+,. The proof of the
following proposition, which we leave to the reader, is similar in nature to that for S?,
but is a little more involved due to the presence of extra generators that emanate from
the fundamental group of RP2.

PROPOSITION 11. Let n, m > 1. The following constitutes a presentation of the group Ty, , (RP?):

generators: A;;, pj, wherel <i<jandn+1<j<m+n.
relations:

() the Artin relations described by equation (4) among the generators A; ; of Tyn(RP?).
(II) foralll<i<jandn+1<j<k<m+n, Ai,jpkAi_jl = Pk
(III) foralll<i<jandn+1<k<j<m+n,

Ai,j lfk <i
ocAijor ' = 3 0 'Cilp) ifk =i
p]._le_’].lp]-Ai,jpj_le,jpj ifk > 1i.

(IV) foralln + 1<k <j<m+n, oxpipy* = Ci 07
(V) foralln+1<j<m+n,

j—1 m+n
[T4j)ei=1{11 4
i=1 I=j+1

The elements C; j and Cy j appearing in relations (I11) and (IV) should be rewritten using equa-
tion (8).

In the rest of this section, we shall assume that n = 2, and we shall focus our at-
tention on the groups I, 2(RP?), where m > 1, that we interpret as subgroups of
Py12(RP?) via the short exact sequence (3). Before proving Theorem 3 and Proposi-
tion 4, we introduce some notation that will be used to study the subgroups K, and L.
Let m > 2, and consider the following Fadell-Neuwirth short exact sequence:

1— Qm+1 — Pm(RP \{xl, xz}) mH m_l(RPZ\{xl, xz}) —)1, (9)

where r,,,,1 is given geometrically by forgetting the last string, and where (), ;1 =
1 (RP?\ {x1,...,Xpui1}, Xm2). From the Fadell-Neuwirth short exact sequences of the
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form of equation (3), 74,41 is the restriction of g, 41)4: Pyi2(RP?) — P, 1(RP?) to
Ker (q2#). The kernel Q)1 of 41 is a free group of rank m + 1 with a basis B,,1 being
given by:

Bui1 = { Agmio P2 | 1 <k <m}. (10)
The group ),,,, 1 may also be described as the subgroup of P,;(RP?\ {x1, x,}) generated
by {A1m+2, -, Am+1,m+2, Pm+2} subject to the relation:

Amtime2 = A;1,1m+2 e Al_,;i—i-an_fi-Z’ (11)
obtained from relation (V) of Proposition 11. Equations (8) and (11) imply notably that
Al my2 and Cp 40 belong to ()11 for all 1 < I < m + 1. Using geometric methods, for
m > 2, we proved the existence of a section

Sm1: Pu_1(RP2\ {x1,x2}) — Pp(RP?\ {x1, x2})

for 7,41 in [GG6, Theorem 2(a)]. Applying induction to equation (9), it follows that for
allm > 1:
P (RP?\ {x1, x2}) = Oy % (Qu 2 (- 3 (Qg x Q) -++)). (12)

So Py (RP?\ {x1,%2}) = Fyyp1 % (Fy @ (--- x (F3 x F2) - -+)), which may be interpreted
as the Artin combing operation for P,(RP?\ {x1,x,}). It follows from this and equa-
tion (10) that P,,(RP?\ {x1, x2}) admits X}, ;» as a generating set, where:

Xmsz={Aijpj|3<j<m+2,1<i<j-2}. (13)

REMARK 12. For what follows, we will need to know an explicit section s, for 7,,1.
Such a section may be obtained as follows: for m > 2, consider the homomorphism
Py (RP?\ {x1,x2}) — Py_1(RP?\ {x1,x,}) given by forgetting the string based at x3.
By [GG6, Theorem 2(a)]), a geometric section is obtained by doubling the second (ver-
tical) string, so that there is a new third string, and renumbering the following strings,
which gives rise to an algebraic section for the given homomorphism of the form:

A1 ji ifi=1
Aijr— 9 AgjAs iy ifi=2
Ai+1,j+1 if3<i<j
p] — pj+1/

for all 3 < j < m + 1. However, in view of the nature of r,, 1, we would like this new
string to be in the (m + 2)™ position. We achieve this by composing the above algebraic
section with conjugation by 0,11 - - - 03, which gives rise to a section

Sma1t Pu-1(RP?\ {x1, x2}) — Pu(RP?\ {x1, x2})

for 7,41 that is defined by:

Ajmi2ArjA ., ifi=1
Sm+1(Ai,]') = A]',m+2A2,j ifi =2

{ 14
Ai,]' 1f3<l<] ( )

Sm1(0)) = 0 A o

11



foralll <i <jand 3 <j < m+ 1. Along but straightforward calculation using the
presentation of P,,(RP?\ {x1, x,}) given by Proposition 11 shows that s, does indeed
define a section for r,, ;1.

We now prove Theorem 3, which allows us to give a more explicit description of L;,.

Proof of Theorem 3. Letn > 3. By the commutative diagram (6) of short exact sequences,
the restriction of the homomorphism go4: P,(RP?) — P,(RP?) to K, factors through
the inclusion (A3) — P,(RP?), and the kernel L, of go4/k, is contained in the group
P,_»(RP?\ {x1, x2}). We may then add a third row to this diagram:

1
J qo# | Kn

1 L, K, () ——1

o4

1 —— P, »(RP2\ {x,x2}) —— P,(RP%) 5 P)(RP?) — 1 (15)

1 1

In—2 Lntt 124

ZfZ

—_ e——- NS ___

where 7,: ZJ —> 73 is projection onto the first two factors, and j: Z3~% — Z} is
the monomorphism defined by j(ey,...,e,—2) = (0,0,€1,...,€,—2). The commutativ-
ity of diagram (15) thus induces a homomorphism 7, _5: Py_o(RP?\ {x1,x5}) — Z;’_z
that is the restriction of 1,4 to P,_»(RP?\ {x1,x,}) that makes the bottom left-hand
square commute. To see that 7,_, is surjective, notice that if x € Zg_z then the first
two entries of j(x) are equal to 0, and using equation (5), it follows that there exist
3 <ip <--- <i <nsuchthat i4(0;, - -p;,) = j(x). Furthermore, p;, - - - p;, € Ker (q2#),
and by commutativity of the diagram, we also have t,4(p;, - - - 0i,) = jolu—2 (0i, - - - 0i,),
whence x = 1,,_5 (p;, - - - pi,) by injectivity of j. It remains to prove exactness of the first
column. The fact that L, < Ker (1;,_2) follows easily. Conversely, if x € Ker (1;,_») then
x € Py,_»(RP?\ {x1,x}), and x € K, by commutativity of the diagram, so x € L,. This
proves the first two assertions of the theorem.

To prove the last part of the statement of the theorem, let m > 1, and consider
equation (9). Since 1, is the restriction of ¢, )4 to Py (RP?\ {x1, x2}), we have 7, (0j) =
©0,...,0,_1 ,0,...,0) and s (A;j) = (0,...,0) forall1 <i < jand 3 <j < m+2.

(j —2)d position
So for each 2 < I < m + 1, I, restricts to a surjective homomorphism Z,, }Ql QO — 7y
of each of the factors of equation (12), Z, being the (I — 1)* factor of Z}', and using
equation (10), we see that Ker (7|0, is a free group of rank 2/ — 1 with basis B; given
by:
B = {Ak,l+1/Pl+1Ak,l+1P1_+11/plz+1 I<k<I- 1} - (16)
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As we shall now explain, for all m > 2, the short exact sequence (9) may be extended to
a commutative diagram of short exact sequences as follows:

1 1 1

| R

1 — Ker (/l\m|ﬂm+1) L2 Liiq

| l l

1

2 el 2 (17)
1 Qm+l Pm([RP \{xl, X2}) §__+_1_ Pm_1<RP \{xl, xz}) —1
l/l\m QW1+1 l/[\m l?mfl
1 7, zy A 1.
1 1 1

To obtain this diagram, we start with the commutative diagram that consists of the
second and third rows and the three columns (so a priori, the arrows of the first row
are missing). The commutativity implies that r,, 1 restricts to the homomorphism
Tm+41 |Lyss © Lm+2 — L1, which is surjective, since if w € L, 1 is written in terms
of the elements of &}, then the same word w, considered as an element of the group
Py (RP?\ {x1,x,}), belongs to L., and satisfies 7,,.1(w) = w. Then the kernel of
Tm+1 | Ly, Which is also the kernel of 7, |q,, ., , is equal to Ly N Q1. This estab-
lishes the existence of the complete commutative diagram (17) of short exact sequences.
By induction, it follows from (16) and (17) that for all m > 1, L,, 4> is generated by

m+2
X0 = U B]'_l = {Ai,j/ p]'Ailjp]-_l, p]2 ‘ 3<j<m+2,1<i<] —2} . (18)
=3

Using the section s,,.1 defined by equation (14), we see that s,,1(x) € L4 for all
x € X141, and thus s,,,1 restricts to a section Sy,41 |1,,,, * L1 — Lm+2 for |1, -
We conclude by induction on the first row of (17) that:

Qpir) ¥ L1 (19)
Q1) % (Ker (tm]q,) @ (- x (Ker (in]q,) % Ker (in[a,)) ), (20)
the actions being induced by those of equation (12), so by equation (16), Ly, is iso-

morphic to a repeated semi-direct product of the form Fy,, 11 x (Fa—1 % (- % (F5 x
F3)---)). The last part of the statement of Theorem 3 follows by takingm =n —2. O

L2 = Ker (I

~ Ker (i,

A finer analysis of the actions that appear in equations (12) and (20) now allows us
to determine the Abelianisations of P,_»(RP?\ {x1,x,}) and L,,.

Proof of Proposition 4. If n = 3 then the two assertions are clear. So assume by induction
that they hold for some n > 3. From the split short exact sequence (9) and equation (19)
with m = n — 1, we have:

{Pn—l(sz\{xlzxZ}) ~ Oy 1y Py 2(RP*\ {x1,x}) and

“ (21)
Ly41 = Ker (1,-1]q,) Xy Ln,
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where ¢ denotes the action given by the section s;,, and the action induced by the re-
striction of the section s, to L, respectively.

Before going any further, we recall some general considerations from the paper [GG5,
pages 3387-88] concerning the Abelianisation of semi-direct products. If H and K are
groups, and if ¢: H — Aut(K) is an action of H on K then one may deduce easily
from [GG5, Proposition 3.3] that:

(K xp H)AP = A(K) @ HAP, (22)
where:
A(K) = K/{T5(K)UR) and K = <¢(h)(k) k' heHandke 1<>
Recall that K is normal in K (cf. [GGS5, lines 1-4, page 3388]), so (I'2(K) u 12> is normal

in K. If k € K, let k denote its image under the canonical projection K — A(K). For all
k, k' € Kand h,h' € H, we have:

o(hh")(k) - k1 = @(h)(@(H)(K)) - (H) (k™) - () (k) -k~
= @()(K") K"~ - (W) (k) -k~ (23)
() (kK') - (kK')™" = (@(h)(k) - k™) - k(q(h)(K) - K~ )k (24)

where k" = ¢(h')(k) belongs to K. Let H and K be generating sets for H and K re-
spectively. By induction on word length relative to the elements of H, equation (23)
implies that K is generated by elements of the form ¢(h)(k) - k=1, where h € H and
k € K. A second induction on word length relative to the elements of K and equa-
tion (24) implies that K is normally generated by the elements of the form ¢(h)(k) - k1,
where 1 € H and k € K. By standard arguments involving group presentations, since
I>(K) < (T(K) u 12>, A(K) is Abelian, and a presentation of A(K) may be obtained
by Abelianising a given presentation of K, and by adjoining the relators of the form
@(h)(k) - k=1, where h € H and k € K.

We now take K = Q, (resp. K = Ker (1,,_1|q,)), H = Py_2(RP?\ {x1,x5}) (resp. H =
L,) and ¢ = . Applying the induction hypothesis and equation (22) to equation (21),
to prove parts (a) and (b), it thus suffices to show that:

A(Q) = 7%, and that (25)
A (Ker (i, 1]q,)) = 722" (26)

respectively. We first establish the isomorphism (25). As we saw previously, A(();)
is Abelian, and to obtain a presentation of A((),), we add the relators of the form

¥(1)(w) - w1 to a presentation of (Q),;)A", where T € X, and w € B,. In A(Q,), such
relators may be written as:

Sn(T)w(sn (1)) Tw ™! = sy (T)w(sn (7)) w1, (27)

We claim that it is not necessary to know explicitly the section s, in order to determine
these relators. Indeed, for all T € X, we have p,,1(T) = T; note that we abuse notation
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here by letting T also denote the corresponding element of X, ;1 in P,_1(RP?\ {x1, x5}).
Thus s,(7)t~! € Ker (pn+1), and hence there exists w; € (), such that s,(7) = w.T.
Since A(Q)y,) is Abelian, it follows that:

sp(T)w(sn(1))~! = wetwt—lws! = wr Twt ! wil = TwT ],
and thus the relators of equation (27) become:
su(T)w(sp(7)) w1 = twr=1 w1l (28)

This proves the claim. In what follows, the relations (I)-(V) refer to those of the present-
ation of P,_1(RP?\ {x1,x2}) given by Proposition 11. Using this presentation and the
fact that A(Q),) is Abelian, we see immediately that Twt~! = @ for all T € A}, and
w € By, with the following exceptions:

() T =pjand w = Ajupq forall 3 < j < n—1. Then pjAju1p; " = c] w1 = A

using relation (I1I) and equation (8), which yields the relator ( Ajni ) in A(Q),).

(i) T =pjand w = py1 forall 3 <j < n. Then p]pn+1p Cint1Pn+1 = Ajnel Put1
by relation (IV) and equation (8), which yields the relator A; 1 jnr1 I A(Qy).

The relators of (ii) above clearly give rise to those of (i). To obtain a presentation of
A(Q),), which by equation (10) is an Abelian group with generating set

{Aln—i-lrpn—l-l} 1<I< Tl—l}

we must add the relators Ajnit forall3 <j<mn. Thusforj=3,...,n—1,the elements
Aj 1 of this generating set are trivial. Further, A, , 11 is also trivial, but by relation (11),
one of the remaining generators A; , ;1 may be deleted, A ;1 say, from which we see
that A(Q),) is a free Abelian group of rank two with {A1,.1,0,71} as a basis. This
establishes the isomorphism (25), and so proves part (a).

We now prove part (b). As we mentioned previously, it suffices to establish the
isomorphism (26). Since Ker (1,,_1]q,) is a free group of rank 2n — 1, we must thus
show that A(Ker (1,-1|q,)) = (Ker (5,,— 1|Q ))AP. We take K = Ker (Ln 1lq,) (resp. H =

L,_») to be equipped with the basis B, (resp. the generating set X,) of equation (16)
(resp. of equation (18)). The fact that Ker (1,,_1|q,) is normal in Q),, implies that A ,,,1,
0n+141n410, 11, Crus1 and pu1Cyup1p;, 1, belong to Ker (4,_1|n,) forall 1 < I < n by
equations (8) and (11). Repeating the argument given between equations (27) and (28),
we see that equation (28) holds for all T € /‘?n and w € Bn, where @w now denotes the
image of w under the canonical projection Ker (1,,_1|n,) — A(Ker (1,-1]q,)). For a €
P,_2(RP?\ {x1, x2}), let ¢, denote conjugation in Ker (1, _1|q,) by a (which we consider
to be an element of P, _1(RP?\ {x1, x,})). The automorphism c, is well defined because
Ker (1,_1|a,) = Qu n L,_1, so that Ker (;,,_1|q,) is normal in P,_1(RP?\ {x1, x2}). We
claim that (T>(K) U 12> is invariant under c,. To see this, note first that I';(K) is clearly
invariant since it is a characteristic subgroup of K. On the other hand, suppose that w €
Ker (1, 1|q,), T € Ly_2 and a € P,_»(RP?\ {x1, x2}). Since s,,(7) € L,,_1, L,_1 is normal
in P,_1(RP?\ {x1,x,}) and L,_, is normal in P, _»(RP?\ {x1,x,}), we have as,(t)a~! €
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Ly1, T = pui1(asy(T)al) = ata=t € L, 5, and thus s, (7' 1) (as,(T)a" 1) € Ker (1, _1]|q,)-

Hence there exists w.s € Ker (1,,_1]q,) such that as, (T)a~! = s,,(t")w. Now Ker (1, _1|q, )

is normal in P, _1(RP?\ {x1, x2}), so w’' = awa ™! € Ker (;,,_1]q,), and therefore:
Ca (sn(r)wsn(r_l)w_l) = zx(sn(r)wsn(r_l)w_l) Sn(T ) wpw'w, Lo, (T Hw'™!

1 -1 1

= 5u(T) (W' w Hsu(T™ 1)(wT W'l ) wpw'w o'
which belongs to (T2(K) u K) because s(7')(wpw'w;)s(t ) (wpw' " lwg!) € K and
W' aJT_,laJ’ —1 € T,(K). This proves the claim, and implies that c, induces an endo-

morphism ¢, (an automorphism in fact, whose inverse is ¢, 1) of A(K), in particular,

if a,0' € P, »(RP?\{x1,x2}) and w € Ker (,,_1|n,) then av’wa’~la=1 = cpp(w) =
Ca(Cor (@).

We next compute the elements Twt~! of A(Ker (Z,-1|q,)) in the case where T = A; ;,
3<j<nandl<i<j—2,andw e By:
(i) Letw = Aj 41, for1 <1 <n—1. Then

Aln+1 ifj<lorifl <i
Tt = A 7}+1A1 ;11+1Al,n+1Ai,n+1Al,n+1 ifj=1
A] n+1Al n+1Aj,n+1 ifi =1

1 1 -1 1 i :
A] n+1A1 n+1Ajr”+1Air”+1Alz”+1Ai,n+1A] n+1Air”+1Ajf”+1 ifi<l<j

by the Artin relations. We thus conclude that Twt~! = W in this case.
g -1 — -1\ ,—1
(i) fw = ppy1A1 010,41, where 1 <1 <n—1then twt 1 pn+1(Ailel’n+1Ailj )0ri1r

and from case (i), we deduce also that Twt—1 = @.
(iii) Letw = p2_ ;. Then Twt™! = w, hence Twt~1 = @.

So if T = A,;; then the relators given by equation (28) are trivial for all w € B,, and
Cai; = 1a(Ker(, o)
Now suppose that T = iji,jp]._l, where3 <j <mnand1 <i <j—2. Then for all

w € B, we have:

Tt ! = (W) = Coj©Cayy© Epfl (@) =@,

since Ca;; = Iy (ker(i, 1|a,))” SO Cojaie1 = 1a(Ker(i, i|a,)):

By equation (18), it remains to study the elements of the form Twt~1, where T = pJZ,

3<j<mn and w e B,. Since pjz-ij_2 = EPZA

(a) If w = Aj 41, for 1 <1 < n—1 then by relation (III) and equations (8) and (11), we

(@), we first analyse cp,.
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have:

EP]‘ (@) = Epj(Al,l’l-i-l) = ijl,n+1p]'_1

Al i1 ifj <l

= P;ﬁl 'Pn+1cljnl+1p;;i1 P ifj=1
Oni1 Pni1Crn1Prin Oyt Ans1 Pty Pus1Cin1Ppiy  Phyq ] >1
Al iftj#1

-1
Pn+1C;r}+1P;Jlr1 = <Pn+1Ajfn+1P;i1> ifj =1

(b) Letw = py:1A;u110, 11, Where1 < I < n—1. Relation (IV) implies that pjpn+1p].—1 —
Cjnt10n+1, and so by case (a) above, we have:

1 .
o~ - — Pn+1Al,n+1Pn+1 iftj#1
¢ (w) = Cp; pn+1Al n+10 ! =\ = - . _
i i M+ n+1 1 1 ...

( > Ciny1 = (Ajne1) ifj=1

(c) Letw = p% +1- By relation (IV) and equations (8) and (11), we have:

Cp; (@) = Ep;(P%+1) = (Pan+1P]'_1)2 = 0n+1Cin 410511 - P11 Cinra

_ . -1 2 )
- Pn+1A],n+1Pn+1 : pn+1 : A],i’l-‘rl/

from which we obtain:

~

2 _ ) -1 2 AL
Cp]Z- <|0n+1 ) - CPj(p”+1A]r”+1pn+1 Pht1 A]r”"‘l )

- Aj_,r}+1 ’ pn+1Aj,n+1p;-|1-1 'p%l+1 'Aj,n+1 ’ (pn—&-lAj,n#—lP,;l_l) = P%_,_l-
So by equation (16), we also have Ep]g = 1d A(Ker(h,1|oy))" Hence for all T € L,,_» and
w € Ker (1,_1]|q,), it follows that ¢r(@w) = @ , and thus the relators ¢(7)(w) - w™!
are all trivial. Since a presentation for A (Ker (1,,_1|q,)) is obtained by Abelianising
a given presentation of Ker (1,_1|n,) and adjoining these relators, we conclude that
A (Ker (1,_1]|q,)) = (Ker (5,_1|q,))AP. In particular, the fact that Ker (,,_1]q,) is a free
group of rank 2n — 1 gives rise to the isomorphism (26). This completes the proof of the
proposition. OJ

REMARKS 13.

(a) An alternative description of P, »(RP?\ {x1,x3}), similar to that of equation (12),
but with the parentheses in the opposite order, may be obtained as follows. Let m > 2
and g > 1, and consider the following Fadell-Neuwirth short exact sequence:

1— Pm—l(sz\ {xl, e ,qu}) — Pm(sz\ {xl, e ,xq}) —>
P (RP\ {xy,...,x}) — 1, (29)
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given geometrically by forgetting the last m — 1 strings. Since the quotient is a free
group [, of rank g, the above short exact sequence splits, and so

Pu(RP?\ {x1,...,x5}) = Py 1 (RP?\ {x1,...,x551}) @ Fy,
and thus
Po_o(RP?\ {x1,x2})) = (- ((Fp_1 % Fy_p) x Fy_3) » - - - x F3) x Fo. (30)

by induction. The ordering of the parentheses thus occurs from the left, in contrast
with that of equation (12). The decomposition given by equation (12) is in some sense
stronger than that of (30), since in the first case, every factor acts on each of the preced-
ing factors, which is not necessarily the case in equation (30), so equation (12) engenders
a decomposition of the form (30). This is a manifestation of the fact that the splitting
of the corresponding Fadell-Neuwirth sequence (9) is non trivial, while that of (29) is
obvious.

(b) Note that Ly, which is the kernel of the homomorphism Zp: P»(RP?\ {x1, x2}) — Z3,
is also the subgroup of index 4 of the group (B4(RP?))® that appears in [GGS, The-
orem 3(d)]. Indeed, by [GGS, equation (127)], this subgroup of index 4 is isomorphic to
the semi-direct product:

F5(A14, Ao, 05, 00A1405 1, P1A2405 ") % F3(A2s, 03, 0342305 ),

the action being given by [GG8, equations (129)-(131)] (the element B; ; of [GG8] is the
element A; ; of this paper).

REMARK 14. Using the ideas of the last paragraph of the proof of Proposition 1(b), one
may show that L, is not normal in B,(RP?). Although the subgroup L, is not unique
with respect to the properties of the statement of Proposition 1(a)(ii), there are only a
finite number of subgroups, 2"("~2) to be precise, that satisfy these properties. To prove
this, we claim that the set of torsion-free subgroups L}, of K, such that K,, = L}, ® (A2)
is in bijection with the set {Ker (f) | f € Hom(L,, Z;)}. To prove the claim, let K = K,,
L =Ly, letg: K— K/L be the canonical surjection, and set

A:{L’

L' < K, L' is torsion free,and K = L' ® <A%>} )

Clearly L € A, so A # @. Consider the map ¢: A — {Ker(f) | f e Hom(L, Z5) }
defined by ¢(L') = L n L'. This map is well defined, since if L’ = L then ¢(L") = L is
the kernel of the trivial homomorphism of Hom(L, Z), and if L’ # L then L’ ¢ L since
[K:L']=[K:L]=2,and soq| issurjective as K/L =~ Z,. ThusKer (g |;/) = ¢(L') is of
index 2 in L, in particular, ¢(L’) is the kernel of some non-trivial element of Hom(L, Z5).

We now prove that ¢ is surjective. Let f € Hom(L,Z,), and set L” = Ker (f). If
f =0then L” = L, and ¢(L) = L". So suppose that f # 0. Then f is surjective, and
L" = Ker (f) is of index 2 in L. Let x € L\L". Then

L=L"uxl’, (31)
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where 11 denotes the disjoint union. Since K = L11A2L, it follows that
K=L"uxL"uA’L"uxA%L", (32)

where 11 denotes the disjoint union. Set L' = L”11xA2L". By equation (31), x?A2L" =
A2x2L" = A2L" because A2 is central and of order 2, and hence K = L'11xL’. Using once
more equation (31), we see that L' is a group, and so the equality K = L' 11 xL’ implies
that [K : L'] = 2. Further, since the only non-trivial torsion element of K is A2, L’ is
torsion free by equation (32), and so the short exact sequence 1 — L' — K — Zp —>
1 splits. Thus L’ € A, and ¢(L’) = L” using equations (31) and (32).

It remains to prove that ¢ is injective. Let L), L), € A be such that L] n L = ¢(L}) =
¢(Ly) = Ly n L. If one of the L/, L] say, is equal to L then we must also have L), = L
because L < Lj and L and L) have the same index in K. So suppose that L] # L for
alli € {1,2}. Ifi € {1,2} then L” = ¢(L!) = L n L. = Ker (f;) for some non-trivial
fi € Hom(L, Z,), and thus [L : L"] = 2. Let us show that L} < L}. Letx e L}. If
x € Lthen x € L”, so x € L}, and we are done. So assume that x ¢ L, and suppose that
x ¢ L}. Then g(x) is equal to the non-trivial element of K/L, and since K/L =~ Z, and
AZ ¢ L, we see that xA? € L. Further, K = L) 11xL} since [K : L] = 2, and so xA2 € L)
(for otherwise xA% € xL), which implies that A2 € L), which is impossible because L)
is torsion free). But then xA2 € L n L, = L”, and hence xA2 € L}. But this would
imply that A2 € L}, which contradicts the fact that L] is torsion free. We conclude that
L} < L), and exchanging the rles of L] and L, we see that L] = L}, which proves that
@ is injective, so is bijective, which proves the claim. Therefore the cardinality of A is
equal to the order of the group H'(L, Z), which is equal in turn to that of Hy(L, Z,). By
Proposition 4(b), we have LAY — H(L,Z) =~ 7"("=2) g0 Hy(L,Zy) =~ Hi(L,Z2)® Zp ~
Zg(”_z)
is equal to 2"

, and the number of subgroups of K that satisfy the properties of Proposition 1(a)
("=2) as asserted.

4 The virtual cohomological dimension of B,,(S) and P,(S)
for S = S?, RP?

Let S = S2 (resp. S = RP?), and for all m,n > 1, let Lum(S) = Pu(S\{x1,...,xm})
denote the n-string pure braid group of S with m points removed. In order to study
various cohomological properties of the braid groups of S and prove Theorem 5, we
shall study T, (S). To prove Theorem 5 in the case S = S?, by equation (2), it will
suffice to compute the cohomological dimension of P, _3(S?\ {x1, 2, x3}). We recall the
following presentation of [, (S?) from [GG3]. The result was stated for m > 3, but it
also holds for m < 2.

PROPOSITION 15 ([GG3, Proposition 7]). Let n,m > 1. The following constitutes a present-
ation of the group Ty, 1 (S?):

generators: A;; wherel <i<jandm+1<j<m+n.

relations:

(i) the Artin relations described by equation (4) among the generators A; ; of Ty m(S?).
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(i) forallm+1<j<m+n (TT2) Ay) (T Aj) =1

Let N denote the kernel of the homomorphism I’ ,,,(S) — TI';,—1»(S) obtained geo-
metrically by forgetting the last string. If S = S? (resp. S = RP?) then N is a free group
of rank m +n — 2 (resp. m + n — 1) and is equal to (A1 min, A2 mins - r Amsn—1m+n)
(resp. (A1 m+ns A2 msns - - » Amn—1,m+n, Pm+n). Clearly N is normal in I';, ,,(S). Further,
it follows from relations (i) of Proposition 15 (resp. relations (III) and (IV) of Proposi-
tion 11) that the action by conjugation of I';,;4(S) on N induces (resp. does not induce)
the trivial action on the Abelianisation of N. In order to determine the virtual cohomo-
logical dimension of the braid groups of S and prove Theorem 5, we shall compute
the cohomological dimension of a torsion-free finite-index subgroup. In the case of
$? (resp. RP?), we choose the subgroup I';,_33(S?) that appears in the decomposition
given in equation (2) (resp. the subgroup T',_»(RP?) that appears in equation (3)).

Proof of Theorem 5. Let S = S? (resp. S = RP?), letn > 3 and k = 3 (resp. n > 2
and k = 2), and let k < m < n. Then by equation (2) (resp. equation (3)) and equa-
tion (1), I'yy—m,m(S) is a subgroup of finite index of both P, (S) and B, (S). Further, since
Foom(S\{x1,...,x}) is a finite-dimensional CW-complex and an Eilenberg-Mac Lane
space of type K(7, 1) [FaN], the cohomological dimension of I';,_, 1 (S) is finite, and the
first part follows by taking m = k.

We now prove the second part, namely that the cohomological dimension of I';, _ x(S)
is equal to n — k for all n > k. We first claim that cd(I',,;(S)) < m for all m > 1 and
I = k — 1. The result holds if m = 1 since F; (S\ {x1, ..., x;}) has the homotopy type of a
bouquet of circles, therefore H!(F;(S\ {x1,...,x;}), A) is trivial for all i > 2 and for any
local coefficients A, and H'(F;(S\ {x1,...,x;}),Z) # 0. Suppose by induction that the
result holds for some m > 1, and consider the Fadell-Neuwirth short exact sequence:

1—T11m(S) — Tis14(8) — Tp(§) — 1
that emanates from the fibration:
F(S\{x1,...,x;,z1,.. ., z2m}) — Epne1(S\{x1,...,x1}) — Fu(S\{x1,...,x1})  (33)
obtained by forgetting the last coordinate. By [Br, Chapter VIII], it follows that:
ed(Tpis1,1(S)) < cd(Tys(S)) +cd(Ty4n(S)) < m+ 1.

which proves the claim. In particular, taking | = k, we have cd (T, x(S)) < m.
To conclude the proof of the theorem, it remains to show that for each m > 1 there

are local coefficients A such that H™(I',,;(S), A) # 0 for all | > k. We will show that
this is the case for A = Z. Again by induction suppose that H"(I';, ;(S), Z) # 0 for all
I > k—1 and for some m > 1 (we saw above that this is true for m = 1). Consider the
Serre spectral sequence with integral coefficients associated to the fibration (33). Then
we have that

Eg,q = HF (rm,l(s)r Hq(Fl(S\ {xll <o X121, IZm})/ Z))

Since cd(I'y, ;(S)) < m and cd(F(S\{x1,...,x1,21,...,2m}) < 1 from above, it follows
that this spectral sequence has two horizontal lines whose possible non-vanishing terms
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occur for 0 < p < mand 0 < g < 1. We claim that the group E?’l is non trivial. To see
this, first note that H'(F; (S\ {x1,...,X,2z1,...,2Zm}), Z) is isomorphic to the free Abelian
group of rank ¥ = m+1—k+2,s0r > m+ 2, and hence E?’l = H™(T,,1(5),Z"),
where we identify Z" with (the dual of) NAP. The action of I',, ;(S) on N by conjugation
induces an action of T, ;(S) on N4P. Let H be the subgroup of NP generated by the
elements of the form a(x) — x, where a € T, (S), x € NAP, and a(x) represents the action
of & on x. Then we obtain a short exact sequence 0 — H —> NAP — NAP/H — 0 of
Abelian groups, and the long exact sequence in cohomology applied to I', ;(S) yields:

<> H"(T,,1(S), NA®) — H™(T,,1(S), NA*/H) — H"*1(L,(S), H) — -+ . (34)

The last term is zero since c¢d(I',;(S)) < m, and so the map between the two remain-
ing terms is surjective. Let us determine NAP/H. If S = S? then from the comments
following Proposition 15, the action of I, ;(S) on NAP is trivial, so H is trivial, and
NAP/H =~ 7. So suppose that S = RP?. Choosing the basis

{Al,m+l+1/ AZ,m—i—l—l—lr ceey Am+l—1,m+l+1l Pm+l+1}

of N and using Proposition 11, one sees that the action by conjugation of the gener-
ators of T',;,;(S) on the corresponding basis elements of NAP is trivial, with the ex-
ception of that of p; on A; ;41 for [ +1 < i < m +1 — 1, which yields elements
A%m +1+1 € H (by abuse of notation, we denote the elements of N Ab in the same way as
those of N), and that of p; on p,;,,;.1, where I +1 < i < m + [, which yields elements
Aim+i1+1 € H. In the quotient NAP/H the basis elements Al mtl+1r - -0 Amtl—1m+1+1
thus become zero, and additionally, we have also that A, ;+;+1 (Which is not in the
given basis) becomes zero. Hence the relation H?:{l Aimilsl = pn_il .1 is sent to the

relation Hle Aimilsl = pn_il 41, and so NAP/H is generated by (the images of) the
elements A1 4141+, Al m+1+1, Om+1+1, Subject to this relation (as well as the fact that
the elements commute pairwise). It thus follows that NA?/H =~ Z!. Since the induced
action of T';, 1(S) on NAP/H is trivial, we conclude that

H" (Tt (S), N /H) = (H™ (T (S), 2))’,
wheres = m +1if S = S?and s = [ if S = RP?. It then follows from equation (34)
that E?’l = H™T,,1(S), NAP) # 0. Since E} = 0 for all p > m and q > 1, we have
Ept = B, thus ElY' s non trivial, and hence H" (T, 1(S), Z) # 0. This concludes
the proof of the theorem. O
We end this paper with a proof of Corollary 6.

Proof of Corollary 6. Let S = S? (resp. S = RP?). If n > 3 (resp. n > 2) then B,(S) and
MCG(S, n) are closely related by the following short exact sequence [S]:

1— (A2 — B,(S) > MCG(S,n) — 1,

where the kernel is isomorphic to Z;. Now assume that n > 4 (resp. n > 3), so that
B, (S) is infinite. If I is a torsion-free subgroup of B, (S) of finite index then B(I'), which
is isomorphic to I, is a torsion-free subgroup of MCG(S, n) of finite index, and hence
the virtual cohomological dimension of MCG(S, n) is equal to that of B, (S). The result
then follows by Theorem 5. O
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