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Abstract

Let S be a surface, perhaps with boundary, and either compact, or with a finite number of

points removed from the interior of the surface. We consider the inclusion ι : FnpSq ÝÑ
śn

1 S

of the nth configuration space FnpSq of S into the n-fold Cartesian product of S, as well as the

induced homomorphism ι# : PnpSq ÝÑ
śn

1 π1pSq, where PnpSq is the n-string pure braid

group of S. Both ι and ι# were studied initially by J. Birman who conjectured that Ker pι#q

is equal to the normal closure of the Artin pure braid group Pn in PnpSq. The conjecture

was later proved by C. Goldberg for compact surfaces without boundary different from the

2-sphere S
2 and the projective plane RP2. In this paper, we prove the conjecture for S

2

and RP2. In the case of RP2, we prove that Ker pι#q is equal to the commutator subgroup of

PnpRP2q, we show that it may be decomposed in a manner similar to that of PnpS2q as a dir-

ect sum of a torsion-free subgroup Ln and the finite cyclic group generated by the full twist

braid, and we prove that Ln may be written as an iterated semi-direct product of free groups.

Finally, we show that the groups BnpS2q and PnpS2q (resp. BnpRP2q and PnpRP2q) have

finite virtual cohomological dimension equal to n ´ 3 (resp. n ´ 2), where BnpSq denotes

the full n-string braid group of S. This allows us to determine the virtual cohomological
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dimension of the mapping class groups of the mapping class groups of S2 and RP2 with

marked points, which in the case of S2, reproves a result due to J. Harer.

1 Introduction

Let S be a connected surface, perhaps with boundary, and either compact, or with a

finite number of points removed from the interior of the surface. The nth configuration

space of S is defined by:

FnpSq “
 

px1, . . . , xnq P Sn
∣

∣ xi ‰ xj if i ‰ j
(

.

It is well known that π1pFnpSqq – PnpSq, the pure braid group of S on n strings, and that

π1pFnpSq{Snq – BnpSq, the braid group of S on n strings, where FnpSq{Sn is the quotient

space of FnpSq by the free action of the symmetric group Sn given by permuting coordin-

ates [FaN, FoN]. If S is the 2-disc D2 then BnpD2q (resp. PnpD2q) is the Artin braid group

Bn (resp. the Artin pure braid group Pn). The canonical projection FnpSq ÝÑ FnpSq{Sn

is a regular n!-fold covering map, and thus gives rise to the following short exact se-

quence:

1 ÝÑ PnpSq ÝÑ BnpSq ÝÑ Sn ÝÑ 1. (1)

If D2 is a topological disc lying in the interior of S and that contains the basepoints of the

braids then the inclusion j : D
2 ÝÑ S induces a group homomorphism j# : Bn ÝÑ BnpSq.

This homomorphism is injective if S is different from the 2-sphere S
2 and the real pro-

jective plane RP2 [Bi1, G]. Let j# |Pn : Pn ÝÑ PnpSq denote the restriction of j# to the

corresponding pure braid groups. If β P Bn then we shall denote its image j#pβq in

BnpSq simply by β. It is well known that the centre of Bn and of Pn is infinite cyclic,

generated by the full twist braid that we denote by ∆
2
n, and that ∆

2
n, considered as an

element of BnpS2q or of BnpRP2q, is of order 2 and generates the centre. If G is a group

then we denote its commutator subgroup by Γ2pGq, its Abelianisation by GAb, and if H

is a subgroup of G then we denote its normal closure in G by xxHyyG.

Let
śn

1 S “ S ˆ ¨ ¨ ¨ ˆ S denote the n-fold Cartesian product of S with itself, let

ιn : FnpSq ÝÑ
śn

1 S be the inclusion map, and let ιn# : π1pFnpSqq ÝÑ π1

`śn
1 S

˘
denote

the induced homomorphism on the level of fundamental groups. To simplify the nota-

tion, we shall often just write ι and ι# if n is given. The study of ι# was initiated by

Birman in 1969 [Bi1]. She had conjectured that xx Im pj# |PnqyyPnpSq “ Ker pι#q if S is a com-

pact orientable surface, but states without proof that her conjecture is false if S is of

genus greater than or equal to 1 [Bi1, page 45]. However, Goldberg proved the con-

jecture several years later in both the orientable and non-orientable cases for compact

surfaces without boundary different from S
2 and RP2 [G, Theorem 1]. In connection

with the study of Vassiliev invariants of surface braid groups, Gonzlez-Meneses and

Paris showed that Ker pι#q is also normal in BnpSq, and that the resulting quotient is

isomorphic to the semi-direct product π1

`śn
1 S

˘
¸ Sn, where the action is given by

permuting coordinates (their work was within the framework of compact, orientable

surfaces without boundary, but their construction is valid for any surface S) [GMP]. In

the case of RP2, this result was reproved using geometric methods [T].
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If S “ S
2, Ker pι#q is clearly equal to PnpS2q, and so by [GG1, Theorem 4], it may be

decomposed as:

Ker pι#q “ PnpS2q – Pn´3pS2z tx1, x2, x3uq ˆ Z2, (2)

where the first factor of the direct product is torsion free, and the Z2-factor is generated

by ∆
2
n.

The aim of this paper is to resolve Birman’s conjecture for surfaces without bound-

ary in the remaining cases, namely S “ S
2 or RP2, to determine the cohomological

dimension of BnpSq and PnpSq, where S is one of these two surfaces, and to elucidate

the structure of Ker pι#q in the case of RP2. In Section 2, we start by considering the

case S “ RP2, we study Ker pι#q, which we denote by Kn, and we show that it admits a

decomposition similar to that of equation (2).

PROPOSITION 1. Let n P N.

(a) (i) Up to isomorphism, the homomorphism ι# : π1pFnpRP2qq ÝÑ π1pΠ
n
1pRP2qq coincides

with Abelianisation. In particular, Kn “ Γ2pPnpRP2qq.

(ii) If n ě 2 then there exists a torsion-free subgroup Ln of Kn such that Kn is isomorphic to the

direct sum of Ln and the subgroup
@

∆
2
n

D
generated by the full twist that is isomorphic to Z2.

(b) If n ě 2 then any subgroup of PnpRP2q that is normal in BnpRP2q and that properly

contains Kn possesses an element of order 4.

Note that if n “ 1 then B1pRP2q “ P1pRP2q – Z2 and ∆
2
1 is the trivial element,

so parts (a)(ii) and (b) do not hold. Part (a)(i) will be proved in Proposition 8. We

shall see later on in Remark 14 that there are precisely 2npn´2q subgroups that satisfy

the conclusions of part (a)(ii), and to prove the statement, we shall exhibit an explicit

torsion-free subgroup Ln. We then prove Birman’s conjecture for S
2 and RP2, using

Proposition 1(a)(i) in the case of RP2.

THEOREM 2. Let S be one of S2 or RP2, and let n ě 1. Then xx Im pj# |PnqyyPnpSq “ Ker pι#q.

In Section 3, we analyse Ln in more detail, and we show that it may be decomposed

as an iterated semi-direct product of free groups.

THEOREM 3. Let n ě 3. Consider the Fadell-Neuwirth short exact sequence:

1 ÝÑ Pn´2pRP2 z tx1, x2uq ÝÑ PnpRP2q
q2#

ÝÑ P2pRP2q ÝÑ 1, (3)

where q2# is given geometrically by forgetting the last n ´ 2 strings. Then Ln may be identified

with the kernel of the composition

Pn´2pRP2 z tx1, x2uq ÝÑ PnpRP2q
ι#ÝÑ Z2 ˆ ¨ ¨ ¨ ˆ Z2looooooomooooooon

n copies

,

where the first homomorphism is that appearing in equation (3). The image of this composition is

the product of the last n ´ 2 copies of Z2. In particular, Ln is of index 2n´2 in Pn´2pRP2 z tx1, x2uq.

Further, Ln is isomorphic to an iterated semi-direct product of free groups of the form F2n´3 ¸

pF2n´5 ¸ p¨ ¨ ¨ ¸ pF5 ¸ F3q ¨ ¨ ¨ qq, where for all m P N, Fm denotes the free group of rank m.
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In the semi-direct product decomposition of Ln, note that every factor acts on each

of the preceding factors. This is also the case for Pn´2pRP2 z tx1, x2uq (see equation (12)),

and as we shall see in Remarks 13(a), this implies an Artin combing-type result for this

group. Analysing these semi-direct products in more detail, we obtain the following

results.

PROPOSITION 4. If n ě 3 then:

(a)
`
Pn´2pRP2 z tx1, x2uq

˘
Ab – Z

2pn´2q.

(b) pLnqAb – Z
npn´2q.

In two papers in preparation, we shall analyse the homotopy fibre of ι, as well as

the induced homomorphism ι# when S “ S
2 or RP2 [GG9], and when S is a space form

manifold of dimension different from two [GGG]. In the first of these papers, we shall

also see that Ln is closely related to the fundamental group of an orbit configuration

space of the open cylinder.

In Section 4, we study the virtual cohomological dimension of the braid groups of

S
2 and RP2. Recall from [Br, page 226] that if a group Γ is virtually torsion-free then

all finite index torsion-free subgroups of Γ have the same cohomological dimension by

Serre’s theorem, and this dimension is defined to be the virtual cohomological dimension

of Γ. Using equations (2) and (3), we prove the following result, namely that if S “ S
2

or RP2, the groups BnpSq and PnpSq have finite virtual cohomological dimension, and

we compute these dimensions.

THEOREM 5.

(a) Let n ě 4. Then the virtual cohomological dimension of both BnpS2q and PnpS2q is equal to

the cohomological dimension of the group Pn´3pS2z tx1, x2, x3uq. Furthermore, for all m ě 1,

the cohomological dimension of the group PmpS2z tx1, x2, x3uq is equal to m.

(b) Let n ě 3. Then the virtual cohomological dimension of both BnpRP2q and PnpRP2q is

equal to the cohomological dimension of the group Pn´2pRP2z tx1, x2uq. Furthermore, for all

m ě 1, the cohomological dimension of the group PmpRP2z tx1, x2uq is equal to m.

The methods of the proof of Theorem 5 have recently been applied to compute the

cohomological dimension of the braid groups of all other compact surfaces (orientable

and non orientable) without boundary [GGM]. Theorem 5 also allows us to deduce

the virtual cohomological dimension of the punctured mapping class groups of S2 and

RP2. If n ě 0, let MCGpS, nq denote the mapping class group of a connected, compact

surface S relative to an n-point set. If S is orientable then Harer determined the virtual

cohomological dimension of MCGpS, nq [H, Theorem 4.1]. In the case of S2 and D
2, he

obtained the following results:

(a) if n ě 3, the virtual cohomological dimension of MCGpS2, nq is equal to n ´ 3.

(b) if n ě 2, the cohomological dimension of MCGpD2, nq is equal to n ´ 1 (recall that

MCGpD2, nq is isomorphic to Bn [Bi2]).

As a consequence of Theorem 5, we are able to compute the virtual cohomological

dimension of MCGpS, nq for S “ S
2 and RP2.

COROLLARY 6. Let n ě 4 (resp. n ě 3). Then the virtual cohomological dimension of

MCGpS2, nq (resp. MCGpRP2, nq) is finite, and is equal to n ´ 3 (resp. n ´ 2).
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If S “ S
2 or RP2 then for the values of n given by Theorem 5 and Corollary 6, the

virtual cohomological dimension of MCGpS, nq is equal to that of BnpSq. If S “ S
2, we

thus recover the corresponding result of Harer.
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2 The structure of Kn, and Birman’s conjecture for S2 and

RP2

Let n P N. As we mentioned in the introduction, if S is a surface different from S
2 and

RP2, the kernel of the homomorphism ι# : PnpSq ÝÑ π1

`śn
1 S

˘
was studied in [Bi1, G],

and that if S “ S
2 then Ker pι#q “ PnpS2q. In the first part of this section, we recall

a presentation of PnpRP2q, and we prove Proposition 1(a)(i). The second part of this

section is devoted to proving the rest of Proposition 1 and Theorem 2, the latter being

Birman’s conjecture for S2 and RP2.

Consider the model of RP2 given by identifying antipodal boundary points of D2.

We equip FnpRP2q with a basepoint px1, . . . , xnq. For 1 ď i ă j ď n (resp. 1 ď k ď n),

we define the element Ai,j (resp. τk, ρk) of PnpRP2q by the geometric braids depicted in

Figure 1. Note that the arcs represent the projections of the strings onto RP2, so that

xkxj

xi

Ai,j

τk
ρk

Figure 1: The elements Ai,j, τk and ρk of PnpRP2q.
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all of the strings of the given braid are vertical, with the exception of the jth (resp. kth)

string that is based at the point xj (resp. xk).

THEOREM 7 ([GG4, Theorem 4]). Let n P N. The following constitutes a presentation of the

pure braid group PnpRP2q:

generators: Ai,j, 1 ď i ă j ď n, and τk, 1 ď k ď n.

relations:

(a) the Artin relations between the Ai,j emanating from those of Pn:

Ar,s Ai,jA
´1
r,s “

$
’’’’&
’’’’%

Ai,j if i ă r ă s ă j or r ă s ă i ă j

A´1
i,j A´1

r,j Ai,jAr,jAi,j if r ă i “ s ă j

A´1
s,j Ai,jAs,j if i “ r ă s ă j

A´1
s,j A´1

r,j As,jAr,j Ai,jA
´1
r,j A´1

s,j Ar,jAs,j if r ă i ă s ă j.

(4)

(b) for all 1 ď i ă j ď n, τiτjτ
´1
i “ τ´1

j A´1
i,j τ2

j .

(c) for all 1 ď i ď n, τ2
i “ A1,i ¨ ¨ ¨ Ai´1,i Ai,i`1 ¨ ¨ ¨ Ai,n.

(d) for all 1 ď i ă j ď n and 1 ď k ď n, k ‰ j,

τk Ai,jτ
´1
k “

$
’’&
’’%

Ai,j if j ă k or k ă i

τ´1
j A´1

i,j τj if k “ i

τ´1
j A´1

k,j τj A
´1
k,j Ai,jAk,jτ

´1
j Ak,jτj if i ă k ă j.

This enables us to prove that ι# is in fact Abelianisation, which is part (a)(i) of Pro-

position 1.

PROPOSITION 8. Let n P N. The homomorphism ι# : PnpRP2q ÝÑ π1p
śn

1 RP2q is defined

on the generators of Theorem 7 by ι#pAi,jq “ p0, . . . , 0q for all 1 ď i ă j ď n, and ι#pτkq “

p0, . . . , 0, 1loomoon
kth position

, 0, . . . , 0q for all 1 ď k ď n. Further, ι# is Abelianisation, and Ker pι#q “ Kn “

Γ2pPnpRP2qq.

Proof. For 1 ď k ď n, let pk : FnpRP2q ÝÑ RP2 denote projection onto the kth coordinate.

Observe that ι# “ p1# ˆ ¨ ¨ ¨ ˆ pn#, where pk# : PnpRP2q ÝÑ π1pRP2q is the induced ho-

momorphism on the level of fundamental groups. Identifying π1pRP2q with Z2 and

using the geometric realisation of Figure 1 of the generators of the presentation of

PnpRP2q given by Theorem 7, it is straightforward to check that for all 1 ď k, l ď n

and 1 ď i ă j ď n, pk#pAi,jq “ 0, pk#pτlq “ 0 if l ‰ k and pk#pτkq “ 1, and this yields

the first part of the proposition. The second part follows easily from the presentation

of the Abelianisation pPnpRP2qqAb of PnpRP2q obtained from Theorem 7. More pre-

cisely, if we denote the Abelianisation of an element x P PnpRP2q by x, relations (b)

and (c) imply respectively that for all 1 ď i ă j ď n and 1 ď k ď n, Ai,j and τk
2

represent the trivial element of pPnpRP2qqAb. Since the remaining relations give no

other information under Abelianisation, it follows that pPnpRP2qqAb – Z2 ‘ ¨ ¨ ¨ ‘ Z2,

where τk “ p0, . . . , 0, 1loomoon
kth position

, 0, . . . , 0q and Ai,j “ p0, . . . , 0q via this isomorphism, and the

Abelianisation homomorphism indeed coincides with ι# on PnpRP2q.
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REMARKS 9.

(a) Since Kn “ Γ2pPnpRP2qq, it follows immediately that Kn is normal in BnpRP2q, since

Γ2pPnpRP2qq is characteristic in PnpRP2q, and PnpRP2q is normal in BnpRP2q.

(b) A presentation of Kn may be obtained by a long but routine computation using the

Reidemeister-Schreier method, although it is not clear how to simplify the presentation.

In Theorem 3, we will provide an alternative description of Kn using algebraic methods.

(c) In what follows, we shall use Van Buskirk’s presentation of BnpRP2q [VB, page 83]

whose generating set consists of the standard braid generators σ1, . . . , σn´1 emanating

from the 2-disc, as well as the surface generators ρ1, . . . , ρn depicted in Figure 1. We

have the following relation between the elements τk and ρk:

τk “ ρ´1
k Ak,k`1 ¨ ¨ ¨ Ak,n for all 1 ď k ď n,

where for 1 ď i ă j ď n, Ai,j “ σj´1 ¨ ¨ ¨ σi`1σ2
i σ´1

i`1 ¨ ¨ ¨ σ´1
j´1. In particular, it follows from

Proposition 8 that:

ι#pρkq “ ι#pτkq “ p0, . . . , 0, 1loomoon
kth position

, 0, . . . , 0q for all 1 ď k ď n. (5)

If n ě 2, the full twist braid ∆
2
n, which may be defined by ∆

2
n “ pσ1 ¨ ¨ ¨ σn´1qn, is of

order 2 [VB, page 95], it generates the centre of BnpRP2q [M, Proposition 6.1], and is

the unique element of BnpRP2q of order 2 [GG2, Proposition 23]. Since ∆
2
n P PnpRP2q,

it thus belongs to the centre of PnpRP2q, and just as for the Artin braid groups and the

braid groups of S2, it generates the centre of PnpRP2q:

PROPOSITION 10. Let n ě 2. Then the centre ZpPnpRP2qq of PnpRP2q is generated by ∆
2
n.

Proof. We prove the result by induction on n. If n “ 2 then P2pRP2q – Q8 [VB,

page 87], the quaternion group of order 8, and the result follows since ∆
2
2 is the ele-

ment of P2pRP2q of order 2. So suppose that n ě 3. From the preceding remarks,@
∆

2
n

D
Ă ZpPnpRP2qq. Conversely, let x P ZpPnpRP2qq, and consider the following Fadell-

Neuwirth short exact sequence:

1 ÝÑ π1pRP2z tx1, . . . , xn´1uq ÝÑ PnpRP2q
qpn´1q#
ÝÝÝÝÑ Pn´1pRP2q ÝÑ 1,

where qpn´1q# is the surjective homomorphism induced on the level of fundamental

groups by the projection qn´1 : FnpRP2q ÝÑ Fn´1pRP2q onto the first n ´ 1 coordinates.

Now qpn´1q#pxq P ZpPn´1pRP2qq by surjectivity, and thus qpn´1q#pxq “ ∆
2ε
n´1 for some

ε P t0, 1u by the induction hypothesis. Further, qpn´1q#p∆
2
nq “ ∆

2
n´1, hence

∆
´2ε
n x P Kerpqpn´1q#q X ZpPnpRP2qq,

and thus ∆
´2ε
n x P ZpKerpqpn´1q#qq. But ZpKerpqpn´1q#qq is trivial because Kerpqpn´1q#q is

a free group of rank n ´ 1. This implies that x P
@

∆
2
n

D
as required.

We now prove Proposition 1.
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Proof of Proposition 1. Let n ě 3.

(a) Recall that part (a)(i) of Proposition 1 was proved in Proposition 8, so let us prove

part (ii). The projection q2 : FnpRP2q ÝÑ F2pRP2q onto the first two coordinates gives

rise to the Fadell-Neuwirth short exact sequence (3). Since Kn “ Γ2pPnpRP2qq by Pro-

position 8, the image of the restriction q2#|Kn of q2# to Kn is the subgroup Γ2pP2pRP2qq “@
∆

2
2

D
, and so we obtain the following commutative diagram:

1 Kn X Pn´2pRP2 z tx1, x2uq Kn

@
∆

2
2

D
1

1 Pn´2pRP2 z tx1, x2uq PnpRP2q P2pRP2q 1,

q2#|Kn

q2#

(6)

where the vertical arrows are inclusions. Now
@

∆
2
2

D
– Z2, so Kn is an extension of the

group Ker pq2#|Knq “ Kn X Pn´2pRP2 z tx1, x2uq by Z2. The fact that q2#p∆
2
nq “ ∆

2
2 implies

that the upper short exact sequence splits, a section being defined by the correspond-

ence ∆
2
2 ÞÝÑ ∆

2
n, and since ∆

2
n P ZpPnpRP2qq, the action by conjugation on Ker pq2#|Knq

is trivial. Part (a) of the proposition follows by taking Ln “ Ker pq2#|Knq and by noting

that Pn´2pRP2 z tx1, x2uq is torsion free.

(b) Recall first that any torsion element in PnpRP2qz
@

∆
2
n

D
is of order 4 [GG2, Corol-

lary 19 and Proposition 23], and is conjugate in BnpRP2q to one of an or bn´1, where

a “ ρnσn´1 ¨ ¨ ¨ σ1 and b “ ρn´1σn´2 ¨ ¨ ¨ σ1 satisfy:

an “ ρn ¨ ¨ ¨ ρ1 and bn´1 “ ρn´1 ¨ ¨ ¨ ρ1 (7)

by [GG7, Proposition 10]. Let N be a normal subgroup of BnpRP2q that satisfies Kn Ř

N Ă PnpRP2q. We claim that for all u P π1p
śn

1 RP2q (which we identify henceforth with

Z2 ‘ ¨ ¨ ¨ ‘ Z2), exactly one of the following two conditions holds:

(i) N X ι´1
# ptuuq is empty.

(ii) ι´1
# ptuuq is contained in N.

To prove the claim, suppose that x P N X ι´1
# ptuuq ‰ ∅, and let y P ι´1

# ptuuq. Now

ι#pxq “ ι#pyq “ u, so there exists k P Kn such that x´1y “ k. Since Kn Ă N, it follows

that y “ xk P N, which proves the claim. Further, ι#panq “ p1, . . . , 1q and ι#pbn´1q “

p1, . . . , 1, 0q by Proposition 8 and equations (5) and (7), so by the claim it suffices to

prove that there exists z P N such that ι#pzq P
 

p1, . . . , 1q, p1, . . . , 1, 0q
(

, for then we are

in case (ii) above, and it follows that one of an and bn´1 belongs to N.

It thus remains to prove the existence of such a z. Let x P NzKn. Then ι#pxq contains

an entry equal to 1 because Kn “ Ker pι#q. If ι#pxq “ p1, . . . , 1q then we are done. So

assume that ι#pxq also contains an entry that is equal to 0. By equation (5), there exist

1 ď r ă n and 1 ď i1 ă ¨ ¨ ¨ ă ir ď n such that ι#pρi1 ¨ ¨ ¨ ρir q “ ι#pxq. It follows from the

claim and the fact that x P N that ρi1 ¨ ¨ ¨ ρir P N also, and so without loss of generality,

we may suppose that x “ ρi1 ¨ ¨ ¨ ρir . Further, since ι#pxq contains both a 0 and a 1, there

exists 1 ď j ď r such that pij#pxq “ 1 and ppij`1q#pxq “ 0, the homomorphisms pk# being

those defined in the proof of Proposition 8. Note that we consider the indices modulo n,

so if ij “ n (so j “ r) then we set ij ` 1 “ 1. By [GG2, page 777], conjugation by
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a´1 permutes cyclically the elements ρ1, . . . , ρn, ρ´1
1 , . . . , ρ´1

n of PnpRP2q, so the pn ´ 1qth

(resp. nth) entry of x1 “ a´pn´1´ijqxapn´1´ijq is equal to 1 (resp. 0), and x1 P N because N

is normal in BnpRP2q. Using the relation b “ σn´1a, we determine the conjugates of the

ρi by b´1:

b´1ρib “ a´1σ´1
n´1ρiσn´1a “ a´1ρia “ ρi`1 for all 1 ď i ď n ´ 2

b´1ρn´1b “ a´1σ´1
n´1ρn´1σn´1a “ a´1σ´1

n´1ρn´1σ´1
n´1. σ2

n´1a

“ a´1ρna. a´1σ2
n´1a “ ρ´1

1 . a´1σ2
n´1a,

where we have used the relations ρiσn´1 “ σn´1ρi if 1 ď i ď n ´ 2 and σ´1
n´1ρn´1σ´1

n´1 “

ρn of Van Buskirk’s presentation of BnpRP2q, as well as the effect of conjugation by a´1

on the ρj. Now σ2
n´1 “ An´1,n P Kn by Proposition 8, so a´1σ2

n´1a P Kn by Remarks 9(a),

and hence ι#pb´1ρn´1bq “ p1, 0, . . . , 0q. It then follows that ι#pa´1x1aq and ι#pb´1x1bq have

the same entries except in the first and last positions, so if x2 “ a´1x1a. b´1x1b, we have

ι#px2q “ p1, 0, . . . , 0, 1q. Further, x2 P N since N is normal in BnpRP2q. Let n “ 2m ` ε,

where m P N and ε P t0, 1u. Then setting

z “ a´εx2aε¨ a´p2`εqx2a2`ε ¨ ¨ ¨ a´p2pm´1q`εqx2a2pm´1q`ε,

we see once more that z P N, and ι#pzq “ p1, . . . , 1q if n is even and ι#pzq “ p1, . . . , 1, 0q

if n is odd, which completes the proof of the existence of z, and thus that of Proposi-

tion 1(b).

We end this section by proving Theorem 2.

Proof of Theorem 2. Let S “ S
2 or RP2. If n “ 1 then ι# is an isomorphism and Im pj# |Pnq

is trivial so the result holds. If n “ 2 and S “ S
2 then PnpS2q is trivial, and there is

nothing to prove. Now suppose that S “ S
2 and n ě 3. As we mentioned in the intro-

duction, Ker pι#q “ PnpS2q. Let pAi,jq1ďiăjďn be the generating set of Pn, where Ai,j has a

geometric representative similar to that given in Figure 1. It is well known that the im-

age of this set by j# yields a generating set for PnpS2q (cf. [S, page 616]), so j# |Pn is surject-

ive, and the statement of the theorem follows. Finally, assume that S “ RP2 and n ě 2.

Once more, Im pj# |Pn q “
@

Ai,j

∣

∣ 1 ď i ă j ď n
D

, and since Ai,j P Ker pι#q by Proposition 8,

we conclude that xx Im pj# |PnqyyPnpSq Ă Ker pι#q. To prove the converse, first recall from

Proposition 8 that Ker pι#q “ Γ2pPnpRP2qq. Using the standard commutator identities

rx, yzs “ rx, ysry, rx, zssrx, zs and rxy, zs “ rx, ry, zssry, zsrx, zs, Γ2pPnpRP2qq is equal to the

normal closure in PnpRP2q of
 

rx, ys
∣

∣ x, y P
 

Ai,j, ρk

∣

∣ 1 ď i ă j ď n and 1 ď k ď n
((

. It

then follows using the relations of Theorem 7 that the commutators rx, ys belonging

to this set also belong to
@@

Ai,j

∣

∣ 1 ď i ă j ď n
DD

PnpRP2q
, which is nothing other than

xx Im pj# |PnqyyPnpSq. We conclude by normality that Ker pι#q Ă xx Im pj# |PnqyyPnpSq, and this

completes the proof of the theorem.

3 Some properties of the subgroup Ln

Let S “ S
2 or S “ RP2, and for all m, n ě 1, let Γm,npSq “ PmpSz tx1, . . . , xnuq denote

the m-string pure braid group of S with n points removed. In this section, we study
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Pn´2pRP2 z tx1, x2uq, which is Γn´2,2pRP2q, in more detail, and we prove Theorem 3

and Proposition 4 that enable us to understand better the structure of the subgroup

Ln defined in the proof of Proposition 1(a)(ii).

We start by exhibiting a presentation of the group Γm,npRP2q in terms of the gener-

ators of Pm`npRP2q given by Theorem 7. A presentation for Γm,npS2q is given in [GG3,

Proposition 7] and will be recalled later in Proposition 15, when we come to proving

Theorem 5. For 1 ď i ă j ď m ` n, let

Ci,j “ A´1
j´1,j ¨ ¨ ¨ A´1

i`1,jAi,jAi`1,j ¨ ¨ ¨ Aj´1,j. (8)

Geometrically, in terms of Figure 1, Ci,j is the image of A´1
i,j under the reflection about

the straight line segment that passes through the points x1, . . . , xm`n. The proof of the

following proposition, which we leave to the reader, is similar in nature to that for S2,

but is a little more involved due to the presence of extra generators that emanate from

the fundamental group of RP2.

PROPOSITION 11. Let n, m ě 1. The following constitutes a presentation of the group Γm,npRP2q:

generators: Ai,j, ρj, where 1 ď i ă j and n ` 1 ď j ď m ` n.

relations:

(I) the Artin relations described by equation (4) among the generators Ai,j of Γm,npRP2q.

(II) for all 1 ď i ă j and n ` 1 ď j ă k ď m ` n, Ai,jρk A´1
i,j “ ρk.

(III) for all 1 ď i ă j and n ` 1 ď k ă j ď m ` n,

ρk Ai,jρ
´1
k “

$
’’&
’’%

Ai,j if k ă i

ρ´1
j C´1

i,j ρj if k “ i

ρ´1
j C´1

k,j ρj Ai,jρ
´1
j Ck,jρj if k ą i.

(IV) for all n ` 1 ď k ă j ď m ` n, ρkρjρ
´1
k “ Ck,jρj.

(V) for all n ` 1 ď j ď m ` n,

ρj

¨
˝

j´1ź

i“1

Ai,j

˛
‚ρj “

¨
˝

m`nź

l“j`1

Aj,l

˛
‚.

The elements Ci,j and Ck,j appearing in relations (III) and (IV) should be rewritten using equa-

tion (8).

In the rest of this section, we shall assume that n “ 2, and we shall focus our at-

tention on the groups Γm,2pRP2q, where m ě 1, that we interpret as subgroups of

Pm`2pRP2q via the short exact sequence (3). Before proving Theorem 3 and Proposi-

tion 4, we introduce some notation that will be used to study the subgroups Kn and Ln.

Let m ě 2, and consider the following Fadell-Neuwirth short exact sequence:

1ÝÑ Ωm`1 ÝÑ PmpRP2 z tx1, x2uq
rm`1
ÝÑ Pm´1pRP2 z tx1, x2uq ÝÑ1, (9)

where rm`1 is given geometrically by forgetting the last string, and where Ωm`1 “

π1pRP2z tx1, . . . , xm`1u , xm`2q. From the Fadell-Neuwirth short exact sequences of the
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form of equation (3), rm`1 is the restriction of qpm`1q# : Pm`2pRP2q ÝÑ Pm`1pRP2q to

Ker pq2#q. The kernel Ωm`1 of rm`1 is a free group of rank m ` 1 with a basis Bm`1 being

given by:

Bm`1 “
 

Ak,m`2, ρm`2 | 1 ď k ď m
(

. (10)

The group Ωm`1 may also be described as the subgroup of PmpRP2 z tx1, x2uq generated

by tA1,m`2, . . . , Am`1,m`2, ρm`2u subject to the relation:

Am`1,m`2 “ A´1
m,m`2 ¨ ¨ ¨ A´1

1,m`2ρ´2
m`2, (11)

obtained from relation (V) of Proposition 11. Equations (8) and (11) imply notably that

Al,m`2 and Cl,m`2 belong to Ωm`1 for all 1 ď l ď m ` 1. Using geometric methods, for

m ě 2, we proved the existence of a section

sm`1 : Pm´1pRP2 z tx1, x2uq ÝÑ PmpRP2 z tx1, x2uq

for rm`1 in [GG6, Theorem 2(a)]. Applying induction to equation (9), it follows that for

all m ě 1:

PmpRP2 z tx1, x2uq – Ωm`1 ¸ pΩm ¸ p¨ ¨ ¨ ¸ pΩ3 ¸ Ω2q ¨ ¨ ¨ qq. (12)

So PmpRP2 z tx1, x2uq – Fm`1 ¸ pFm ¸ p¨ ¨ ¨ ¸ pF3 ¸ F2q ¨ ¨ ¨ qq, which may be interpreted

as the Artin combing operation for PmpRP2 z tx1, x2uq. It follows from this and equa-

tion (10) that PmpRP2 z tx1, x2uq admits Xm`2 as a generating set, where:

Xm`2 “
 

Ai,j, ρj

∣

∣ 3 ď j ď m ` 2, 1 ď i ď j ´ 2
(

. (13)

REMARK 12. For what follows, we will need to know an explicit section sm`1 for rm`1.

Such a section may be obtained as follows: for m ě 2, consider the homomorphism

PmpRP2 z tx1, x2uq ÝÑ Pm´1pRP2 z tx1, x2uq given by forgetting the string based at x3.

By [GG6, Theorem 2(a)]), a geometric section is obtained by doubling the second (ver-

tical) string, so that there is a new third string, and renumbering the following strings,

which gives rise to an algebraic section for the given homomorphism of the form:

Ai,j ÞÝÑ

$
’&
’%

A1,j`1 if i “ 1

A2,j`1A3,j`1 if i “ 2

Ai`1,j`1 if 3 ď i ă j

ρj ÞÝÑ ρj`1,

for all 3 ď j ď m ` 1. However, in view of the nature of rm`1, we would like this new

string to be in the pm ` 2qth position. We achieve this by composing the above algebraic

section with conjugation by σm`1 ¨ ¨ ¨ σ3, which gives rise to a section

sm`1 : Pm´1pRP2 z tx1, x2uq ÝÑ PmpRP2 z tx1, x2uq

for rm`1 that is defined by:
$
’’’’’&
’’’’’%

sm`1pAi,jq “

$
’’&
’’%

Aj,m`2A1,j A
´1
j,m`2 if i “ 1

Aj,m`2A2,j if i “ 2

Ai,j if 3 ď i ă j

sm`1pρjq “ ρjA
´1
j,m`2.

(14)
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for all 1 ď i ă j and 3 ď j ď m ` 1. A long but straightforward calculation using the

presentation of PmpRP2 z tx1, x2uq given by Proposition 11 shows that sm`1 does indeed

define a section for rm`1.

We now prove Theorem 3, which allows us to give a more explicit description of Ln.

Proof of Theorem 3. Let n ě 3. By the commutative diagram (6) of short exact sequences,

the restriction of the homomorphism q2# : PnpRP2q ÝÑ P2pRP2q to Kn factors through

the inclusion
@

∆
2
2

D
ÝÑ P2pRP2q, and the kernel Ln of q2#|Kn is contained in the group

Pn´2pRP2 z tx1, x2uq. We may then add a third row to this diagram:

1 1 1

1 Ln Kn

@
∆

2
2

D
1

1 Pn´2pRP2 z tx1, x2uq PnpRP2q P2pRP2q 1

1 Z
n´2
2 Z

n
2 Z

2
2 1,

1 1 1

q2#|Kn

pιn´2

q2#

ιn# ι2#

j pq2

(15)

where pq2 : Z
n
2 ÝÑ Z

2
2 is projection onto the first two factors, and j : Z

n´2
2 ÝÑ Z

n
2 is

the monomorphism defined by jpε1, . . . , εn´2q “ p0, 0, ε1, . . . , εn´2q. The commutativ-

ity of diagram (15) thus induces a homomorphism pιn´2 : Pn´2pRP2 z tx1, x2uq ÝÑ Z
n´2
2

that is the restriction of ιn# to Pn´2pRP2 z tx1, x2uq that makes the bottom left-hand

square commute. To see that pιn´2 is surjective, notice that if x P Z
n´2
2 then the first

two entries of jpxq are equal to 0, and using equation (5), it follows that there exist

3 ď i1 ă ¨ ¨ ¨ ă ir ď n such that ιn#pρi1 ¨ ¨ ¨ ρir q “ jpxq. Furthermore, ρi1 ¨ ¨ ¨ ρir P Ker pq2#q,

and by commutativity of the diagram, we also have ιn#pρi1 ¨ ¨ ¨ ρir q “ j ˝pιn´2 pρi1 ¨ ¨ ¨ ρirq,

whence x “ pιn´2 pρi1 ¨ ¨ ¨ ρir q by injectivity of j. It remains to prove exactness of the first

column. The fact that Ln Ă Ker ppιn´2q follows easily. Conversely, if x P Ker ppιn´2q then

x P Pn´2pRP2 z tx1, x2uq, and x P Kn by commutativity of the diagram, so x P Ln. This

proves the first two assertions of the theorem.

To prove the last part of the statement of the theorem, let m ě 1, and consider

equation (9). Since pιm is the restriction of ιpm`2q# to PmpRP2 z tx1, x2uq, we have pιm pρjq “

p0, . . . , 0, 1loomoon
pj ´ 2qnd position

, 0, . . . , 0q and pιm pAi,jq “ p0, . . . , 0q for all 1 ď i ă j and 3 ď j ď m ` 2.

So for each 2 ď l ď m ` 1, pιm restricts to a surjective homomorphism pιm
∣

∣

Ωl
: Ωl ÝÑ Z2

of each of the factors of equation (12), Z2 being the pl ´ 1qst factor of Z
m
2 , and using

equation (10), we see that Ker
`
pιm

∣

∣

Ωl

˘
is a free group of rank 2l ´ 1 with basis pBl given

by:
pBl “

!
Ak,l`1, ρl`1Ak,l`1ρ´1

l`1, ρ2
l`1

∣

∣

∣
1 ď k ď l ´ 1

)
. (16)
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As we shall now explain, for all m ě 2, the short exact sequence (9) may be extended to

a commutative diagram of short exact sequences as follows:

1 1 1

1 Ker
`
pιm

∣

∣

Ωm`1

˘
Lm`2 Lm`1 1

1 Ωm`1 PmpRP2 z tx1, x2uq Pm´1pRP2 z tx1, x2uq 1

1 Z2 Z
m
2 Z

m´1
2 1.

1 1 1

rm`1

∣

∣

∣Lm`2

pιm

∣

∣

∣Ωm`1

rm`1

pιm
pιm´1

sm`1

(17)

To obtain this diagram, we start with the commutative diagram that consists of the

second and third rows and the three columns (so a priori, the arrows of the first row

are missing). The commutativity implies that rm`1 restricts to the homomorphism

rm`1

∣

∣

Lm`2
: Lm`2 ÝÑ Lm`1, which is surjective, since if w P Lm`1 is written in terms

of the elements of Xm`1 then the same word w, considered as an element of the group

PmpRP2 z tx1, x2uq, belongs to Lm`2, and satisfies rm`1pwq “ w. Then the kernel of

rm`1

∣

∣

Lm`2
, which is also the kernel of pιm

∣

∣

Ωm`1
, is equal to Lm`2 X Ωm`1. This estab-

lishes the existence of the complete commutative diagram (17) of short exact sequences.

By induction, it follows from (16) and (17) that for all m ě 1, Lm`2 is generated by

pXm`2 “
m`2ď

j“3

pBj´1 “
!

Ai,j, ρjAi,jρ
´1
j , ρ2

j

∣

∣

∣
3 ď j ď m ` 2, 1 ď i ď j ´ 2

)
. (18)

Using the section sm`1 defined by equation (14), we see that sm`1pxq P Lm`2 for all

x P pXm`1, and thus sm`1 restricts to a section sm`1

∣

∣

Lm`1
: Lm`1 ÝÑ Lm`2 for rm`1

∣

∣

Lm`2
.

We conclude by induction on the first row of (17) that:

Lm`2 – Ker
`
pιm

∣

∣

Ωm`1

˘
¸ Lm`1 (19)

– Ker
`
pιm

∣

∣

Ωm`1

˘
¸
`
Ker ppιm|Ωm

q ¸
`
¨ ¨ ¨ ¸

`
Ker

`
pιm

∣

∣

Ω3

˘
¸ Ker

`
pιm

∣

∣

Ω2

˘˘
¨ ¨ ¨

˘˘
, (20)

the actions being induced by those of equation (12), so by equation (16), Lm`2 is iso-

morphic to a repeated semi-direct product of the form F2m`1 ¸ pF2m´1 ¸ p¨ ¨ ¨ ¸ pF5 ¸

F3q ¨ ¨ ¨ qq. The last part of the statement of Theorem 3 follows by taking m “ n ´ 2.

A finer analysis of the actions that appear in equations (12) and (20) now allows us

to determine the Abelianisations of Pn´2pRP2 z tx1, x2uq and Ln.

Proof of Proposition 4. If n “ 3 then the two assertions are clear. So assume by induction

that they hold for some n ě 3. From the split short exact sequence (9) and equation (19)

with m “ n ´ 1, we have:
#

Pn´1pRP2 z tx1, x2uq – Ωn ¸ψ Pn´2pRP2 z tx1, x2uq and

Ln`1 – Ker ppιn´1|Ωn
q ¸ψ Ln,

(21)
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where ψ denotes the action given by the section sn, and the action induced by the re-

striction of the section sn to Ln respectively.

Before going any further, we recall some general considerations from the paper [GG5,

pages 3387–88] concerning the Abelianisation of semi-direct products. If H and K are

groups, and if ϕ : H ÝÑ Aut pKq is an action of H on K then one may deduce easily

from [GG5, Proposition 3.3] that:

pK ¸ϕ HqAb – ∆pKq ‘ HAb, (22)

where:

∆pKq “ K
L@

Γ2pKq Y pK
D

and pK “
A

ϕphqpkq ¨ k´1
∣

∣

∣
h P H and k P K

E
.

Recall that pK is normal in K (cf. [GG5, lines 1–4, page 3388]), so xΓ2pKq Y pK
D

is normal

in K. If k P K, let k denote its image under the canonical projection K ÝÑ ∆pKq. For all

k, k1 P K and h, h1 P H, we have:

ϕphh1qpkq ¨ k´1 “ ϕphqpϕph1qpkqq ¨ ϕph1qpk´1q ¨ ϕph1qpkq ¨ k´1

“ ϕphqpk2q ¨ k2´1 ¨ ϕph1qpkq ¨ k´1 (23)

ϕphqpkk1q ¨ pkk1q´1 “
`

ϕphqpkq ¨ k´1
˘

¨ k
`

ϕphqpk1q ¨ k1´1
˘
k´1. (24)

where k2 “ ϕph1qpkq belongs to K. Let H and K be generating sets for H and K re-

spectively. By induction on word length relative to the elements of H, equation (23)

implies that pK is generated by elements of the form ϕphqpkq ¨ k´1, where h P H and

k P K. A second induction on word length relative to the elements of K and equa-

tion (24) implies that pK is normally generated by the elements of the form ϕphqpkq ¨ k´1,

where h P H and k P K. By standard arguments involving group presentations, since

Γ2pKq Ă
@

Γ2pKq Y pK
D

, ∆pKq is Abelian, and a presentation of ∆pKq may be obtained

by Abelianising a given presentation of K, and by adjoining the relators of the form

ϕphqpkq ¨ k´1, where h P H and k P K.

We now take K “ Ωn (resp. K “ Ker ppιn´1|Ωnq), H “ Pn´2pRP2 z tx1, x2uq (resp. H “

Ln) and ϕ “ ψ. Applying the induction hypothesis and equation (22) to equation (21),

to prove parts (a) and (b), it thus suffices to show that:

∆pΩnq – Z
2, and that (25)

∆ pKer ppιn´1|Ωnqq – Z
2n´1 (26)

respectively. We first establish the isomorphism (25). As we saw previously, ∆pΩnq

is Abelian, and to obtain a presentation of ∆pΩnq, we add the relators of the form

ψpτqpωq ¨ ω´1 to a presentation of pΩnqAb, where τ P Xn and ω P Bn. In ∆pΩnq, such

relators may be written as:

snpτqωpsnpτqq´1ω´1 “ snpτqωpsnpτqq´1 ω´1. (27)

We claim that it is not necessary to know explicitly the section sn in order to determine

these relators. Indeed, for all τ P Xn, we have pn`1pτq “ τ; note that we abuse notation
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here by letting τ also denote the corresponding element of Xn`1 in Pn´1pRP2 z tx1, x2uq.

Thus snpτqτ´1 P Ker ppn`1q, and hence there exists ωτ P Ωn such that snpτq “ ωττ.

Since ∆pΩnq is Abelian, it follows that:

snpτqωpsnpτqq´1 “ ωττωτ´1ω´1
τ “ ωτ τωτ´1 ω´1

τ “ τωτ´1,

and thus the relators of equation (27) become:

snpτqωpsnpτqq´1ω´1 “ τωτ´1 ω´1. (28)

This proves the claim. In what follows, the relations (I)–(V) refer to those of the present-

ation of Pn´1pRP2 z tx1, x2uq given by Proposition 11. Using this presentation and the

fact that ∆pΩnq is Abelian, we see immediately that τωτ´1 “ ω for all τ P Xn and

ω P Bn, with the following exceptions:

(i) τ “ ρj and ω “ Aj,n`1 for all 3 ď j ď n ´ 1. Then ρj Aj,n`1ρ´1
j “ C´1

j,n`1 “ A´1
j,n`1,

using relation (III) and equation (8), which yields the relator
`

Aj,n`1

˘2
in ∆pΩnq.

(ii) τ “ ρj and ω “ ρn`1 for all 3 ď j ď n. Then ρjρn`1ρ´1
j “ Cj,n`1ρn`1 “ Aj,n`1 ρn`1

by relation (IV) and equation (8), which yields the relator Aj,n`1 in ∆pΩnq.

The relators of (ii) above clearly give rise to those of (i). To obtain a presentation of

∆pΩnq, which by equation (10) is an Abelian group with generating set

 
Al,n`1, ρn`1

∣

∣ 1 ď l ď n ´ 1
(

,

we must add the relators Aj,n`1 for all 3 ď j ď n. Thus for j “ 3, . . . , n ´ 1, the elements

Aj,n`1 of this generating set are trivial. Further, An,n`1 is also trivial, but by relation (11),

one of the remaining generators Aj,n`1 may be deleted, A2,n`1 say, from which we see

that ∆pΩnq is a free Abelian group of rank two with
 

A1,n`1, ρn`1

(
as a basis. This

establishes the isomorphism (25), and so proves part (a).

We now prove part (b). As we mentioned previously, it suffices to establish the

isomorphism (26). Since Ker ppιn´1|Ωnq is a free group of rank 2n ´ 1, we must thus

show that ∆pKer ppιn´1|Ωn
qq “ pKer ppιn´1|Ωn

qqAb. We take K “ Ker ppιn´1|Ωn
q (resp. H “

Ln´2) to be equipped with the basis pBn (resp. the generating set pXn) of equation (16)

(resp. of equation (18)). The fact that Ker ppιn´1|Ωnq is normal in Ωn implies that Al,n`1,

ρn`1Al,n`1ρ´1
n`1, Cl,n`1 and ρn`1Cl,n`1ρ´1

n`1 belong to Ker ppιn´1|Ωn
q for all 1 ď l ď n by

equations (8) and (11). Repeating the argument given between equations (27) and (28),

we see that equation (28) holds for all τ P pXn and ω P pBn, where ω now denotes the

image of ω under the canonical projection Ker ppιn´1|Ωn
q ÝÑ ∆pKer ppιn´1|Ωn

qq. For α P

Pn´2pRP2 z tx1, x2uq, let cα denote conjugation in Ker ppιn´1|Ωnq by α (which we consider

to be an element of Pn´1pRP2 z tx1, x2uq). The automorphism cα is well defined because

Ker ppιn´1|Ωnq “ Ωn X Ln´1, so that Ker ppιn´1|Ωnq is normal in Pn´1pRP2 z tx1, x2uq. We

claim that
@

Γ2pKq Y pK
D

is invariant under cα. To see this, note first that Γ2pKq is clearly

invariant since it is a characteristic subgroup of K. On the other hand, suppose that ω P

Ker ppιn´1|Ωnq, τ P Ln´2 and α P Pn´2pRP2 z tx1, x2uq. Since snpτq P Ln´1, Ln´1 is normal

in Pn´1pRP2 z tx1, x2uq and Ln´2 is normal in Pn´2pRP2 z tx1, x2uq, we have αsnpτqα´1 P

15



Ln´1, τ1 “ pn`1pαsnpτqα´1q “ ατα´1 P Ln´2, and thus snpτ1´1qpαsnpτqα´1q P Ker ppιn´1|Ωn
q.

Hence there exists ωτ1 P Ker ppιn´1|Ωnq such that αsnpτqα´1 “ snpτ1qωτ1 . Now Ker ppιn´1|Ωnq

is normal in Pn´1pRP2 z tx1, x2uq, so ω1 “ αωα´1 P Ker ppιn´1|Ωn
q, and therefore:

cα

`
snpτqωsnpτ´1qω´1

˘
“ α

`
snpτqωsnpτ´1qω´1

˘
α´1 “ snpτ1qωτ1ω1ω´1

τ1 snpτ1´1qω1´1

“ snpτ1qpωτ1ω1ω´1
τ1 qsnpτ1´1qpωτ1ω1´1ω´1

τ1 q ¨ ωτ1ω1ω´1
τ1 ω1´1,

which belongs to
@

Γ2pKq Y pK
D

because spτ1qpωτ1ω1ω´1
τ1 qspτ1´1qpωτ1ω1´1ω´1

τ1 q P pK and

ωτ1ω1ω´1
τ1 ω1´1 P Γ2pKq. This proves the claim, and implies that cα induces an endo-

morphism pcα (an automorphism in fact, whose inverse is pcα´1) of ∆pKq, in particular,

if α, α1 P Pn´2pRP2 z tx1, x2uq and ω P Ker ppιn´1|Ωnq then αα1ωα1´1α´1 “ cαα1pωq “
pcαppcα1pωqq.

We next compute the elements τωτ´1 of ∆pKer ppιn´1|Ωnqq in the case where τ “ Ai,j,

3 ď j ď n and 1 ď i ď j ´ 2, and ω P pBn:

(i) Let ω “ Al,n`1, for 1 ď l ď n ´ 1. Then

τωτ´1 “

$
’’’’&
’’’’%

Al,n`1 if j ă l or if l ă i

A´1
l,n`1A´1

i,n`1Al,n`1Ai,n`1Al,n`1 if j “ l

A´1
j,n`1Al,n`1Aj,n`1 if i “ l

A´1
j,n`1A´1

i,n`1Aj,n`1Ai,n`1Al,n`1A´1
i,n`1A´1

j,n`1Ai,n`1Aj,n`1 if i ă l ă j

by the Artin relations. We thus conclude that τωτ´1 “ ω in this case.

(ii) If ω “ ρn`1Al,n`1ρ´1
n`1, where 1 ď l ď n ´ 1 then τωτ´1 “ ρn`1pAi,jAl,n`1A´1

i,j qρ´1
n`1,

and from case (i), we deduce also that τωτ´1 “ ω.

(iii) Let ω “ ρ2
n`1. Then τωτ´1 “ ω, hence τωτ´1 “ ω.

So if τ “ Ai,j then the relators given by equation (28) are trivial for all ω P pBn, and
pcAi,j

“ Id
∆pKerppιn´1|Ωnqq.

Now suppose that τ “ ρjAi,jρ
´1
j , where 3 ď j ď n and 1 ď i ď j ´ 2. Then for all

ω P pBn, we have:

τωτ´1 “ cτpωq “ pcρj
˝ pcAi,j

˝ pc
ρ´1

j
pωq “ ω,

since pcAi,j
“ Id

∆pKerppιn´1|Ωnqq, so pcρj Ai,jρj´1
“ Id

∆pKerppιn´1|Ωnqq.

By equation (18), it remains to study the elements of the form τωτ´1, where τ “ ρ2
j ,

3 ď j ď n, and ω P pBn. Since ρ2
j ωρ´2

j “ pc 2
ρj

pωq, we first analyse pcρj
.

(a) If ω “ Al,n`1, for 1 ď l ď n ´ 1 then by relation (III) and equations (8) and (11), we
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have:

pcρj
pωq “ pcρj

pAl,n`1q “ ρj Al,n`1ρ´1
j

“

$
’’&
’’%

Al,n`1 if j ă l

ρ´2
n`1 ¨ ρn`1C´1

l,n`1ρ´1
n`1 ¨ ρ2

n`1 if j “ l

ρ´2
n`1 ¨ ρn`1C´1

j,n`1ρ´1
n`1 ¨ ρ2

n`1 ¨ Al,n`1 ¨ ρ´2
n`1 ¨ ρn`1Cj,n`1ρ´1

n`1 ¨ ρ2
n`1 if j ą l

“

$
&
%

Al,n`1 if j ‰ l

ρn`1C´1
j,n`1ρ´1

n`1 “
´

ρn`1Aj,n`1ρ´1
n`1

¯´1
if j “ l.

(b) Let ω “ ρn`1Al,n`1ρ´1
n`1, where 1 ď l ď n ´ 1. Relation (IV) implies that ρjρn`1ρ´1

j “

Cj,n`1ρn`1, and so by case (a) above, we have:

pcρj
pωq “ pcρj

´
ρn`1Al,n`1ρ´1

n`1

¯
“

$
&
%

ρn`1Al,n`1ρ´1
n`1 if j ‰ l

C´1
j,n`1 “

`
Aj,n`1

˘´1
if j “ l.

(c) Let ω “ ρ2
n`1. By relation (IV) and equations (8) and (11), we have:

pcρj
pωq “ pcρj

pρ2
n`1q “ pρjρn`1ρ´1

j q2 “ ρn`1Cj,n`1ρ´1
n`1 ¨ ρ2

n`1 ¨ Cj,n`1

“ ρn`1Aj,n`1ρ´1
n`1 ¨ ρ2

n`1 ¨ Aj,n`1,

from which we obtain:

pcρ2
j

´
ρ2

n`1

¯
“ pcρj

´
ρn`1Aj,n`1ρ´1

n`1 ¨ ρ2
n`1 ¨ Aj,n`1

¯

“ A´1
j,n`1 ¨ ρn`1Aj,n`1ρ´1

n`1 ¨ ρ2
n`1 ¨ Aj,n`1 ¨

`
ρn`1Aj,n`1ρ´1

n`1

˘´1
“ ρ2

n`1.

So by equation (16), we also have pcρ2
j

“ Id
∆pKerppιn´1|Ωnqq. Hence for all τ P Ln´2 and

ω P Ker ppιn´1|Ωnq, it follows that pcτpωq “ ω , and thus the relators ψpτqpωq ¨ ω´1

are all trivial. Since a presentation for ∆ pKer ppιn´1|Ωnqq is obtained by Abelianising

a given presentation of Ker ppιn´1|Ωn
q and adjoining these relators, we conclude that

∆ pKer ppιn´1|Ωnqq “ pKer ppιn´1|Ωnqq Ab. In particular, the fact that Ker ppιn´1|Ωnq is a free

group of rank 2n ´ 1 gives rise to the isomorphism (26). This completes the proof of the

proposition.

REMARKS 13.

(a) An alternative description of Pn´2pRP2 z tx1, x2uq, similar to that of equation (12),

but with the parentheses in the opposite order, may be obtained as follows. Let m ě 2

and q ě 1, and consider the following Fadell-Neuwirth short exact sequence:

1 ÝÑ Pm´1pRP2z
 

x1, . . . , xq`1

(
q ÝÑ PmpRP2z

 
x1, . . . , xq

(
q ÝÑ

P1pRP2z
 

x1, . . . , xq

(
q ÝÑ 1, (29)
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given geometrically by forgetting the last m ´ 1 strings. Since the quotient is a free

group Fq of rank q, the above short exact sequence splits, and so

PmpRP2z
 

x1, . . . , xq

(
q – Pm´1pRP2z

 
x1, . . . , xq`1

(
q ¸ Fq,

and thus

Pn´2pRP2z tx1, x2uqq – p¨ ¨ ¨ ppFn´1 ¸ Fn´2q ¸ Fn´3q ¸ ¨ ¨ ¨ ¸ F3q ¸ F2. (30)

by induction. The ordering of the parentheses thus occurs from the left, in contrast

with that of equation (12). The decomposition given by equation (12) is in some sense

stronger than that of (30), since in the first case, every factor acts on each of the preced-

ing factors, which is not necessarily the case in equation (30), so equation (12) engenders

a decomposition of the form (30). This is a manifestation of the fact that the splitting

of the corresponding Fadell-Neuwirth sequence (9) is non trivial, while that of (29) is

obvious.

(b) Note that L4, which is the kernel of the homomorphismpι2 : P2pRP2 z tx1, x2uq ÝÑ Z
2
2,

is also the subgroup of index 4 of the group pB4pRP2qqp3q that appears in [GG8, The-

orem 3(d)]. Indeed, by [GG8, equation (127)], this subgroup of index 4 is isomorphic to

the semi-direct product:

F5pA1,4, A2,4, ρ2
4, ρ4A1,4ρ´1

4 , ρ4A2,4ρ´1
4 q ¸ F3pA2,3, ρ2

3, ρ3A2,3ρ´1
3 q,

the action being given by [GG8, equations (129)–(131)] (the element Bi,j of [GG8] is the

element Ai,j of this paper).

REMARK 14. Using the ideas of the last paragraph of the proof of Proposition 1(b), one

may show that Ln is not normal in BnpRP2q. Although the subgroup Ln is not unique

with respect to the properties of the statement of Proposition 1(a)(ii), there are only a

finite number of subgroups, 2npn´2q to be precise, that satisfy these properties. To prove

this, we claim that the set of torsion-free subgroups L1
n of Kn such that Kn “ L1

n ‘
@

∆
2
n

D

is in bijection with the set tKer p f q | f P HompLn,Z2qu. To prove the claim, let K “ Kn,

L “ Ln, let q : K ÝÑ K{L be the canonical surjection, and set

∆ “
!

L1
∣

∣

∣
L1 ă K, L1 is torsion free, and K “ L1 ‘

@
∆

2
n

D)
.

Clearly L P ∆, so ∆ ‰ ∅. Consider the map ϕ : ∆ ÝÑ tKer p f q | f P HompL,Z2qu

defined by ϕpL1q “ L X L1. This map is well defined, since if L1 “ L then ϕpL1q “ L is

the kernel of the trivial homomorphism of HompL,Z2q, and if L1 ‰ L then L1 Ć L since

rK : L1s “ rK : Ls “ 2, and so q |L1 is surjective as K{L – Z2. Thus Ker pq |L1 q “ ϕpL1q is of

index 2 in L, in particular, ϕpL1q is the kernel of some non-trivial element of HompL,Z2q.

We now prove that ϕ is surjective. Let f P HompL,Z2q, and set L2 “ Ker p f q. If

f “ 0 then L2 “ L, and ϕpLq “ L2. So suppose that f ‰ 0. Then f is surjective, and

L2 “ Ker p f q is of index 2 in L. Let x P LzL2. Then

L “ L2 > xL2, (31)
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where > denotes the disjoint union. Since K “ L > ∆
2
nL, it follows that

K “ L2 > xL2 > ∆
2
nL2 > x∆

2
nL2, (32)

where > denotes the disjoint union. Set L1 “ L2 > x∆
2
nL2. By equation (31), x2

∆
2
nL2 “

∆
2
nx2L2 “ ∆

2
nL2 because ∆

2
n is central and of order 2, and hence K “ L1 > xL1. Using once

more equation (31), we see that L1 is a group, and so the equality K “ L1 > xL1 implies

that rK : L1s “ 2. Further, since the only non-trivial torsion element of K is ∆
2
n, L1 is

torsion free by equation (32), and so the short exact sequence 1 ÝÑ L1 ÝÑ K ÝÑ Z2 ÝÑ

1 splits. Thus L1 P ∆, and ϕpL1q “ L2 using equations (31) and (32).

It remains to prove that ϕ is injective. Let L1
1, L1

2 P ∆ be such that L1
1 X L “ ϕpL1

1q “

ϕpL1
2q “ L1

2 X L. If one of the L1
i, L1

1 say, is equal to L then we must also have L1
2 “ L

because L Ă L1
2 and L and L1

2 have the same index in K. So suppose that L1
i ‰ L for

all i P t1, 2u. If i P t1, 2u then L2 “ ϕpL1
iq “ L X L1

i “ Ker p fiq for some non-trivial

fi P HompL,Z2q, and thus rL : L2s “ 2. Let us show that L1
1 Ă L1

2. Let x P L1
1. If

x P L then x P L2, so x P L1
2, and we are done. So assume that x R L, and suppose that

x R L1
2. Then qpxq is equal to the non-trivial element of K{L, and since K{L – Z2 and

∆
2
n R L, we see that x∆

2
n P L. Further, K “ L1

2 > xL1
2 since rK : L1

2s “ 2, and so x∆
2
n P L1

2

(for otherwise x∆
2
n P xL1

2, which implies that ∆
2
n P L1

2, which is impossible because L1
2

is torsion free). But then x∆
2
n P L X L1

2 “ L2, and hence x∆
2
n P L1

1. But this would

imply that ∆
2
n P L1

1, which contradicts the fact that L1
1 is torsion free. We conclude that

L1
1 Ă L1

2, and exchanging the rles of L1
1 and L1

2, we see that L1
1 “ L1

2, which proves that

ϕ is injective, so is bijective, which proves the claim. Therefore the cardinality of ∆ is

equal to the order of the group H1pL,Z2q, which is equal in turn to that of H1pL,Z2q. By

Proposition 4(b), we have LAb “ H1pL,Zq – Z
npn´2q, so H1pL,Z2q – H1pL,Zq b Z2 –

Z
npn´2q
2 , and the number of subgroups of K that satisfy the properties of Proposition 1(a)

is equal to 2npn´2q as asserted.

4 The virtual cohomological dimension of BnpSq and PnpSq

for S “ S
2,RP2

Let S “ S
2 (resp. S “ RP2), and for all m, n ě 1, let Γn,mpSq “ PnpSz tx1, . . . , xmuq

denote the n-string pure braid group of S with m points removed. In order to study

various cohomological properties of the braid groups of S and prove Theorem 5, we

shall study Γn,mpSq. To prove Theorem 5 in the case S “ S
2, by equation (2), it will

suffice to compute the cohomological dimension of Pn´3pS2z tx1, x2, x3uq. We recall the

following presentation of Γn,mpS2q from [GG3]. The result was stated for m ě 3, but it

also holds for m ď 2.

PROPOSITION 15 ([GG3, Proposition 7]). Let n, m ě 1. The following constitutes a present-

ation of the group Γn,mpS2q:

generators: Ai,j, where 1 ď i ă j and m ` 1 ď j ď m ` n.

relations:

(i) the Artin relations described by equation (4) among the generators Ai,j of Γn,mpS2q.
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(ii) for all m ` 1 ď j ď m ` n,
´śj´1

i“1 Ai,j

¯´śm`n
k“j`1 Aj,k

¯
“ 1.

Let N denote the kernel of the homomorphism Γn,mpSq ÝÑ Γn´1,mpSq obtained geo-

metrically by forgetting the last string. If S “ S
2 (resp. S “ RP2) then N is a free group

of rank m ` n ´ 2 (resp. m ` n ´ 1) and is equal to xA1,m`n, A2,m`n, . . . , Am`n´1,m`ny

(resp. xA1,m`n, A2,m`n, . . . , Am`n´1,m`n, ρm`ny). Clearly N is normal in Γn,mpSq. Further,

it follows from relations (i) of Proposition 15 (resp. relations (III) and (IV) of Proposi-

tion 11) that the action by conjugation of Γn,mpSq on N induces (resp. does not induce)

the trivial action on the Abelianisation of N. In order to determine the virtual cohomo-

logical dimension of the braid groups of S and prove Theorem 5, we shall compute

the cohomological dimension of a torsion-free finite-index subgroup. In the case of

S
2 (resp. RP2), we choose the subgroup Γn´3,3pS2q that appears in the decomposition

given in equation (2) (resp. the subgroup Γn´2,2pRP2q that appears in equation (3)).

Proof of Theorem 5. Let S “ S
2 (resp. S “ RP2), let n ą 3 and k “ 3 (resp. n ą 2

and k “ 2), and let k ď m ă n. Then by equation (2) (resp. equation (3)) and equa-

tion (1), Γn´m,mpSq is a subgroup of finite index of both PnpSq and BnpSq. Further, since

Fn´mpSz tx1, . . . , xmuq is a finite-dimensional CW-complex and an Eilenberg-Mac Lane

space of type Kpπ, 1q [FaN], the cohomological dimension of Γn´m,mpSq is finite, and the

first part follows by taking m “ k.

We now prove the second part, namely that the cohomological dimension of Γn´k,kpSq

is equal to n ´ k for all n ą k. We first claim that cdpΓm,lpSqq ď m for all m ě 1 and

l ě k ´ 1. The result holds if m “ 1 since F1pSz tx1, . . . , xluq has the homotopy type of a

bouquet of circles, therefore HipF1pSz tx1, . . . , xluq, Aq is trivial for all i ě 2 and for any

local coefficients A, and H1pF1pSz tx1, . . . , xluq,Zq ‰ 0. Suppose by induction that the

result holds for some m ě 1, and consider the Fadell-Neuwirth short exact sequence:

1 ÝÑ Γ1,l`mpSq ÝÑ Γm`1,lpSq ÝÑ Γm,lpSq ÝÑ 1

that emanates from the fibration:

F1pSz tx1, . . . , xl, z1, . . . , zmuq ÝÑ Fm`1pSz tx1, . . . , xluq ÝÑ FmpSz tx1, . . . , xluq (33)

obtained by forgetting the last coordinate. By [Br, Chapter VIII], it follows that:

cdpΓm`1,lpSqq ď cdpΓm,lpSqq ` cdpΓ1,l`mpSqq ď m ` 1.

which proves the claim. In particular, taking l “ k, we have cdpΓm,kpSqq ď m.

To conclude the proof of the theorem, it remains to show that for each m ě 1 there

are local coefficients A such that HmpΓm,lpSq, Aq ‰ 0 for all l ě k. We will show that

this is the case for A “ Z. Again by induction suppose that HmpΓm,lpSq,Zq ‰ 0 for all

l ě k ´ 1 and for some m ě 1 (we saw above that this is true for m “ 1). Consider the

Serre spectral sequence with integral coefficients associated to the fibration (33). Then

we have that

E
p,q
2 “ Hp

`
Γm,lpSq, HqpF1pSz tx1, . . . , xl, z1, . . . , zmuq,Zq

˘
.

Since cdpΓm,lpSqq ď m and cdpF1pSz tx1, . . . , xl, z1, . . . , zmuq ď 1 from above, it follows

that this spectral sequence has two horizontal lines whose possible non-vanishing terms
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occur for 0 ď p ď m and 0 ď q ď 1. We claim that the group Em,1
2 is non trivial. To see

this, first note that H1pF1pSz tx1, . . . , xl, z1, . . . , zmuq,Zq is isomorphic to the free Abelian

group of rank r “ m ` l ´ k ` 2, so r ě m ` 2, and hence Em,1
2 “ Hm

`
Γm,lpSq,Zr

˘
,

where we identify Z
r with (the dual of) NAb. The action of Γm,lpSq on N by conjugation

induces an action of Γm,lpSq on NAb. Let H be the subgroup of NAb generated by the

elements of the form αpxq ´ x, where α P Γm,lpSq, x P NAb, and αpxq represents the action

of α on x. Then we obtain a short exact sequence 0 ÝÑ H ÝÑ NAb ÝÑ NAb{H ÝÑ 0 of

Abelian groups, and the long exact sequence in cohomology applied to Γm,lpSq yields:

¨ ¨ ¨ HmpΓm,lpSq, NAbq HmpΓm,lpSq, NAb{Hq Hm`1pΓm,lpSq, Hq ¨ ¨ ¨ . (34)

The last term is zero since cdpΓm,lpSqq ď m, and so the map between the two remain-

ing terms is surjective. Let us determine NAb{H. If S “ S
2 then from the comments

following Proposition 15, the action of Γm,lpSq on NAb is trivial, so H is trivial, and

NAb{H – Z
r. So suppose that S “ RP2. Choosing the basis

 
A1,m`l`1, A2,m`l`1, . . . , Am`l´1,m`l`1, ρm`l`1

(

of N and using Proposition 11, one sees that the action by conjugation of the gener-

ators of Γm,lpSq on the corresponding basis elements of NAb is trivial, with the ex-

ception of that of ρi on Ai,m`l`1 for l ` 1 ď i ď m ` l ´ 1, which yields elements

A2
i,m`l`1 P H (by abuse of notation, we denote the elements of NAb in the same way as

those of N), and that of ρi on ρm`l`1, where l ` 1 ď i ď m ` l, which yields elements

Ai,m`l`1 P H. In the quotient NAb{H the basis elements Al`1,m`l`1, . . . , Am`l´1,m`l`1

thus become zero, and additionally, we have also that Am`l,m`l`1 (which is not in the

given basis) becomes zero. Hence the relation
śm`l

i“1 Ai,m`l`1 “ ρ´2
m`l`1 is sent to the

relation
śl

i“1 Ai,m`l`1 “ ρ´2
m`l`1, and so NAb{H is generated by (the images of) the

elements A1,m`l`1, . . . , Al,m`l`1, ρm`l`1, subject to this relation (as well as the fact that

the elements commute pairwise). It thus follows that NAb{H – Z
l . Since the induced

action of Γm,lpSq on NAb{H is trivial, we conclude that

HmpΓm,lpSq, NAb{Hq “
`

HmpΓm,lpSq,Zq
˘s

,

where s “ m ` l if S “ S
2 and s “ l if S “ RP2. It then follows from equation (34)

that Em,1
2 “ HmpΓm,lpSq, NAbq ‰ 0. Since E

p,q
2 “ 0 for all p ą m and q ą 1, we have

Em,1
2 “ Em,1

8 , thus Em,1
8 is non trivial, and hence Hm`1pΓm`1,lpSq,Zq ‰ 0. This concludes

the proof of the theorem.

We end this paper with a proof of Corollary 6.

Proof of Corollary 6. Let S “ S
2 (resp. S “ RP2). If n ě 3 (resp. n ě 2) then BnpSq and

MCGpS, nq are closely related by the following short exact sequence [S]:

1 ÝÑ
@

∆
2
n

D
ÝÑ BnpSq

β
ÝÑ MCGpS, nq ÝÑ 1,

where the kernel is isomorphic to Z2. Now assume that n ě 4 (resp. n ě 3), so that

BnpSq is infinite. If Γ is a torsion-free subgroup of BnpSq of finite index then βpΓq, which

is isomorphic to Γ, is a torsion-free subgroup of MCGpS, nq of finite index, and hence

the virtual cohomological dimension of MCGpS, nq is equal to that of BnpSq. The result

then follows by Theorem 5.
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