Daciberg Lima 
  
Gonc ¸alves 
  
John Guaschi 
email: john.guaschi@unicaen.fr
  
  
  
  
The inclusion of configuration spaces of surfaces in Cartesian products, its induced homomorphism, and the virtual cohomological dimension of the braid groups of S 2 and RP 2

Let S be a surface, perhaps with boundary, and either compact, or with a finite number of points removed from the interior of the surface. We consider the inclusion ι : F n pSq ÝÑ ś n 1 S of the n th configuration space F n pSq of S into the n-fold Cartesian product of S, as well as the induced homomorphism ι # : P n pSq ÝÑ ś n 1 π 1 pSq, where P n pSq is the n-string pure braid group of S. Both ι and ι # were studied initially by J. Birman who conjectured that Ker pι # q is equal to the normal closure of the Artin pure braid group P n in P n pSq. The conjecture was later proved by C. Goldberg for compact surfaces without boundary different from the 2-sphere S 2 and the projective plane RP 2 . In this paper, we prove the conjecture for S 2 and RP 2 . In the case of RP 2 , we prove that Ker pι # q is equal to the commutator subgroup of P n pRP 2 q, we show that it may be decomposed in a manner similar to that of P n pS 2 q as a direct sum of a torsion-free subgroup L n and the finite cyclic group generated by the full twist braid, and we prove that L n may be written as an iterated semi-direct product of free groups. Finally, we show that the groups B n pS 2 q and P n pS 2 q (resp. B n pRP 2 q and P n pRP 2 q) have finite virtual cohomological dimension equal to n ´3 (resp. n ´2), where B n pSq denotes the full n-string braid group of S. This allows us to determine the virtual cohomological 2010 AMS Subject Classification: 20F36 (primary); 20J06 (secondary).

1 dimension of the mapping class groups of the mapping class groups of S 2 and RP 2 with marked points, which in the case of S 2 , reproves a result due to J. Harer.

Introduction

Let S be a connected surface, perhaps with boundary, and either compact, or with a finite number of points removed from the interior of the surface. The n th configuration space of S is defined by: F n pSq " px 1 , . . . , x n q P S n x i ‰ x j if i ‰ j ( .

It is well known that π 1 pF n pSqq -P n pSq, the pure braid group of S on n strings, and that π 1 pF n pSq{S n q -B n pSq, the braid group of S on n strings, where F n pSq{S n is the quotient space of F n pSq by the free action of the symmetric group S n given by permuting coordinates [FaN, FoN]. If S is the 2-disc D 2 then B n pD 2 q (resp. P n pD 2 q) is the Artin braid group B n (resp. the Artin pure braid group P n ). The canonical projection F n pSq ÝÑ F n pSq{S n is a regular n!-fold covering map, and thus gives rise to the following short exact sequence:

1 ÝÑ P n pSq ÝÑ B n pSq ÝÑ S n ÝÑ 1.

(1)

If D 2 is a topological disc lying in the interior of S and that contains the basepoints of the braids then the inclusion j : D 2 ÝÑ S induces a group homomorphism j # : B n ÝÑ B n pSq. This homomorphism is injective if S is different from the 2-sphere S 2 and the real projective plane RP 2 [START_REF] Birman | On braid groups[END_REF][START_REF] Goldberg | An exact sequence of braid groups[END_REF]. Let j # | P n : P n ÝÑ P n pSq denote the restriction of j # to the corresponding pure braid groups. If β P B n then we shall denote its image j # pβq in B n pSq simply by β. It is well known that the centre of B n and of P n is infinite cyclic, generated by the full twist braid that we denote by ∆ 2 n , and that ∆ 2 n , considered as an element of B n pS 2 q or of B n pRP 2 q, is of order 2 and generates the centre. If G is a group then we denote its commutator subgroup by Γ 2 pGq, its Abelianisation by G Ab , and if H is a subgroup of G then we denote its normal closure in G by xxHyy G . Let ś n 1 S " S ˆ¨¨¨ˆS denote the n-fold Cartesian product of S with itself, let ι n : F n pSq ÝÑ ś n 1 S be the inclusion map, and let ι n# : π 1 pF n pSqq ÝÑ π 1

`śn 1 S ˘denote the induced homomorphism on the level of fundamental groups. To simplify the notation, we shall often just write ι and ι # if n is given. The study of ι # was initiated by Birman in 1969 [Bi1]. She had conjectured that x x Im pj # | P n qy y P n pSq " Ker pι # q if S is a com- pact orientable surface, but states without proof that her conjecture is false if S is of genus greater than or equal to 1 [START_REF] Birman | On braid groups[END_REF]page 45]. However, Goldberg proved the conjecture several years later in both the orientable and non-orientable cases for compact surfaces without boundary different from S 2 and RP 2 [START_REF] Goldberg | An exact sequence of braid groups[END_REF]Theorem 1]. In connection with the study of Vassiliev invariants of surface braid groups, Gonzlez-Meneses and Paris showed that Ker pι # q is also normal in B n pSq, and that the resulting quotient is isomorphic to the semi-direct product π 1 `śn 1 S ˘¸S n , where the action is given by permuting coordinates (their work was within the framework of compact, orientable surfaces without boundary, but their construction is valid for any surface S) [GMP]. In the case of RP 2 , this result was reproved using geometric methods [T].

If S " S 2 , Ker pι # q is clearly equal to P n pS 2 q, and so by [START_REF] Gonalves | The roots of the full twist for surface braid groups[END_REF]Theorem 4], it may be decomposed as: Ker pι # q " P n pS 2 q -P n´3 pS 2 z tx 1 , x 2 , x 3 uq ˆZ2 ,

(2)

where the first factor of the direct product is torsion free, and the Z 2 -factor is generated by ∆ 2 n . The aim of this paper is to resolve Birman's conjecture for surfaces without boundary in the remaining cases, namely S " S 2 or RP 2 , to determine the cohomological dimension of B n pSq and P n pSq, where S is one of these two surfaces, and to elucidate the structure of Ker pι # q in the case of RP 2 . In Section 2, we start by considering the case S " RP 2 , we study Ker pι # q, which we denote by K n , and we show that it admits a decomposition similar to that of equation ( 2). PROPOSITION 1. Let n P N.

(a) (i) Up to isomorphism, the homomorphism ι # : π 1 pF n pRP 2 qq ÝÑ π 1 pΠ n 1 pRP 2 qq coincides with Abelianisation. In particular, K n " Γ 2 pP n pRP 2 qq. (ii) If n ě 2 then there exists a torsion-free subgroup L n of K n such that K n is isomorphic to the direct sum of L n and the subgroup @ ∆ 2 n D generated by the full twist that is isomorphic to Z 2 . (b) If n ě 2 then any subgroup of P n pRP 2 q that is normal in B n pRP 2 q and that properly contains K n possesses an element of order 4.

Note that if n " 1 then B 1 pRP 2 q " P 1 pRP 2 q -Z 2 and ∆ 2 1 is the trivial element, so parts (a)(ii) and (b) do not hold. Part (a)(i) will be proved in Proposition 8. We shall see later on in Remark 14 that there are precisely 2 npn´2q subgroups that satisfy the conclusions of part (a)(ii), and to prove the statement, we shall exhibit an explicit torsion-free subgroup L n . We then prove Birman's conjecture for S 2 and RP 2 , using Proposition 1(a)(i) in the case of RP 2 . THEOREM 2. Let S be one of S 2 or RP 2 , and let n ě 1. Then xx Im pj # | P n qyy P n pSq " Ker pι # q.

In Section 3, we analyse L n in more detail, and we show that it may be decomposed as an iterated semi-direct product of free groups. THEOREM 3. Let n ě 3. Consider the Fadell-Neuwirth short exact sequence:

1 ÝÑ P n´2 pRP 2 z tx 1 , x 2 uq ÝÑ P n pRP 2 q q 2# ÝÑ P 2 pRP 2 q ÝÑ 1, ( 3 
)
where q 2# is given geometrically by forgetting the last n ´2 strings. Then L n may be identified with the kernel of the composition

P n´2 pRP 2 z tx 1 , x 2 uq ÝÑ P n pRP 2 q ι # ÝÑ Z 2 ˆ¨¨¨ˆZ 2 looooooomooooooon n copies
, where the first homomorphism is that appearing in equation ( 3). The image of this composition is the product of the last n ´2 copies of Z 2 . In particular, L n is of index 2 n´2 in P n´2 pRP 2 z tx 1 , x 2 uq. Further, L n is isomorphic to an iterated semi-direct product of free groups of the form F 2n´3 pF

In the semi-direct product decomposition of L n , note that every factor acts on each of the preceding factors. This is also the case for P n´2 pRP 2 z tx 1 , x 2 uq (see equation ( 12)), and as we shall see in Remarks 13(a), this implies an Artin combing-type result for this group. Analysing these semi-direct products in more detail, we obtain the following results.

PROPOSITION 4. If n ě 3 then: (a) `Pn´2 pRP 2 z tx 1 , x 2 uq ˘Ab -Z 2pn´2q . (b) pL n q Ab -Z npn´2q .
In two papers in preparation, we shall analyse the homotopy fibre of ι, as well as the induced homomorphism ι # when S " S 2 or RP 2 [START_REF] Gonalves | The homotopy fibre of the inclusion F n pSq ã ÝÑ ś n 1 S for S either S 2 or RP 2 and orbit configuration spaces[END_REF], and when S is a space form manifold of dimension different from two [GGG]. In the first of these papers, we shall also see that L n is closely related to the fundamental group of an orbit configuration space of the open cylinder.

In Section 4, we study the virtual cohomological dimension of the braid groups of S 2 and RP 2 . Recall from [START_REF] Brown | Cohomology of groups[END_REF]page 226] that if a group Γ is virtually torsion-free then all finite index torsion-free subgroups of Γ have the same cohomological dimension by Serre's theorem, and this dimension is defined to be the virtual cohomological dimension of Γ. Using equations ( 2) and (3), we prove the following result, namely that if S " S 2 or RP 2 , the groups B n pSq and P n pSq have finite virtual cohomological dimension, and we compute these dimensions. THEOREM 5. (a) Let n ě 4. Then the virtual cohomological dimension of both B n pS 2 q and P n pS 2 q is equal to the cohomological dimension of the group P n´3 pS 2 z tx 1 , x 2 , x 3 uq. Furthermore, for all m ě 1, the cohomological dimension of the group P m pS 2 z tx 1 , x 2 , x 3 uq is equal to m. (b) Let n ě 3. Then the virtual cohomological dimension of both B n pRP 2 q and P n pRP 2 q is equal to the cohomological dimension of the group P n´2 pRP 2 z tx 1 , x 2 uq. Furthermore, for all m ě 1, the cohomological dimension of the group P m pRP 2 z tx 1 , x 2 uq is equal to m.

The methods of the proof of Theorem 5 have recently been applied to compute the cohomological dimension of the braid groups of all other compact surfaces (orientable and non orientable) without boundary [GGM]. Theorem 5 also allows us to deduce the virtual cohomological dimension of the punctured mapping class groups of S 2 and RP 2 . If n ě 0, let MCGpS, nq denote the mapping class group of a connected, compact surface S relative to an n-point set. If S is orientable then Harer determined the virtual cohomological dimension of MCGpS, nq [START_REF] Harer | The virtual cohomological dimension of the mapping class of an orientable surface[END_REF]Theorem 4.1]. In the case of S 2 and D 2 , he obtained the following results: [START_REF] Birman | Braids, links and mapping class groups[END_REF]). As a consequence of Theorem 5, we are able to compute the virtual cohomological dimension of MCGpS, nq for S " S 2 and RP 2 . COROLLARY 6. Let n ě 4 (resp. n ě 3). Then the virtual cohomological dimension of MCGpS 2 , nq (resp. MCGpRP 2 , nq) is finite, and is equal to n ´3 (resp. n ´2).

(a) if n ě 3, the virtual cohomological dimension of MCGpS 2 , nq is equal to n ´3. (b) if n ě 2, the cohomological dimension of MCGpD 2 , nq is equal to n ´1 (recall that MCGpD 2 , nq is isomorphic to B n
If S " S 2 or RP 2 then for the values of n given by Theorem 5 and Corollary 6, the virtual cohomological dimension of MCGpS, nq is equal to that of B n pSq. If S " S 2 , we thus recover the corresponding result of Harer.

2 The structure of K n , and Birman's conjecture for S 2 and RP 2

Let n P N. As we mentioned in the introduction, if S is a surface different from S 2 and RP 2 , the kernel of the homomorphism ι # : P n pSq ÝÑ π 1 `śn 1 S ˘was studied in [START_REF] Birman | On braid groups[END_REF][START_REF] Goldberg | An exact sequence of braid groups[END_REF], and that if S " S 2 then Ker pι # q " P n pS 2 q. In the first part of this section, we recall a presentation of P n pRP 2 q, and we prove Proposition 1(a)(i). The second part of this section is devoted to proving the rest of Proposition 1 and Theorem 2, the latter being Birman's conjecture for S 2 and RP 2 .

Consider the model of RP 2 given by identifying antipodal boundary points of D 2 . We equip F n pRP 2 q with a basepoint px 1 , . . . , x n q. For 1 ď i ă j ď n (resp. 1 ď k ď n), we define the element A i,j (resp. τ k , ρ k ) of P n pRP 2 q by the geometric braids depicted in Figure 1. Note that the arcs represent the projections of the strings onto RP 2 , so that

x k x j x i A i,j τ k ρ k Figure 1: The elements A i,j , τ k and ρ k of P n pRP 2 q.
all of the strings of the given braid are vertical, with the exception of the j th (resp. k th ) string that is based at the point x j (resp. x k ).

THEOREM 7 ([GG4, Theorem 4]). Let n P N. The following constitutes a presentation of the pure braid group P n pRP 2 q: generators: A i,j , 1 ď i ă j ď n, and τ k , 1 ď k ď n. relations:

(a) the Artin relations between the A i,j emanating from those of P n :

A r,s A i,j A ´1 r,s " $ ' ' ' ' & ' ' ' ' % A i,j if i ă r ă s ă j or r ă s ă i ă j A ´1 i,j A ´1 r,j A i,j A r,j A i,j if r ă i " s ă j A ´1 s,j A i,j A s,j if i " r ă s ă j A ´1 s,j A ´1 r,j A s,j A r,j A i,j A ´1 r,j A ´1 s,j A r,j A s,j if r ă i ă s ă j. ( 4 
) (b) for all 1 ď i ă j ď n, τ i τ j τ ´1 i " τ ´1 j A ´1 i,j τ 2 j . (c) for all 1 ď i ď n, τ 2 i " A 1,i ¨¨¨A i´1,i A i,i`1 ¨¨¨A i,n . (d) for all 1 ď i ă j ď n and 1 ď k ď n, k ‰ j, τ k A i,j τ ´1 k " $ ' ' & ' ' % A i,j if j ă k or k ă i τ ´1 j A ´1 i,j τ j if k " i τ ´1 j A ´1 k,j τ j A ´1 k,j A i,j A k,j τ ´1 j A k,j τ j if i ă k ă j.
This enables us to prove that ι # is in fact Abelianisation, which is part (a)(i) of Proposition 1. PROPOSITION 8. Let n P N. The homomorphism ι # : P n pRP 2 q ÝÑ π 1 p ś n 1 RP 2 q is defined on the generators of Theorem 7 by ι # pA i,j q " p0, . . . , 0q for all 1 ď i ă j ď n, and ι # pτ k q " p0, . . . , 0, 1 lo omo on k th position , 0, . . . , 0q for all 1 ď k ď n. Further, ι # is Abelianisation, and Ker pι # q " K n "

Γ 2 pP n pRP 2 qq.

Proof. For 1 ď k ď n, let p k : F n pRP 2 q ÝÑ RP 2 denote projection onto the k th coordinate.

Observe that ι # " p 1# ˆ¨¨¨ˆp n# , where p k# : P n pRP 2 q ÝÑ π 1 pRP 2 q is the induced homomorphism on the level of fundamental groups. Identifying π 1 pRP 2 q with Z 2 and using the geometric realisation of Figure 1 of the generators of the presentation of P n pRP 2 q given by Theorem 7, it is straightforward to check that for all 1 ď k, l ď n and 1 ď i ă j ď n, p k# pA i,j q " 0, p k# pτ l q " 0 if l ‰ k and p k# pτ k q " 1, and this yields the first part of the proposition. The second part follows easily from the presentation of the Abelianisation pP n pRP 2 qq Ab of P n pRP 2 q obtained from Theorem 7. More precisely, if we denote the Abelianisation of an element x P P n pRP 2 q by x, relations (b) and (c) imply respectively that for all 1 ď i ă j ď n and 1 ď k ď n, A i,j and τ k 2 represent the trivial element of pP n pRP 2 qq Ab . Since the remaining relations give no other information under Abelianisation, it follows that pP n pRP 2 qq Ab -Z 2 ' ¨¨¨' Z 2 , where τ k " p0, . . . , 0, 1 lo omo on k th position , 0, . . . , 0q and A i,j " p0, . . . , 0q via this isomorphism, and the Abelianisation homomorphism indeed coincides with ι # on P n pRP 2 q.

REMARKS 9.

(a) Since K n " Γ 2 pP n pRP 2 qq, it follows immediately that K n is normal in B n pRP 2 q, since Γ 2 pP n pRP 2 qq is characteristic in P n pRP 2 q, and P n pRP 2 q is normal in B n pRP 2 q. (b) A presentation of K n may be obtained by a long but routine computation using the Reidemeister-Schreier method, although it is not clear how to simplify the presentation.

In Theorem 3, we will provide an alternative description of K n using algebraic methods.

(c)

In what follows, we shall use Van Buskirk's presentation of B n pRP 2 q [VB, page 83] whose generating set consists of the standard braid generators σ 1 , . . . , σ n´1 emanating from the 2-disc, as well as the surface generators ρ 1 , . . . , ρ n depicted in Figure 1. We have the following relation between the elements τ k and ρ k :

τ k " ρ ´1 k A k,k`1 ¨¨¨A k,n for all 1 ď k ď n,
where for 1

ď i ă j ď n, A i,j " σ j´1 ¨¨¨σ i`1 σ 2 i σ ´1 i`1 ¨¨¨σ ´1 j´1 .
In particular, it follows from Proposition 8 that:

ι # pρ k q " ι # pτ k q " p0, . . . , 0, 1 lo omo on k th position
, 0, . . . , 0q for all 1 ď k ď n.

(5)

If n ě 2, the full twist braid ∆ 2 n , which may be defined by ∆ 2 n " pσ 1 ¨¨¨σ n´1 q n , is of order 2 [VB, page 95], it generates the centre of B n pRP 2 q [M, Proposition 6.1], and is the unique element of B n pRP 2 q of order 2 [GG2, Proposition 23]. Since ∆ 2 n P P n pRP 2 q, it thus belongs to the centre of P n pRP 2 q, and just as for the Artin braid groups and the braid groups of S 2 , it generates the centre of P n pRP 2 q: PROPOSITION 10. Let n ě 2. Then the centre ZpP n pRP 2 qq of P n pRP 2 q is generated by ∆ 2 n .

Proof. We prove the result by induction on n. If n " 2 then P 2 pRP 2 q -Q 8 [VB, page 87], the quaternion group of order 8, and the result follows since ∆ 2 2 is the element of P 2 pRP 2 q of order 2. So suppose that n ě 3. From the preceding remarks, @ ∆ 2 n D Ă ZpP n pRP 2 qq. Conversely, let x P ZpP n pRP 2 qq, and consider the following Fadell-Neuwirth short exact sequence:

1 ÝÑ π 1 pRP 2 z tx 1 , . . . , x n´1 uq ÝÑ P n pRP 2 q q pn´1q# Ý ÝÝÝ Ñ P n´1 pRP 2 q ÝÑ 1,
where q pn´1q# is the surjective homomorphism induced on the level of fundamental groups by the projection q n´1 : F n pRP 2 q ÝÑ F n´1 pRP 2 q onto the first n ´1 coordinates. Now q pn´1q# pxq P ZpP n´1 pRP 2 qq by surjectivity, and thus q pn´1q# pxq " ∆ 2ε n´1 for some ε P t0, 1u by the induction hypothesis. Further, q pn´1q# p∆ 2 n q " ∆ 2 n´1 , hence

∆ ´2ε n x P Kerpq pn´1q# q X ZpP n pRP 2 qq,
and thus ∆ ´2ε n x P ZpKerpq pn´1q# qq. But ZpKerpq pn´1q# qq is trivial because Kerpq pn´1q# q is a free group of rank n ´1. This implies that x P @ ∆ 2 n D as required.

We now prove Proposition 1.

Proof of Proposition 1. Let n ě 3.

(a) Recall that part (a)(i) of Proposition 1 was proved in Proposition 8, so let us prove part (ii). The projection q 2 : F n pRP 2 q ÝÑ F 2 pRP 2 q onto the first two coordinates gives rise to the Fadell-Neuwirth short exact sequence (3). Since K n " Γ 2 pP n pRP 2 qq by Proposition 8, the image of the restriction

q 2# | K n of q 2# to K n is the subgroup Γ 2 pP 2 pRP 2 qq " @ ∆ 2 2 D
, and so we obtain the following commutative diagram:

1 K n X P n´2 pRP 2 z tx 1 , x 2 uq K n @ ∆ 2 2 D 1 1 P n´2 pRP 2 z tx 1 , x 2 uq P n pRP 2 q P 2 pRP 2 q 1, q 2#|K n q 2# (6)
where the vertical arrows are inclusions. Now

@ ∆ 2 2 D -Z 2 , so K n is an extension of the group Ker pq 2# | K n q " K n X P n´2 pRP 2 z tx 1 , x 2 uq by Z 2 .
The fact that q 2# p∆ 2 n q " ∆ 2 2 implies that the upper short exact sequence splits, a section being defined by the correspondence ∆ 2 2 Þ ÝÑ ∆ 2 n , and since ∆ 2 n P ZpP n pRP 2 qq, the action by conjugation on Ker pq 2# | K n q is trivial. Part (a) of the proposition follows by taking L n " Ker pq 2# | K n q and by noting that

P n´2 pRP 2 z tx 1 , x 2 uq is torsion free. (b) Recall first that any torsion element in P n pRP 2 qz @ ∆ 2 n D is of order 4 [GG2,
Corollary 19 and Proposition 23], and is conjugate in B n pRP 2 q to one of a n or b n´1 , where a " ρ n σ n´1 ¨¨¨σ 1 and b " ρ n´1 σ n´2 ¨¨¨σ 1 satisfy:

a n " ρ n ¨¨¨ρ 1 and b n´1 " ρ n´1 ¨¨¨ρ 1 (7)
by [START_REF] Gonalves | Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane[END_REF]Proposition 10]. Let N be a normal subgroup of B n pRP 2 q that satisfies K n Ř N Ă P n pRP 2 q. We claim that for all u P π 1 p ś n 1 RP 2 q (which we identify henceforth with Z 2 ' ¨¨¨' Z 2 ), exactly one of the following two conditions holds:

(i) N X ι ´1 # ptuuq is empty. (ii) ι ´1 # ptuuq is contained in N.
To prove the claim, suppose that x P N X ι ´1 # ptuuq ‰ ∅, and let y P ι ´1 # ptuuq. Now ι # pxq " ι # pyq " u, so there exists k P K n such that x ´1y " k. Since K n Ă N, it follows that y " xk P N, which proves the claim. Further, ι # pa n q " p1, . . . , 1q and ι # pb n´1 q " p1, . . . , 1, 0q by Proposition 8 and equations ( 5) and ( 7), so by the claim it suffices to prove that there exists z P N such that ι # pzq P p1, . . . , 1q, p1, . . . , 1, 0q ( , for then we are in case (ii) above, and it follows that one of a n and b n´1 belongs to N.

It thus remains to prove the existence of such a z. Let x P NzK n . Then ι # pxq contains an entry equal to 1 because K n " Ker pι # q. If ι # pxq " p1, . . . , 1q then we are done. So assume that ι # pxq also contains an entry that is equal to 0. By equation ( 5), there exist 1 ď r ă n and 1 ď i 1 ă ¨¨¨ă i r ď n such that ι # pρ i 1 ¨¨¨ρ i r q " ι # pxq. It follows from the claim and the fact that x P N that ρ i 1 ¨¨¨ρ i r P N also, and so without loss of generality, we may suppose that x " ρ i 1 ¨¨¨ρ i r . Further, since ι # pxq contains both a 0 and a 1, there exists 1 ď j ď r such that p i j # pxq " 1 and p pi j `1q# pxq " 0, the homomorphisms p k# being those defined in the proof of Proposition 8. Note that we consider the indices modulo n, so if i j " n (so j " r) then we set i j `1 " 1. By [GG2, page 777], conjugation by a ´1 permutes cyclically the elements ρ 1 , . . . , ρ n , ρ ´1 1 , . . . , ρ ´1 n of P n pRP 2 q, so the pn ´1q th (resp. n th ) entry of x 1 " a ´pn´1´i j q xa pn´1´i j q is equal to 1 (resp. 0), and x 1 P N because N is normal in B n pRP 2 q. Using the relation b " σ n´1 a, we determine the conjugates of the ρ i by b ´1:

b ´1ρ i b " a ´1σ ´1 n´1 ρ i σ n´1 a " a ´1ρ i a " ρ i`1 for all 1 ď i ď n ´2 b ´1ρ n´1 b " a ´1σ ´1 n´1 ρ n´1 σ n´1 a " a ´1σ ´1 n´1 ρ n´1 σ ´1 n´1 . σ 2 n´1 a " a ´1ρ n a. a ´1 σ 2 n´1 a " ρ ´1 1 . a ´1σ 2 n´1 a,
where we have used the relations ρ i σ n´1 " σ n´1 ρ i if 1 ď i ď n ´2 and σ ´1 n´1 ρ n´1 σ ´1 n´1 " ρ n of Van Buskirk's presentation of B n pRP 2 q, as well as the effect of conjugation by a ´1 on the ρ j . Now σ 2 n´1 " A n´1,n P K n by Proposition 8, so a ´1σ 2 n´1 a P K n by Remarks 9(a), and hence ι # pb ´1ρ n´1 bq " p1, 0, . . . , 0q. It then follows that ι # pa ´1 x 1 aq and ι # pb ´1 x 1 bq have the same entries except in the first and last positions, so if x 2 " a ´1 x 1 a. b ´1 x 1 b, we have ι # px 2 q " p1, 0, . . . , 0, 1q. Further, x 2 P N since N is normal in B n pRP 2 q. Let n " 2m `ε, where m P N and ε P t0, 1u. Then setting z " a ´ε x 2 a ε ¨a´p2`εq x 2 a 2`ε ¨¨¨a ´p2pm´1q`εq x 2 a 2pm´1q`ε , we see once more that z P N, and ι # pzq " p1, . . . , 1q if n is even and ι # pzq " p1, . . . , 1, 0q if n is odd, which completes the proof of the existence of z, and thus that of Proposition 1(b).

We end this section by proving Theorem 2.

Proof of Theorem 2. Let S " S 2 or RP 2 . If n " 1 then ι # is an isomorphism and Im pj # | P n q is trivial so the result holds. If n " 2 and S " S 2 then P n pS 2 q is trivial, and there is nothing to prove. Now suppose that S " S 2 and n ě 3. As we mentioned in the introduction, Ker pι # q " P n pS 2 q. Let pA i,j q 1ďiăjďn be the generating set of P n , where A i,j has a geometric representative similar to that given in Figure 1. It is well known that the image of this set by j # yields a generating set for P n pS 2 q (cf. [S, page 616]), so j # | P n is surject- ive, and the statement of the theorem follows. Finally, assume that S " RP 2 and n ě 2. Once more, Im pj # | P n q " @ A i,j 1 ď i ă j ď n D , and since A i,j P Ker pι # q by Proposition 8, we conclude that x x Im pj # | P n qy y P n pSq Ă Ker pι # q. To prove the converse, first recall from Proposition 8 that Ker pι # q " Γ 2 pP n pRP 2 qq. Using the standard commutator identities rx, yzs " rx, ysry, rx, zssrx, zs and rxy, zs " rx, ry, zssry, zsrx, zs, Γ 2 pP n pRP 2 qq is equal to the normal closure in P n pRP 2 q of rx, ys x, y P A i,j , ρ k 1 ď i ă j ď n and 1 ď k ď n ( ( . It then follows using the relations of Theorem 7 that the commutators rx, ys belonging to this set also belong to @@ A i,j 1 ď i ă j ď n DD P n pRP 2 q , which is nothing other than xx Im pj # | P n qyy P n pSq . We conclude by normality that Ker pι # q Ă x x Im pj # | P n qy y P n pSq , and this completes the proof of the theorem.

Some properties of the subgroup L n

Let S " S 2 or S " RP 2 , and for all m, n ě 1, let Γ m,n pSq " P m pSz tx 1 , . . . , x n uq denote the m-string pure braid group of S with n points removed. In this section, we study P n´2 pRP 2 z tx 1 , x 2 uq, which is Γ n´2,2 pRP 2 q, in more detail, and we prove Theorem 3 and Proposition 4 that enable us to understand better the structure of the subgroup L n defined in the proof of Proposition 1(a)(ii).

We start by exhibiting a presentation of the group Γ m,n pRP 2 q in terms of the generators of P m`n pRP 2 q given by Theorem 7. A presentation for Γ m,n pS 2 q is given in [GG3, Proposition 7] and will be recalled later in Proposition 15, when we come to proving Theorem 5. For 1 ď i ă j ď m `n, let

C i,j " A ´1 j´1,j ¨¨¨A ´1 i`1,j A i,j A i`1,j ¨¨¨A j´1,j . (8) 
Geometrically, in terms of Figure 1, C i,j is the image of A ´1 i,j under the reflection about the straight line segment that passes through the points x 1 , . . . , x m`n . The proof of the following proposition, which we leave to the reader, is similar in nature to that for S 2 , but is a little more involved due to the presence of extra generators that emanate from the fundamental group of RP 2 .

PROPOSITION 11. Let n, m ě 1. The following constitutes a presentation of the group Γ m,n pRP 2 q:

generators: A i,j , ρ j , where 1 ď i ă j and n `1 ď j ď m `n. relations:

(I) the Artin relations described by equation ( 4) among the generators A i,j of Γ m,n pRP 2 q.

(II) for all 1 ď i ă j and n `1 ď j ă k ď m `n, A i,j ρ k A ´1 i,j " ρ k .

(III) for all 1 ď i ă j and n `1 ď k ă j ď m `n,

ρ k A i,j ρ ´1 k " $ ' ' & ' ' % A i,j if k ă i ρ ´1 j C ´1 i,j ρ j if k " i ρ ´1 j C ´1 k,j ρ j A i,j ρ ´1 j C k,j ρ j if k ą i. (IV) for all n `1 ď k ă j ď m `n, ρ k ρ j ρ ´1 k " C k,j ρ j . (V) for all n `1 ď j ď m `n, ρ j ¨j´1 ź i"1 A i,j 'ρ j " ¨m`n ź l"j`1 A j,l '.
The elements C i,j and C k,j appearing in relations (III) and (IV) should be rewritten using equation (8).

In the rest of this section, we shall assume that n " 2, and we shall focus our attention on the groups Γ m,2 pRP 2 q, where m ě 1, that we interpret as subgroups of P m`2 pRP 2 q via the short exact sequence (3). Before proving Theorem 3 and Proposition 4, we introduce some notation that will be used to study the subgroups K n and L n . Let m ě 2, and consider the following Fadell-Neuwirth short exact sequence:

1 ÝÑ Ω m`1 ÝÑ P m pRP 2 z tx 1 , x 2 uq r m`1 ÝÑ P m´1 pRP 2 z tx 1 , x 2 uq ÝÑ 1, (9) 
where r m`1 is given geometrically by forgetting the last string, and where Ω m`1 " π 1 pRP 2 z tx 1 , . . . , x m`1 u , x m`2 q. From the Fadell-Neuwirth short exact sequences of the form of equation ( 3), r m`1 is the restriction of q pm`1q# : P m`2 pRP 2 q ÝÑ P m`1 pRP 2 q to Ker pq 2# q. The kernel Ω m`1 of r m`1 is a free group of rank m `1 with a basis B m`1 being given by:

B m`1 " A k,m`2 , ρ m`2 | 1 ď k ď m ( . ( 10 
)
The group Ω m`1 may also be described as the subgroup of P m pRP 2 z tx 1 , x 2 uq generated by tA 1,m`2 , . . . , A m`1,m`2 , ρ m`2 u subject to the relation:

A m`1,m`2 " A ´1 m,m`2 ¨¨¨A ´1 1,m`2 ρ ´2 m`2 , ( 11 
)
obtained from relation (V) of Proposition 11. Equations ( 8) and ( 11) imply notably that A l,m`2 and C l,m`2 belong to Ω m`1 for all 1 ď l ď m `1. Using geometric methods, for m ě 2, we proved the existence of a section s m`1 : P m´1 pRP 2 z tx 1 , x 2 uq ÝÑ P m pRP 2 z tx 1 , x 2 uq for r m`1 in [START_REF] Gonalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF]Theorem 2(a)]. Applying induction to equation ( 9), it follows that for all m ě 1:

P m pRP 2 z tx 1 , x 2 uq -Ω m`1 ¸pΩ m ¸p¨¨¨¸pΩ 3 ¸Ω2 q ¨¨¨qq. ( 12 
)
So P m pRP 2 z tx 1 , x 2 uq -F m`1 ¸pF m ¸p¨¨¨¸pF 3 ¸F2 q ¨¨¨qq, which may be interpreted as the Artin combing operation for P m pRP 2 z tx 1 , x 2 uq. It follows from this and equation (10) that P m pRP 2 z tx 1 , x 2 uq admits X m`2 as a generating set, where:

X m`2 " A i,j , ρ j 3 ď j ď m `2, 1 ď i ď j ´2( . (13) 
REMARK 12. For what follows, we will need to know an explicit section s m`1 for r m`1 . Such a section may be obtained as follows: for m ě 2, consider the homomorphism P m pRP 2 z tx 1 , x 2 uq ÝÑ P m´1 pRP 2 z tx 1 , x 2 uq given by forgetting the string based at x 3 . By [GG6, Theorem 2(a)]), a geometric section is obtained by doubling the second (vertical) string, so that there is a new third string, and renumbering the following strings, which gives rise to an algebraic section for the given homomorphism of the form:

A i,j Þ ÝÑ $ ' & ' % A 1,j`1 if i " 1 A 2,j`1 A 3,j`1 if i " 2 A i`1,j`1 if 3 ď i ă j ρ j Þ ÝÑ ρ j`1 ,
for all 3 ď j ď m `1. However, in view of the nature of r m`1 , we would like this new string to be in the pm `2q th position. We achieve this by composing the above algebraic section with conjugation by σ m`1 ¨¨¨σ 3 , which gives rise to a section s m`1 : P m´1 pRP 2 z tx 1 , x 2 uq ÝÑ P m pRP 2 z tx 1 , x 2 uq for r m`1 that is defined by: $ ' ' ' ' ' & ' ' ' ' ' %

s m`1 pA i,j q " $ ' ' & ' ' % A j,m`2 A 1,j A ´1 j,m`2 if i " 1 A j,m`2 A 2,j if i " 2 A i,j if 3 ď i ă j s m`1 pρ j q " ρ j A ´1 j,m`2 . ( 14 
)
for all 1 ď i ă j and 3 ď j ď m `1. A long but straightforward calculation using the presentation of P m pRP 2 z tx 1 , x 2 uq given by Proposition 11 shows that s m`1 does indeed define a section for r m`1 .

We now prove Theorem 3, which allows us to give a more explicit description of L n .

Proof of Theorem 3. Let n ě 3. By the commutative diagram (6) of short exact sequences, the restriction of the homomorphism q 2# : P n pRP 2 q ÝÑ P 2 pRP 2 q to K n factors through the inclusion @ ∆ 2 2 D ÝÑ P 2 pRP 2 q, and the kernel L n of q 2# | K n is contained in the group P n´2 pRP 2 z tx 1 , x 2 uq. We may then add a third row to this diagram:

1 1 1 1 L n K n @ ∆ 2 2 D 1 1 P n´2 pRP 2 z tx 1 , x 2 uq P n pRP 2 q P 2 pRP 2 q 1 1 Z n´2 2 Z n 2 Z 2 2 1, 1 1 1 q 2#|K n p ι n´2 q 2# ι n# ι 2# j p q 2 (15)
where p q 2 : Z n 2 ÝÑ Z 2 2 is projection onto the first two factors, and j : Z n´2 2 ÝÑ Z n 2 is the monomorphism defined by jpε 1 , . . . , ε n´2 q " p0, 0, ε 1 , . . . , ε n´2 q. The commutativity of diagram (15) thus induces a homomorphism p ι n´2 : P n´2 pRP 2 z tx 1 , x 2 uq ÝÑ Z n´2 2 that is the restriction of ι n# to P n´2 pRP 2 z tx 1 , x 2 uq that makes the bottom left-hand square commute. To see that p ι n´2 is surjective, notice that if x P Z n´2 2 then the first two entries of jpxq are equal to 0, and using equation ( 5), it follows that there exist 3 ď i 1 ă ¨¨¨ă i r ď n such that ι n# pρ i 1 ¨¨¨ρ i r q " jpxq. Furthermore, ρ i 1 ¨¨¨ρ i r P Ker pq 2# q, and by commutativity of the diagram, we also have ι n# pρ i 1 ¨¨¨ρ i r q " j ˝p ι n´2 pρ i 1 ¨¨¨ρ i r q, whence x " p ι n´2 pρ i 1 ¨¨¨ρ i r q by injectivity of j. It remains to prove exactness of the first column. The fact that L n Ă Ker pp ι n´2 q follows easily. Conversely, if x P Ker pp ι n´2 q then x P P n´2 pRP 2 z tx 1 , x 2 uq, and x P K n by commutativity of the diagram, so x P L n . This proves the first two assertions of the theorem.

To prove the last part of the statement of the theorem, let m ě 1, and consider equation (9). Since p ι m is the restriction of ι pm`2q# to P m pRP 2 z tx 1 , x 2 uq, we have p ι m pρ j q " p0, . . . , 0, 1 lo omo on pj ´2q nd position , 0, . . . , 0q and p ι m pA i,j q " p0, . . . , 0q for all 1 ď i ă j and 3 ď j ď m `2.

So for each 2 ď l ď m `1, p ι m restricts to a surjective homomorphism p ι m Ω l : Ω l ÝÑ Z 2 of each of the factors of equation ( 12), Z 2 being the pl ´1q st factor of Z m 2 , and using equation ( 10), we see that Ker `p ι m Ω l ˘is a free group of rank 2l ´1 with basis p B l given by: p B l "

! A k,l`1 , ρ l`1 A k,l`1 ρ ´1 l`1 , ρ 2 l`1 1 ď k ď l ´1) . ( 16 
)
As we shall now explain, for all m ě 2, the short exact sequence (9) may be extended to a commutative diagram of short exact sequences as follows:

1 1 1 1 Ker `p ι m Ω m`1 ˘Lm`2 L m`1 1 1 Ω m`1 P m pRP 2 z tx 1 , x 2 uq P m´1 pRP 2 z tx 1 , x 2 uq 1 1 Z 2 Z m 2 Z m´1 2 1. 1 1 1 r m`1 L m`2 p ι m Ω m`1 r m`1 p ι m p ι m´1 s m`1 (17)
To obtain this diagram, we start with the commutative diagram that consists of the second and third rows and the three columns (so a priori, the arrows of the first row are missing). The commutativity implies that r m`1 restricts to the homomorphism r m`1 L m`2 : L m`2 ÝÑ L m`1 , which is surjective, since if w P L m`1 is written in terms of the elements of X m`1 then the same word w, considered as an element of the group P m pRP 2 z tx 1 , x 2 uq, belongs to L m`2 , and satisfies r m`1 pwq " w. Then the kernel of r m`1 L m`2 , which is also the kernel of p ι m Ω m`1 , is equal to L m`2 X Ω m`1 . This establishes the existence of the complete commutative diagram (17) of short exact sequences. By induction, it follows from ( 16) and ( 17) that for all m ě 1, L m`2 is generated by

p X m`2 " m`2 ď j"3 p B j´1 " ! A i,j , ρ j A i,j ρ ´1 j , ρ 2 j 3 ď j ď m `2, 1 ď i ď j ´2) . ( 18 
)
Using the section s m`1 defined by equation ( 14), we see that s m`1 pxq P L m`2 for all x P p X m`1 , and thus s m`1 restricts to a section s m`1 L m`1 : L m`1 ÝÑ L m`2 for r m`1 L m`2 . We conclude by induction on the first row of ( 17) that: (20) the actions being induced by those of equation ( 12), so by equation ( 16), L m`2 is isomorphic to a repeated semi-direct product of the form F 2m`1 ¸pF 2m´1 ¸p¨¨¨¸pF 5 F3 q ¨¨¨qq. The last part of the statement of Theorem 3 follows by taking m " n ´2.

L m`2 -Ker `p ι m Ω m`1 ˘¸L m`1 (19) -Ker `p ι m Ω m`1 ˘¸`K er pp ι m | Ω m q ¸`¨¨¨¸`Ker `p ι m Ω 3 ˘¸Ker `p ι m Ω 2 ˘˘¨¨¨˘˘,
A finer analysis of the actions that appear in equations ( 12) and ( 20) now allows us to determine the Abelianisations of P n´2 pRP 2 z tx 1 , x 2 uq and L n .

Proof of Proposition 4. If n " 3 then the two assertions are clear. So assume by induction that they hold for some n ě 3. From the split short exact sequence (9) and equation ( 19) with m " n ´1, we have:

# P n´1 pRP 2 z tx 1 , x 2 uq -Ω n ¸ψ P n´2 pRP 2 z tx 1 , x 2 uq and L n`1 -Ker pp ι n´1 | Ω n q ¸ψ L n , ( 21 
)
where ψ denotes the action given by the section s n , and the action induced by the restriction of the section s n to L n respectively. Before going any further, we recall some general considerations from the paper [START_REF] Gonc | The lower central and derived series of the braid groups of the sphere[END_REF] concerning the Abelianisation of semi-direct products. If H and K are groups, and if ϕ : H ÝÑ Aut pKq is an action of H on K then one may deduce easily from [START_REF] Gonc | The lower central and derived series of the braid groups of the sphere[END_REF]Proposition 3.3] that:

pK ¸ϕ Hq Ab -∆pKq ' H Ab , ( 22 
)
where:

∆pKq " K L@ Γ 2 pKq Y p K D and p K " A ϕphqpkq ¨k´1 h P H and k P K E . Recall that p K is normal in K (cf. [GG5, lines 1-4, page 3388]), so xΓ 2 pKq Y p K D is normal in K. If k P K, let
k denote its image under the canonical projection K ÝÑ ∆pKq. For all k, k 1 P K and h, h 1 P H, we have: ϕphh 1 qpkq ¨k´1 " ϕphqpϕph 1 qpkqq ¨ϕph 1 qpk ´1q ¨ϕph 1 qpkq ¨k´1 " ϕphqpk 2 q ¨k2´1 ¨ϕph 1 qpkq ¨k´1 ( 23)

ϕphqpkk 1 q ¨pkk 1 q ´1 " `ϕphqpkq ¨k´1 ˘¨k `ϕphqpk 1 q ¨k1´1 ˘k´1 . ( 24 
)
where k 2 " ϕph 1 qpkq belongs to K. Let H and K be generating sets for H and K respectively. By induction on word length relative to the elements of H, equation ( 23) implies that p K is generated by elements of the form ϕphqpkq ¨k´1 , where h P H and k P K. A second induction on word length relative to the elements of K and equation (24) implies that p K is normally generated by the elements of the form ϕphqpkq ¨k´1 , where h P H and k P K. By standard arguments involving group presentations, since

Γ 2 pKq Ă @ Γ 2 pKq Y p K D
, ∆pKq is Abelian, and a presentation of ∆pKq may be obtained by Abelianising a given presentation of K, and by adjoining the relators of the form ϕphqpkq ¨k´1 , where h P H and k P K.

We now take K " Ω n (resp. K " Ker pp ι n´1 | Ω n q), H " P n´2 pRP 2 z tx 1 , x 2 uq (resp. H " L n ) and ϕ " ψ. Applying the induction hypothesis and equation ( 22) to equation ( 21), to prove parts (a) and (b), it thus suffices to show that: ∆pΩ n q -Z 2 , and that ( 25)

∆ pKer pp ι n´1 | Ω n qq -Z 2n´1 (26)
respectively. We first establish the isomorphism (25). As we saw previously, ∆pΩ n q is Abelian, and to obtain a presentation of ∆pΩ n q, we add the relators of the form ψpτqpωq ¨ω´1 to a presentation of pΩ n q Ab , where τ P X n and ω P B n . In ∆pΩ n q, such relators may be written as:

s n pτqωps n pτqq ´1ω ´1 " s n pτqωps n pτqq ´1 ω ´1. ( 27 
)
We claim that it is not necessary to know explicitly the section s n in order to determine these relators. Indeed, for all τ P X n , we have p n`1 pτq " τ; note that we abuse notation here by letting τ also denote the corresponding element of X n`1 in P n´1 pRP 2 z tx 1 , x 2 uq. Thus s n pτqτ ´1 P Ker pp n`1 q, and hence there exists ω τ P Ω n such that s n pτq " ω τ τ.

Since ∆pΩ n q is Abelian, it follows that:

s n pτqωps n pτqq ´1 " ω τ τωτ ´1ω ´1 τ " ω τ τωτ ´1 ω ´1 τ " τωτ ´1,
and thus the relators of equation ( 27) become:

s n pτqωps n pτqq ´1ω ´1 " τωτ ´1 ω ´1. ( 28 
)
This proves the claim. In what follows, the relations (I)-(V) refer to those of the presentation of P n´1 pRP 2 z tx 1 , x 2 uq given by Proposition 11. Using this presentation and the fact that ∆pΩ n q is Abelian, we see immediately that τωτ ´1 " ω for all τ P X n and ω P B n , with the following exceptions:

(i) τ " ρ j and ω " A j,n`1 for all 3 ď j ď n ´1. Then ρ j A j,n`1 ρ ´1 j " C ´1 j,n`1 " A ´1 j,n`1 , using relation (III) and equation ( 8), which yields the relator `Aj,n`1 ˘2 in ∆pΩ n q.

(ii) τ " ρ j and ω " ρ n`1 for all 3 ď j ď n. Then

ρ j ρ n`1 ρ ´1 j " C j,n`1 ρ n`1 " A j,n`1 ρ n`1
by relation (IV) and equation ( 8), which yields the relator A j,n`1 in ∆pΩ n q.

The relators of (ii) above clearly give rise to those of (i). To obtain a presentation of ∆pΩ n q, which by equation ( 10) is an Abelian group with generating set

A l,n`1 , ρ n`1 1 ď l ď n ´1( ,
we must add the relators A j,n`1 for all 3 ď j ď n. Thus for j " 3, . . . , n ´1, the elements A j,n`1 of this generating set are trivial. Further, A n,n`1 is also trivial, but by relation ( 11), one of the remaining generators A j,n`1 may be deleted, A 2,n`1 say, from which we see that ∆pΩ n q is a free Abelian group of rank two with A 1,n`1 , ρ n`1 ( as a basis. This establishes the isomorphism (25), and so proves part (a).

We now prove part (b). As we mentioned previously, it suffices to establish the isomorphism (26). Since Ker pp ι n´1 | Ω n q is a free group of rank 2n ´1, we must thus show that ∆pKer pp ι n´1 | Ω n qq " pKer pp ι n´1 | Ω n qq Ab . We take K " Ker pp ι n´1 | Ω n q (resp. H " L n´2 ) to be equipped with the basis p B n (resp. the generating set p X n ) of equation ( 16) (resp. of equation ( 18)). The fact that Ker pp

ι n´1 | Ω n q is normal in Ω n implies that A l,n`1 , ρ n`1 A l,n`1 ρ ´1 n`1 , C l,n`1 and ρ n`1 C l,n`1 ρ ´1 n`1 belong to Ker pp ι n´1 | Ω n q
for all 1 ď l ď n by equations ( 8) and ( 11). Repeating the argument given between equations ( 27) and ( 28), we see that equation ( 28) holds for all τ P p X n and ω P p B n , where ω now denotes the image of ω under the canonical projection Ker pp ι n´1 | Ω n q ÝÑ ∆pKer pp ι n´1 | Ω n qq. For α P P n´2 pRP 2 z tx 1 , x 2 uq, let c α denote conjugation in Ker pp ι n´1 | Ω n q by α (which we consider to be an element of P n´1 pRP 2 z tx 1 , x 2 uq). The automorphism c α is well defined because Ker pp ι n´1 | Ω n q " Ω n X L n´1 , so that Ker pp ι n´1 | Ω n q is normal in P n´1 pRP 2 z tx 1 , x 2 uq. We claim that @ Γ 2 pKq Y p K D is invariant under c α . To see this, note first that Γ 2 pKq is clearly invariant since it is a characteristic subgroup of K. On the other hand, suppose that ω P Ker pp ι n´1 | Ω n q, τ P L n´2 and α P P n´2 pRP 2 z tx 1 , x 2 uq. Since s n pτq P L n´1 , L n´1 is normal in P n´1 pRP 2 z tx 1 , x 2 uq and L n´2 is normal in P n´2 pRP 2 z tx 1 , x 2 uq, we have αs n pτqα ´1 P have:

p c ρ j pωq " p c ρ j pA l,n`1 q " ρ j A l,n`1 ρ ´1 j " $ ' ' & ' ' % A l,n`1 if j ă l ρ ´2 n`1 ¨ρn`1 C ´1 l,n`1 ρ ´1 n`1 ¨ρ2 n`1 if j " l ρ ´2 n`1 ¨ρn`1 C ´1 j,n`1 ρ ´1 n`1 ¨ρ2 n`1 ¨Al,n`1 ¨ρ´2 n`1 ¨ρn`1 C j,n`1 ρ ´1 n`1 ¨ρ2 n`1 if j ą l " $ & % A l,n`1 if j ‰ l ρ n`1 C ´1 j,n`1 ρ ´1 n`1 " ´ρn`1 A j,n`1 ρ ´1 n`1 ¯´1 if j " l. (b) Let ω " ρ n`1 A l,n`1 ρ ´1 n`1
, where 1 ď l ď n ´1. Relation (IV) implies that ρ j ρ n`1 ρ ´1 j " C j,n`1 ρ n`1 , and so by case (a) above, we have:

p c ρ j pωq " p c ρ j ´ρn`1 A l,n`1 ρ ´1 n`1 ¯" $ & % ρ n`1 A l,n`1 ρ ´1 n`1 if j ‰ l C ´1 j,n`1 " `Aj,n`1 ˘´1 if j " l. (c) Let ω " ρ 2 n`1
. By relation (IV) and equations ( 8) and ( 11), we have:

p c ρ j pωq " p c ρ j pρ 2 n`1 q " pρ j ρ n`1 ρ ´1 j q 2 " ρ n`1 C j,n`1 ρ ´1 n`1 ¨ρ2 n`1 ¨Cj,n`1 " ρ n`1 A j,n`1 ρ ´1 n`1 ¨ρ2 n`1 ¨Aj,n`1 ,
from which we obtain:

p c ρ 2 j ´ρ2 n`1 ¯" p c ρ j ´ρn`1 A j,n`1 ρ ´1 n`1 ¨ρ2 n`1 ¨Aj,n`1 " A ´1 j,n`1 ¨ρn`1 A j,n`1 ρ ´1 n`1 ¨ρ2 n`1 ¨Aj,n`1 ¨`ρ n`1 A j,n`1 ρ ´1 n`1 ˘´1 " ρ 2 n`1 .
So by equation ( 16), we also have p c ρ 2 j " Id ∆pKerpp ι n´1|Ω n qq . Hence for all τ P L n´2 and ω P Ker pp ι n´1 | Ω n q, it follows that p c τ pωq " ω , and thus the relators ψpτqpωq ¨ω´1 are all trivial. Since a presentation for ∆ pKer pp ι n´1 | Ω n qq is obtained by Abelianising a given presentation of Ker pp ι n´1 | Ω n q and adjoining these relators, we conclude that ∆ pKer pp ι n´1 | Ω n qq " pKer pp ι n´1 | Ω n qq Ab . In particular, the fact that Ker pp ι n´1 | Ω n q is a free group of rank 2n ´1 gives rise to the isomorphism (26). This completes the proof of the proposition.

REMARKS 13.

(a) An alternative description of P n´2 pRP 2 z tx 1 , x 2 uq, similar to that of equation ( 12), but with the parentheses in the opposite order, may be obtained as follows. Let m ě 2 and q ě 1, and consider the following Fadell-Neuwirth short exact sequence:

1 ÝÑ P m´1 pRP 2 z x 1 , . . . , x q`1 ( q ÝÑ P m pRP 2 z x 1 , . . . , x q ( q ÝÑ P 1 pRP 2 z x 1 , . . . , x q ( q ÝÑ 1, (29)

given geometrically by forgetting the last m ´1 strings. Since the quotient is a free group F q of rank q, the above short exact sequence splits, and so P m pRP 2 z x 1 , . . . , x q ( q -P m´1 pRP 2 z x 1 , . . . , x q`1 ( q ¸Fq , and thus P n´2 pRP 2 z tx 1 , x 2 uqq -p¨¨¨ppF n´1 ¸Fn´2 q ¸Fn´3 q ¸¨¨¨¸F 3 q ¸F2 . (30) by induction. The ordering of the parentheses thus occurs from the left, in contrast with that of equation ( 12). The decomposition given by equation ( 12) is in some sense stronger than that of (30), since in the first case, every factor acts on each of the preceding factors, which is not necessarily the case in equation ( 30), so equation ( 12) engenders a decomposition of the form (30). This is a manifestation of the fact that the splitting of the corresponding Fadell-Neuwirth sequence ( 9) is non trivial, while that of ( 29) is obvious.

(b) Note that L 4 , which is the kernel of the homomorphism p ι 2 : P 2 pRP 2 z tx 1 , x 2 uq ÝÑ Z 2 2 , is also the subgroup of index 4 of the group pB 4 pRP 2 qq p3q that appears in [START_REF] Gonalves | The lower central and derived series of the braid groups of the projective plane[END_REF]Theorem 3(d)]. Indeed, by [START_REF] Gonalves | The lower central and derived series of the braid groups of the projective plane[END_REF]equation (127)], this subgroup of index 4 is isomorphic to the semi-direct product:

F 5 pA 1,4 , A 2,4 , ρ 2 4 , ρ 4 A 1,4 ρ ´1 4 , ρ 4 A 2,4 ρ ´1 4 q ¸F3 pA 2,3 , ρ 2 3 , ρ 3 A 2,3 ρ ´1 3 q,
the action being given by [GG8, equations ( 129)-( 131)] (the element B i,j of [START_REF] Gonalves | The lower central and derived series of the braid groups of the projective plane[END_REF] is the element A i,j of this paper).

REMARK 14. Using the ideas of the last paragraph of the proof of Proposition 1(b), one may show that L n is not normal in B n pRP 2 q. Although the subgroup L n is not unique with respect to the properties of the statement of Proposition 1(a)(ii), there are only a finite number of subgroups, 2 npn´2q to be precise, that satisfy these properties. To prove this, we claim that the set of torsion-free subgroups

L 1 n of K n such that K n " L 1 n ' @ ∆ 2 n D
is in bijection with the set tKer p f q | f P HompL n , Z 2 q u. To prove the claim, let K " K n , L " L n , let q : K ÝÑ K{L be the canonical surjection, and set

∆ " ! L 1 L 1 ă K, L 1 is torsion free, and K " L 1 ' @ ∆ 2 n D ) .
Clearly L P ∆, so ∆ ‰ ∅. Consider the map ϕ : ∆ ÝÑ tKer p f q | f P HompL, Z 2 q u defined by ϕpL 1 q " L X L 1 . This map is well defined, since if L 1 " L then ϕpL 1 q " L is the kernel of the trivial homomorphism of HompL, Z 2 q, and if L 1 ‰ L then L 1 Ć L since rK : L 1 s " rK : Ls " 2, and so q | L 1 is surjective as K{L -Z 2 . Thus Ker pq | L 1 q " ϕpL 1 q is of index 2 in L, in particular, ϕpL 1 q is the kernel of some non-trivial element of HompL, Z 2 q. We now prove that ϕ is surjective. Let f P HompL, Z 2 q, and set L 2 " Ker p f q. If f " 0 then L 2 " L, and ϕpLq " L 2 . So suppose that f ‰ 0. Then f is surjective, and L 2 " Ker p f q is of index 2 in L. Let x P LzL 2 . Then

L " L 2 > xL 2 , ( 31 
)
where > denotes the disjoint union. Since K " L > ∆ 2 n L, it follows that

K " L 2 > xL 2 > ∆ 2 n L 2 > x∆ 2 n L 2 , ( 32 
)
where > denotes the disjoint union. Set

L 1 " L 2 > x∆ 2 n L 2 . By equation (31), x 2 ∆ 2 n L 2 " ∆ 2 n x 2 L 2 " ∆ 2 n L 2 because ∆ 2
n is central and of order 2, and hence K " L 1 > xL 1 . Using once more equation ( 31), we see that L 1 is a group, and so the equality K " L 1 > xL 1 implies that rK : L 1 s " 2. Further, since the only non-trivial torsion element of K is ∆ 2 n , L 1 is torsion free by equation ( 32), and so the short exact sequence 1 ÝÑ L 1 ÝÑ K ÝÑ Z 2 ÝÑ 1 splits. Thus L 1 P ∆, and ϕpL 1 q " L 2 using equations ( 31) and (32).

It remains to prove that ϕ is injective.

Let L 1 1 , L 1 2 P ∆ be such that L 1 1 X L " ϕpL 1 1 q " ϕpL 1 2 q " L 1 2 X L. If one of the L 1 i , L 1 1 say, is equal to L then we must also have L 1 2 " L because L Ă L 1
2 and L and L 1 2 have the same index in K. So suppose that L 1 i ‰ L for all i P t1, 2u. If i P t1, 2u then L 2 " ϕpL 1 i q " L X L 1 i " Ker p f i q for some non-trivial f i P HompL, Z 2 q, and thus rL : n P L 1 1 , which contradicts the fact that L 1 1 is torsion free. We conclude that L 1 1 Ă L 1 2 , and exchanging the rles of L 1 1 and L 1 2 , we see that L 1 1 " L 1 2 , which proves that ϕ is injective, so is bijective, which proves the claim. Therefore the cardinality of ∆ is equal to the order of the group H 1 pL, Z 2 q, which is equal in turn to that of H 1 pL, Z 2 q. By Proposition 4(b), we have

L 2 s " 2. Let us show that L 1 1 Ă L 1 2 . Let x P L 1 1 . If x P L then x P L 2 , so x P L 1 2 ,
L Ab " H 1 pL, Zq -Z npn´2q , so H 1 pL, Z 2 q -H 1 pL, Zq b Z 2 - Z npn´2q 2
, and the number of subgroups of K that satisfy the properties of Proposition 1(a) is equal to 2 npn´2q as asserted.

4 The virtual cohomological dimension of B n pSq and P n pSq for S " S 2 , RP 2 Let S " S 2 (resp. S " RP 2 ), and for all m, n ě 1, let Γ n,m pSq " P n pSz tx 1 , . . . , x m uq denote the n-string pure braid group of S with m points removed. In order to study various cohomological properties of the braid groups of S and prove Theorem 5, we shall study Γ n,m pSq. To prove Theorem 5 in the case S " S 2 , by equation ( 2), it will suffice to compute the cohomological dimension of P n´3 pS 2 z tx 1 , x 2 , x 3 uq. We recall the following presentation of Γ n,m pS 2 q from [START_REF] Gonalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF]. The result was stated for m ě 3, but it also holds for m ď 2.

PROPOSITION 15 ([GG3, Proposition 7]). Let n, m ě 1. The following constitutes a presentation of the group Γ n,m pS 2 q: generators: A i,j , where 1 ď i ă j and m `1 ď j ď m `n. relations:

(i) the Artin relations described by equation ( 4) among the generators A i,j of Γ n,m pS 2 q.

(ii) for all m `1 ď j ď m `n,

´śj´1 i"1 A i,j ¯´ś m`n k"j`1 A j,k ¯" 1.
Let N denote the kernel of the homomorphism Γ n,m pSq ÝÑ Γ n´1,m pSq obtained geometrically by forgetting the last string. If S " S 2 (resp. S " RP 2 ) then N is a free group of rank m `n ´2 (resp. m `n ´1) and is equal to xA 1,m`n , A 2,m`n , . . . , A m`n´1,m`n y (resp. xA 1,m`n , A 2,m`n , . . . , A m`n´1,m`n , ρ m`n y). Clearly N is normal in Γ n,m pSq. Further, it follows from relations (i) of Proposition 15 (resp. relations (III) and (IV) of Proposition 11) that the action by conjugation of Γ n,m pSq on N induces (resp. does not induce) the trivial action on the Abelianisation of N. In order to determine the virtual cohomological dimension of the braid groups of S and prove Theorem 5, we shall compute the cohomological dimension of a torsion-free finite-index subgroup. In the case of S 2 (resp. RP 2 ), we choose the subgroup Γ n´3,3 pS 2 q that appears in the decomposition given in equation (2) (resp. the subgroup Γ n´2,2 pRP 2 q that appears in equation ( 3)).

Proof of Theorem 5. Let S " S 2 (resp. S " RP 2 ), let n ą 3 and k " 3 (resp. n ą 2 and k " 2), and let k ď m ă n. Then by equation (2) (resp. equation ( 3)) and equation (1), Γ n´m,m pSq is a subgroup of finite index of both P n pSq and B n pSq. Further, since F n´m pSz tx 1 , . . . , x m uq is a finite-dimensional CW-complex and an Eilenberg-Mac Lane space of type Kpπ, 1q [FaN], the cohomological dimension of Γ n´m,m pSq is finite, and the first part follows by taking m " k.

We now prove the second part, namely that the cohomological dimension of Γ n´k,k pSq is equal to n ´k for all n ą k. We first claim that cdpΓ m,l pSqq ď m for all m ě 1 and l ě k ´1. The result holds if m " 1 since F 1 pSz tx 1 , . . . , x l uq has the homotopy type of a bouquet of circles, therefore H i pF 1 pSz tx 1 , . . . , x l uq, Aq is trivial for all i ě 2 and for any local coefficients A, and H 1 pF 1 pSz tx 1 , . . . , x l uq, Zq ‰ 0. Suppose by induction that the result holds for some m ě 1, and consider the Fadell-Neuwirth short exact sequence:

1 ÝÑ Γ 1,l`m pSq ÝÑ Γ m`1,l pSq ÝÑ Γ m,l pSq ÝÑ 1 that emanates from the fibration: F 1 pSz tx 1 , . . . , x l , z 1 , . . . , z m uq ÝÑ F m`1 pSz tx 1 , . . . , x l uq ÝÑ F m pSz tx 1 , . . . , x l uq (33) obtained by forgetting the last coordinate. By [Br, Chapter VIII], it follows that: cdpΓ m`1,l pSqq ď cdpΓ m,l pSqq `cdpΓ 1,l`m pSqq ď m `1.

which proves the claim. In particular, taking l " k, we have cdpΓ m,k pSqq ď m.

To conclude the proof of the theorem, it remains to show that for each m ě 1 there are local coefficients A such that H m pΓ m,l pSq, Aq ‰ 0 for all l ě k. We will show that this is the case for A " Z. Again by induction suppose that H m pΓ m,l pSq, Zq ‰ 0 for all l ě k ´1 and for some m ě 1 (we saw above that this is true for m " 1). Consider the Serre spectral sequence with integral coefficients associated to the fibration (33). Then we have that E p,q 2 " H p `Γm,l pSq, H q pF 1 pSz tx 1 , . . . , x l , z 1 , . . . , z m uq, Zq ˘.

Since cdpΓ m,l pSqq ď m and cdpF 1 pSz tx 1 , . . . , x l , z 1 , . . . , z m uq ď 1 from above, it follows that this spectral sequence has two horizontal lines whose possible non-vanishing terms occur for 0 ď p ď m and 0 ď q ď 1. We claim that the group E m,1 2 is non trivial. To see this, first note that H 1 pF 1 pSz tx 1 , . . . , x l , z 1 , . . . , z m uq, Zq is isomorphic to the free Abelian group of rank r " m `l ´k `2, so r ě m `2, and hence E m,1 2 " H m `Γm,l pSq, Z r ˘,

where we identify Z r with (the dual of) N Ab . The action of Γ m,l pSq on N by conjugation induces an action of Γ m,l pSq on N Ab . Let H be the subgroup of N Ab generated by the elements of the form αpxq ´x, where α P Γ m,l pSq, x P N Ab , and αpxq represents the action of α on x. Then we obtain a short exact sequence 0 ÝÑ H ÝÑ N Ab ÝÑ N Ab {H ÝÑ 0 of Abelian groups, and the long exact sequence in cohomology applied to Γ m,l pSq yields:

¨¨¨H m pΓ m,l pSq, N Ab q H m pΓ m,l pSq, N Ab {Hq H m`1 pΓ m,l pSq, Hq ¨¨¨. (34)

The last term is zero since cdpΓ m,l pSqq ď m, and so the map between the two remaining terms is surjective. Let us determine N Ab {H. If S " S 2 then from the comments following Proposition 15, the action of Γ m,l pSq on N Ab is trivial, so H is trivial, and N Ab {H -Z r . So suppose that S " RP 2 . Choosing the basis A 1,m`l`1 , A 2,m`l`1 , . . . , A m`l´1,m`l`1 , ρ m`l`1 ( of N and using Proposition 11, one sees that the action by conjugation of the generators of Γ m,l pSq on the corresponding basis elements of N Ab is trivial, with the exception of that of ρ i on A i,m`l`1 for l `1 ď i ď m `l ´1, which yields elements A 2 i,m`l`1 P H (by abuse of notation, we denote the elements of N Ab in the same way as those of N), and that of ρ i on ρ m`l`1 , where l `1 ď i ď m `l, which yields elements A i,m`l`1 P H. In the quotient N Ab {H the basis elements A l`1,m`l`1 , . . . , A m`l´1,m`l`1 thus become zero, and additionally, we have also that A m`l,m`l`1 (which is not in the given basis) becomes zero. Hence the relation ś m`l i"1 A i,m`l`1 " ρ ´2 m`l`1 is sent to the relation ś l i"1 A i,m`l`1 " ρ ´2 m`l`1 , and so N Ab {H is generated by (the images of) the elements A 1,m`l`1 , . . . , A l,m`l`1 , ρ m`l`1 , subject to this relation (as well as the fact that the elements commute pairwise). It thus follows that N Ab {H -Z l . Since the induced action of Γ m,l pSq on N Ab {H is trivial, we conclude that H m pΓ m,l pSq, N Ab {Hq " `Hm pΓ m,l pSq, Zq ˘s, where s " m `l if S " S 2 and s " l if S " RP 2 . It then follows from equation ( 34) that E m,1 2 " H m pΓ m,l pSq, N Ab q ‰ 0. Since E p,q 2 " 0 for all p ą m and q ą 1, we have E m,1 2 " E m,1 8 , thus E m,1 8 is non trivial, and hence H m`1 pΓ m`1,l pSq, Zq ‰ 0. This concludes the proof of the theorem.

We end this paper with a proof of Corollary 6.

Proof of Corollary 6. Let S " S 2 (resp. S " RP 2 ). If n ě 3 (resp. n ě 2) then B n pSq and MCGpS, nq are closely related by the following short exact sequence [S]:

1 ÝÑ @ ∆ 2 n D ÝÑ B n pSq β ÝÑ MCGpS, nq ÝÑ 1,
where the kernel is isomorphic to Z 2 . Now assume that n ě 4 (resp. n ě 3), so that B n pSq is infinite. If Γ is a torsion-free subgroup of B n pSq of finite index then βpΓq, which is isomorphic to Γ, is a torsion-free subgroup of MCGpS, nq of finite index, and hence the virtual cohomological dimension of MCGpS, nq is equal to that of B n pSq. The result then follows by Theorem 5.

  and we are done. So assume that x R L, and suppose that x R L 1 2 . Then qpxq is equal to the non-trivial element of K{L, and since K{L -Z 2 and

	∆ 2 n R L, we see that x∆ 2 n P L. Further, K " L 1 2 > xL 1 2 since rK : L 1 2 s " 2, and so x∆ 2 n P L 1 2 (for otherwise x∆ 2 n P xL 1 2 , which implies that ∆ 2 n P L 1 2 , which is impossible because L 1 2 is torsion free). But then x∆ 2 n P L X L 1 2 " L 2 , and hence x∆ 2 n P L 1 1 . But this would imply that ∆ 2

2n´5 ¸p¨¨¨¸pF 5 ¸F3 q ¨¨¨qq, where for all m P N, F m denotes the free group of rank m.
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L n´1 , τ 1 " p n`1 pαs n pτqα ´1q " ατα ´1 P L n´2 , and thus s n pτ 1´1 qpαs n pτqα ´1q P Ker pp ι n´1 | Ω n q. Hence there exists ω τ 1 P Ker pp ι n´1 | Ω n q such that αs n pτqα ´1 " s n pτ 1 qω τ 1 . Now Ker pp ι n´1 | Ω n q is normal in P n´1 pRP 2 z tx 1 , x 2 uq, so ω 1 " αωα ´1 P Ker pp ι n´1 | Ω n q, and therefore:

This proves the claim, and implies that c α induces an endomorphism p c α (an automorphism in fact, whose inverse is p c α ´1 ) of ∆pKq, in particular, if α, α 1 P P n´2 pRP 2 z tx 1 , x 2 uq and ω P Ker pp ι n´1 | Ω n q then αα 1 ωα 1´1 α ´1 " c αα 1 pωq " p c α pp c α 1 pωqq.

We next compute the elements τωτ ´1 of ∆pKer pp ι n´1 | Ω n qq in the case where τ " A i,j , 3 ď j ď n and 1 ď i ď j ´2, and ω P p B n :

by the Artin relations. We thus conclude that τωτ ´1 " ω in this case.

, where 1 ď l ď n ´1 then τωτ ´1 " ρ n`1 pA i,j A l,n`1 A ´1 i,j qρ ´1 n`1 , and from case (i), we deduce also that τωτ ´1 " ω.

(iii) Let ω " ρ 2 n`1 . Then τωτ ´1 " ω, hence τωτ ´1 " ω. So if τ " A i,j then the relators given by equation ( 28) are trivial for all ω P p B n , and p c A i,j " Id ∆pKerpp ι n´1|Ω n qq . Now suppose that τ " ρ j A i,j ρ ´1 j , where 3 ď j ď n and 1 ď i ď j ´2. Then for all ω P p B n , we have:

since p c A i,j " Id ∆pKerpp ι n´1|Ω n qq , so p c ρ j A i,j ρ j ´1 " Id ∆pKerpp ι n´1|Ω n qq . By equation ( 18), it remains to study the elements of the form τωτ ´1, where τ " ρ 2 j , 3 ď j ď n, and ω P p B n . Since ρ 2 j ωρ ´2 j " p c 2 ρ j pωq, we first analyse p c ρ j . (a) If ω " A l,n`1 , for 1 ď l ď n ´1 then by relation (III) and equations ( 8) and (11), we