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Exponential inequalities for unbounded functions of
geometrically ergodic Markov chains. Applications to
quantitative error bounds for regenerative Metropolis

algorithms.

Olivier Wintenberger∗

Abstract

The aim of this note is to investigate the concentration properties of unbounded
functions of geometrically ergodic Markov chains. We derive concentration properties
of centered functions with respect to the square of the Lyapunov’s function in the drift
condition satisfied by the Markov chain. We apply the new exponential inequalities
to derive confidence intervals for MCMC algorithms. Quantitative error bounds are
providing for the regenerative Metropolis algorithm of [5].

Keywords: Markov chains, exponential inequalities, Metropolis algorithm, Confidence inter-
val.

1 Introduction

At the conference in honor of Paul Doukhan, Jérôme Dedecker presented the new Hoeffd-
ing’s inequality [6] for functions f of a geometric ergodic Markov chain (Xk), 1 ≤ k ≤ n.
Using a similar counter example than in [1], he showed that the boundedness assumption
is necessary to obtain such exponential inequalities for functions of geometrically ergodic
Markov chain.

In this note, we study different concentration properties for relaxing the boundedness
condition. We extend the framework of [6] by considering concentration properties of f
involving a second order term that depends also on the observations. Such exponential
inequalities are empirical Bernstein’s ones. As the second order term is an over estimator
of the asymptotic variance, the new inequality (2.4) is closely related with the self normal-
ized concentration inequalities studied in [7]. In this note, the second order term depends
on the squares of teh Lyapunov’s function V in the drift condition (2.1) satisfied by the
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Markov chain.

We apply our result to the construction of confidence intervals for some MCMC algo-
rithms. Previous studies are based on a two steps reasoning: first some bounds are deriving
with unknown constants, via the Chebyshev’s and Hoeffding’s inequalities, see [15] and [10]
respectively. The second step consists in over-estimating the constants. The confidence
level is obtained by an union bound on the confidence levels of the two steps. Our new
empirical exponential inequalities provide concentration properties thanks to a second or-
der term that is observed. We achieve a quantitative error analysis by a direct application
of the techniques in [7] for the regenerative Metropolis algorithm of [5]. A similar one step
procedure was developed in [14] under a more restrictive Ricci curvature condition. Our
approach provides quantitative bounds that can be reasonable if the Lyapunov’s function
can be well-chosen. However, the confidence intervals are certainly over estimated due to
the conservativeness of the coupling technique used in the proof.

The paper is organized as follows. The main result, the concentration properties for
unbounded functions of Markov chains, is stated in Theorem 2.1 of Section 2. Follow its
proof that relies on a coupling argument mixing the arguments of [11] and [26]. Then
Section 3 is devoted to the construction of confidence intervals for MCMC algorithms. The
case of the regenerative Metropolis algorithm of [5] is studied in details. Simulations and
discussions are given in Section 4.

2 Concentration for unbounded functions of Markov chains
under the drift condition.

We consider an exponentially ergodic Markov kernel P on some countably generated space
E that satisfies the following drift and minorization conditions (2.1) and (2.2) respectively:
it exists a Lypounov function V : E 7→ [1,∞), a probability measure ν and four positive
constants b, R0 and c < 1, β < 1 such that

PV ≤ βV + b, (2.1)
P (x, ·) ≥ c(R)ν(·), if V (x) ≤ R, R ≥ R0. (2.2)

These conditions are slightly stronger than the exponential ergodicity of the Markov chain.
It is related to the Feller’s property, see [19]. Note that c(R)→ 0 asR→∞. The conditions
(2.1) and (2.2) are satisfied in many examples, such as random coefficient autoregressive
processes, see [9], or the trajectories of the Random Walk Metropolis algorithm, see Section
3. Let us consider a function f on En satisfying

|f(x1, . . . , xn)− f(x1, . . . , xk−1, yk, xk+1, . . . , xn)| ≤ Lk(V (xk) + V (yk)). (2.3)

Dedecker and Gouezel [6] extended the Hoeffding’s inequality to the trajectory (X1, . . . , Xn)
of the Markov chain P starting from X0 = x and denoted Px. They proved the existence
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of a constant KR > 0 independent on n such that

Ex[exp(f − Ex[f ])] ≤ eKR
∑n
k=1 L

2
k , x ∈ {V ≤ R}.

We prove the following result:

Theorem 2.1. Assume that P satisfies the drift conditions (2.1) and the minorization
condition (2.2) with R ≥ R0 satisfying β̄(R) := β + 2b/(1 +R) < 1. Assume that PV 2

k :=
E[V 2(Xk) | Xk−1] is well defined and denote Vk := V (Xk). If f satisfies (2.3) we have, for
any x ∈ E,

Ex

[
exp

(
λ(f−Ex[f ])− 1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)

n∑
k=1

(λLk)
2

2
(PV 2

k +V 2
k )
)]
≤ 1. (2.4)

Eq (2.4) holds true in the stationary case with E replacing Ex and E[V (X1)
2] replacing

PV 2
1 .

Remark 2.1. Such inequalities implies exponential inequalities for the normalized pro-
cess. Applying Theorem 2.1 of [7], we obtain the subgaussian inequality E[exp(xY )] ≤√

2 exp(Cx2), x > 0, of the process

Y :=
f − Ex[f ]√∑n

k=1 L
2
k(PV

2
k + V 2

k + 2Ex[V 2
k ])

for some constant C > 0. One recognizes the self normalized process when f =
∑n

k=1 LkVk.
Such bounds cannot be obtained using the approach of [6] because the bounded differences
properties [18] of the self normalized process are growing as

√
n.

Remark 2.2. For bounded function f one can compare (2.4) with the result of Dedecker
and Gouezel [6]. The limitation of the result in Theorem 2.1 is that considering V = 1
constrains the Markov chain to be uniformly ergodic. In such restrictive case, the classical
Bernstein’s inequality was extended by Samson in [24]. So our approach, providing less
accurate exponential inequalities, is useless in the case V = 1. The advantage of our
approach is that we have explicit constants depending on V and that x can be taken
arbitrary in E. For instance, when f =

∑n
k=1 g(Xk) with g bounded, considering the

Markov chain (g(Xk))1≤k≤n and the Lyapunov function V og−1 we obtain

Ex

[
exp

( λ√
n

n∑
k=1

(g(Xk)− Ex[g(Xk)])
)]
≤ eKλ2 , x ∈ E,

with K = (1 + β̄((R − 1)/c(R) − R))/(1 − β̄(R)) supy V
2og−1(y) for y in the range of g.

Then we extend the Hoeffding’s inequality of Dedecker and Gouezel [6] to x ∈ E with an
explicit constant when f =

∑n
k=1 g(Xk) with g bounded.

Proof of Theorem 2.1. The proof is based on a new coupling argument applied to the
coupling scheme (Xk, X

′
k)1≤k≤n of [23], where (X ′k)1≤k≤n is a copy of (Xk)1≤k≤n. Let us
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first recall the construction of the coupling scheme for completeness. Any Markov chain P̄
on E2 with common margins P also satisfies

P̄ V̄ (x, x′) ≤ βV̄ (x, x′) + 2b,

for the drift function V̄ (x, x′) = V (x) + V (x′). Moreover, there exists a coupling kernel P̄ ,
see [23] for details, with common margin P such that

P̄ ((x, x′), · × ·) ≥ c(R)ν(·), (x, x′) ∈ {V ≤ R}2.

In particular, P̄ ((x, x′), ·), (x, x′) ∈ {V ≤ R}2, has a mass at least equal to c(R) on the
diagonal. As V̄ ≥ 1 +R when (x, x′) /∈ {V ≤ R}2, we also have

P̄ V̄ (x, x′) ≤
(
β +

2b

1 +R

)
V̄ (x, x′), (x, x′) /∈ {V ≤ R}2.

We have β̄ = β + 2b/(1 + R) < 1 by assumption. Then one can apply the Nummelin’s
splitting scheme on the Markov chain (Xt, X

′
t) driven by P̄ . There exists an enlargement

(Xt, X
′
t, Bt) with Bt ∈ {0, 1} such that it admits an atom A = {V ≤ R}2 × {1} and

P(Bt = 1 | (Xt, X
′
t) ∈ {V ≤ R}2) = c(R). Let τA denotes the first hitting time to the

atom A. From the Dynkin’s formula, denoting V̄k = V̄ (Xk, X
′
k) we have for any stopping

time τ

Ēx,x′ [V̄τ ] = V̄ (x, x′) + Ēx,x′
[ τ∑
k=1

P̄ V̄k − V̄k−1
]
.

We consider the stopping time τ as the first hitting time to {V ≤ R}2. Plugging the drift
condition in the Dynkin’s formula, we obtain

Ēx,x′ [V̄τ ] = V̄ (x, x′) + Ēx,x′
[ τ∑
k=1

P̄ V̄k − V̄k−1
]

≤ V̄ (x, x′) + (β̄(R)− 1)Ēx,x′
[ τ∑
k=1

V̄k−1

]
.

Then we obtain

Ex,x′
[ τ∑
k=0

V̄k

]
≤
V̄ (x, x′)− β̄(R)Ēx,x′ [V̄τ ]

1− β̄(R)
≤ V̄ (x, x′)− 2β̄(R)

1− β̄(R)
. (2.5)

Denoting τ(j) the successive hitting times to {V ≤ R}2, we have

Ēx,x′
[ ∞∑
k=0

V̄k

]
= Ex,x′

[ τ∑
k=0

V̄k

]
+ Ēx,x′

 ∞∑
j=1

τ(j+1)∑
k=τ(j)+1

V̄k1B1=···Bj=0


≤ V̄ (x, x′)− 2β̄(R)

1− β̄(R)
+ Ēx,x′

 ∞∑
j=1

(1− c(R))jĒ(Xτ(j),Xτ(j)′ )

 τ(j+1)∑
k=τ(j)+1

V̄k

 .
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using the strong Markov property to assert the last identity. Using (2.5) and sup{V≤R}2 V̄ ≤
2R we obtain

Ē(Xτ(j),Xτ(j)′ )

 τ(j+1)∑
k=τ(j)+1

V̄k

 ≤ sup
{V≤R}2

Ex,x′
[ τ∑
k=1

V̄k

]
≤ 2β̄(R)

1− β̄(R)
(R− 1)

Collecting those bounds, we derive

Ēx,x′
[ ∞∑
k=0

V̄k

]
≤ V̄ (x, x′)− 2β̄(R)

1− β̄(R)
+

2β̄(R)(R− 1)

c(R)(1− β̄(R))
− 2β̄(R)(R− 1)

1− β̄(R)

≤ V̄ (x, x′)− 2β̄(R)R

1− β̄(R)
+

2β̄(R)(R− 1)

c(R)(1− β̄(R))
.

We are now ready to use our new coupling argument, combining the metric dV (x, y) =
V̄ (x, y) = V (x) + V (y) if x 6= y and dV (x, y) = 0 else of [11] with the Γ-weak dependence
notion of [26]. A main difference with [11] is that the coupling argument of [26] does not
require any contractivity of the Markov kernel with respect to the metric dV . Denoting
K = (1 + 2β̄(R)((R− 1)/c(R)−R)/(1− β̄(R)), we have

Ex,x′
[ ∞∑
k=0

dV (Xk, X
′
k)
]

= Ex,x′
[ τA∑
k=0

dV (Xk, X
′
k)
]
≤ KdV (x, x′) (2.6)

as Xk = X ′k for k > τA. Recall the following definition from [26]:

Definition 2.1. A Markov chain is ΓdV ,dV (1)-weakly dependent if for any (x, x′) ∈ E2

there exist coefficients γk,0(1) ≥ 0 and a coupling scheme (Xk, X
′
k)1≤k≤n satisfying

Ex,x′ [dV (Xk, Yk)] ≤ γk,0(1)dV (x, x′), 0 ≤ k ≤ n.

In view of (2.6), we claim that the Markov chain (Xk)1≤k≤n is ΓdV ,dV (1)-weakly de-
pendent with dependence coefficients satisfying

∞∑
k=0

γk,0(1) ≤ K.

We denote X = (X1, . . . , Xn) on En starting from x with distribution Px and dV,L the
metric on En such that

dV,L(x, y) =

n∑
k=1

LkdV (xk, yk).

Recall the definition of the Wasserstein distance between Px and any measure Q on En

W1,dV,L(P,Q) = inf
π
Eπ[dV,L(X,Y )],

where π is any coupling measure such that (X,Y ) ∼ π, X ∼ Px and Y ∼ Q. From Eq.
(3.11) of [26], we have the following result: denoting QY (j−1) the conditional probability
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of Y given Y (j−1) = (Y1, . . . , Yn) and noticing that PY (j−1) = PYj−1 by the strong Markov
property, the Wasserstein distance satisfies

W1,dV,L(P,Q) ≤
n∑
j=1

n∑
k=j

γk−j,0(1)EQ[LjW1,dV (PYj−1 , QY (j−1))]

≤ K

n∑
j=1

LjEQ[W1,dV (PYj−1 , QY (j−1))].

We estimate the right hand side term applying successively Cauchy-Schwarz and Young’s
inequalities

W1,dV (PYj−1 , QY (j−1)) = inf
π
Eπ[(V (X ′) + V (Y ′)) I1X 6=Y ]

≤
√
Eπ[V 2(X ′)]E[π(X ′ 6= Y ′ | X ′)2]

+
√
Eπ[V 2(Y ′)]E[P(X ′ 6= Y ′ | Y ′)2]

≤λ
2

(Eπ[V 2(X ′)] + Eπ[V 2(Y ′)])

+
Eπ[π(X ′ 6= Y ′ | X ′)2] + Eπ[P(X ′ 6= Y ′ | Y ′)2]

2λ
.

As X ′ ∼ PYj−1 one can identify E[V 2(X ′)] = PV 2
j . We then use the following improvement

of the Marton’s inequality [17] (see Lemma 8.3 of [3] combined with Lemma 2 of [24])

Eπ[π(X ′ 6= Y ′ | X ′)2] + Eπ[π(X ′ 6= Y ′ | Y ′)2] ≤ 2K(QY (j−1) , PYj−1),

where K(Q,P ) is the Kulback-Leibler divergence between two probability measures P and
Q:

K(Q,P ) = EQ[log(dQ/dP )].

We obtain

W1,dV (PYj−1 , QY (j−1)) ≤
λ

2
(PV 2

j + Eπ[V 2(Y ′)]) + λ−1K(QY (j−1) , PYj−1).

Combining those inequalities, as Y ′ ∼ QY (j−1) so that EQ[Eπ[V 2(Y ′)]] = EQ[V 2
j ], we obtain

W1,dV,L(P,Q) ≤ K
n∑
j=1

LjEQ[W1,dV (PYj−1 , QY (j−1))]

≤ K
n∑
j=1

(
λL2

j

2
(Eπ[V 2(X ′)] + Eπ[V 2(Y ′)])

+
Eπ[π(X ′ 6= Y ′ | X ′)2] + Eπ[π(X ′ 6= Y ′ | Y ′)2]

2λ

)

≤ KEQ

 n∑
j=1

(
λL2

j

2
(PV 2

j + V 2
j ) + λ−1K(QY (j−1) , PYj−1)

) .
6



From the identity

EQ

[ n∑
j=1

K(QY (j−1) , PYj−1)
]

= K(Q,Px)

we obtain

W1,dV,L(Px, Q) ≤ KEQ

[
n∑
k=1

λL2
k

2
(PV 2

k + V 2
k )

]
+ λ−1K(Q,Px).

Then we apply the Kantorovich’s duality (see for instance [25]):

W1,dV,L(Px, Q) = sup
g
EQ[g]− Ex[g]

where g is 1-Lipschitz with respect to the dV,L metric:

|g(x)− g(y)| ≤
n∑
k=1

Lj(V (xk) + V (yk)) I1xk 6=yk .

Thus, as any f satisfying (2.3) also satisfies such Lipschitz condition, we obtain

EQ

[
λ(f − Ex[f ])−K

n∑
k=1

(λLk)
2

2
(PV 2

k + V 2
k )
]
≤ K(Q,Px).

Choosing the probability measure Q as

dQ ∝ exp
(
λ(f − Ex[f ])−K

n∑
k=1

(λLk)
2

2
(PV 2

k + V 2
k )
)
dPx

we obtain the desired inequality for the trajectory X starting from x ∈ E.

In the stationary case, one replaces PY0 = Px(X1 ∈ ·) by P0 the unconditional distribu-
tion of X1. Adding artificially an initial point X0 = Y0 = x0 for a fixed point x0 ∈ E, we
check the ΓdV ,dV weak dependence of the stationary trajectory (X1, . . . , Xn) even if that
notion of dependence is defined conditionally to the past, see [8] and [26] for more details.
Thus the same reasoning holds and the result follows similarly in the stationary case.

3 Application to non asymptotic confidence intervals for MCMC
algorithms

In this section we are considering the approximation of
∫
g(x)dP0(x) = E[g] for some

unbounded function g and some density P0, known up to the normalizing constant. The
Markov Chain Monte Carlo (MCMC) algorithms generates the approximation 1

n

∑n
k=1 g(Xk)

where (Xk)1≤k≤n is a Markov chain admitting P0 as its unique stationary distribution. We
refer to [22] for a survey on MCMC algorithms. Usually, one has to consider a burn-in
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period to deal with the bias |E[g]−Ex[g]| due to the arbitrary choice of the initial state x of
the Markov chain. However, recent algorithms based on regeneration schemes start auto-
matically under the stationary distribution, see [21] and [5] for instance. We will only focus
on such algorithms to avoid the issue of the burn-in period and corresponding quantitative
bounds on the bias |Ex[g]− E[g]|.

3.1 Estimation errors for MCMC algorithms

An interesting case is when |g| is proportional to a drift function L|g| = V . In the stationary
case, we have

E
[

exp
(
λ

n∑
k=1

(g(Xk)− E[g])− 1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)

n∑
k=1

λ2

2
(Pg2k + g2k)

)]
≤ 1.

Notice that the square integrability of g is satisfied if g2 is also proportional to a Lyapunov’s
function. Then the mean ergodic theorem applies and we obtain the a.s. convergence

1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)

1

2n

n∑
k=1

Pg2k + g2k →k→∞
1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)
Eπ[g2].

Moreover, the CLT applies and (
∑n

k=1 g(Xk)−Ex[g])/
√
n→d σ2(g)N where N ∼ N (0, 1)

and the asymptotic variance σ2(g) can be expressed as

σ2(g) = Var π[g2] + 2
∞∑
k=1

Covπ[g(X0), g(Xk)].

Thus, if one could consider the exponential inequality asymptotically, one would obtain

E[exp(λσ(g)N)] ≤ exp

(
λ2

1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)
Eπ[g2]

)
, λ > 0.

The quantity (1 + β̄(R)((R − 1)/c(R) − R))Eπ[g2]/(1 − β̄(R)) appears as a natural over
estimator of σ2(g)/2. Similar upper bounds have been derived under the spectral gap con-
dition in [23] and under the Ricci curvature condition in [14]. The spectral gap assumption
relies on the control of the correlations for any square integrable functions of the Markov
chain. The Ricci curvature condition relies on the contraction properties of any Lipschitz
functions of the Markov chain. The advantage of the drift condition’s approach is that the
constants b and β are related only with the Lyapunov’s function V . So the estimate can be
much sharper if the Lyapunov’s function can be well chosen, i.e. close to g. A careful look
at the proof of Theorem 2.1 shows that, using our coupling argument, one can improve the
over estimator of the asymptotic variance to

σ2(g) ≤ Eπ[g2]

(
1 +

2β̄(R)

1− β̄(R)

)
+
β̄(R)((R− 1)/c−R)

1− β̄(R)
.

8



Better upper bounds for the asymptotic variance have already been obtained in [15] by
a direct application of the Nummelin’s scheme on (X1, . . . , Xn) (and not on the coupling
scheme). It is an open question if such sharper over estimators of the asymptotic variance
satisfy an empirical Bernstein’s inequality similar than (2.4). It seems that our large
over estimation (see Section 4 for numerical values) is partly due to the fact that the
approximation of Eπ[g2] can be quite unstable (eventually Eπ[|g|2+δ] = ∞ for all δ > 0)
but also because the coupling technique used in the proof seems very conservative, see
discussions in Section 4.

3.2 Confidence interval for the regenerative Metropolis algorithm

We consider the RandomWalk Metropolis algorithm to simulate a Markov chain (Xk)1≤k≤n
on E = Rd, d ≥ 1, with stationary distribution P proportional to some positive continuous
function π given. For some continuous symmetric positive density q one simulates Zk iid
and Uk iid uniform on [0, 1] and independent of the Zk. Then one computes recursively
the Markov chain Xk from the relation

Xk = Xk−1 + Zk I1Uk≤min(1,π(Xk−1+Zk)/π(Xk)), k ≥ 1, X0 = x.

Mengersen and Tweedie provide in [20] sufficient conditions (that are almost necessary)
on π for the geometric ergodicity of the Random Walk Metropolis algorithm, the α log-
concavity in the tails assumption (α > 0): there exists x1 > 0 such that

π(y)

π(x)
≤ exp(−α(|y| − |x|)), |y| > |x| > x1, (3.1)

where | · | is some norm on E. Let us recall the result in Theorem 3.2 of [20]:

Theorem 3.1. If d = 1, π satisfies (3.1) and q(x) ≤ be−α|x| for some α > 0 then the
Random Walk Metropolis algorithm is geometrically ergodic with the drift function V (x) =
es|x|, s < α.

To overcome the bias issue we simulate under the stationary measure using the regener-
ative Metropolis algorithm of Brockwell and Kadane [5] in a simple version (the algorithm
1 in [5] with q as the re-entry proposal distribution). It creates an artificial atom that has
to be removed to obtain the Markov chain (Xk)1≤k≤n. The visits to the atom corresponds
to the state A = 1. The chain Xk is only updated outside the atom when A = 0. The
only drawback of the approach is that it requires more than n steps to obtain (Xk)1≤k≤n
because of the rejection steps. To overcome this issue, one can use a parrallelized version
of the algorithm, see [4]. Let (Vk) be iid uniform over [0, 1] independent of the Zks and
the Uks. The pseudo code of the algorithm is given in Figure 1. The idea is to mix the
rejection sampling and the Metropolis Random Walk algorithm. Doing so, the rejection
step is very robust to the choice of the constant k > 0 in the threshold π/(kq). Here
we assume that k = 1 for simplicity. The algorithm simulates automatically the Markov
chain under the stationary measure. It also appears that the rejection step increases the

9



Initialization A = 1.
Compute recursively Xik , k ≥ 1,

• if A = 1

– if Vk < π(Zk)/q(Zk) then Xik = Zk and A = 0,

– else A = 1.

• if A = 0 then Yk = Xik−1
+ Zk I1Uk≤π(Xik−1

+Zk)/π(Xik−1
)).

– if Vk > q(Yk)/π(Yk) then Xik = Yk and A = 0

– else A = 1.

Figure 1: the hybrid Metropolis Random Walk algorithm

irreducible property of the chain. In particular, the Markov chain satisfies condition (2.2)
on {V ≤ R} for any R > 0 with ν = q and

c(R) = E[π(Z)/q(Z)∧ 1] min

(
(1− E[π(Z)/q(Z) ∧ 1]), min

{V (x)≤R}
E[q(x+ Z)]/π∞

)
, (3.2)

for π∞ satisfying π(x) ≤ π∞, x ∈ E.
Define as above the Lapounov’s function V (x) = es|x|, x ∈ R, and denote ‖g‖V =

supx∈E |g(x)|/V (x). We have the following result, for d ≥ 1,

Theorem 3.2. Assume that π satisfies (3.1) and q(x) ≤ Ce−α|x| for some C > 0 and
α > 2s. Assume that R ≥ V (x1) is sufficiently large such that

β̄(R) := E[exp((s− α)|Z|)] +
2V (x1)E[V (Z)]

1 +R
< 1.

Then for any function g such that ‖g‖V <∞, we have, for any y > 0 and n ≥ 1,∣∣∣∣∣ 1n
n∑
k=1

g(Xk)− E[g]

∣∣∣∣∣ ≤ x‖g‖V√
n

√
(σ̂2n(V ) + y)

(
1 +

1

2
log(σ̂2n(V )/y + 1)

)
, (3.3)

with probability 1 − exp(−x2/2), x >
√

2 and with the over estimator of the asymptotic
variance σ2(V ):

σ̂2n(V ) :=
1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)

(
1 + E[V 2(Z)]

n

n∑
k=1

V 2(Xk) + εn

)

and εn = (E[V 2(X)]− V 2
nE[V 2(Z)])/n is considered as a non observable negligible term.
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Proof. We already show in (3.2) that the minorization condition (2.2) is satisfied on the
small set {V (x) ≤ R} with the constant c(R)→ 0 as R→∞.

Let us check that the Markov chain satisfies the drift condition (2.1) with the Lya-
punov’s function V (x) = exp(s|x|). First consider the case A = 1, then Ex[V (X1)] ≤
E[V (Z)], x ∈ E and E[V (Z)] = E[exp(s|Z|)] is finite because q(x) ≤ be−α|x|. Second,
consider the case A = 0 and |x| > x1, then under (3.1) we have

Ex[V (X1)] = Ex[V (X1) I1|X1|≤|x|] + Ex[V (X1) I1|X1|>|x|]

≤ V (x)Px(|X1| ≤ |x|) + Ex

[
V (x+ Z1)π(x+ Z1)/π(x) I1|x+Z1|>|x|

]
≤ exp(s|x|)

(
1 + E

[
(exp((s− α)(|x+ Z1| − |x|))− 1) I1|x+Z1|>|x|

])
.

If x > 0, as the integrand is negative we have:

E
[
(exp((s− α)(|x+ Z1| − |x|))− 1) I1|x+Z1|>|x|

]
≤ E

[
(exp((s− α)Z1)− 1) I1Z1>0

]
.

The same reasoning applies if x < 0 and as q is symmetric we obtain

E
[
(exp((s− α)(|x+ Z1| − |x|))− 1) I1|x+Z1|>|x|

]
≤ 1

2
E[exp((s− α)|Z1|)− 1].

Finally, when A = 0 and |x| ≤ x1 we use the upper bound Ex[V (X1)] ≤ V (x1)E[V (Z)].
Thus, the drift condition (2.1) is satisfied by V (x) = es|x| with b1 = V (x1)E[V (Z)] and β1 =
(1+E[exp(s−α)|Z|)])/2. Notice that by similar arguments we also have the drift condition
(2.1) satisfied by V 2 with b2 = V 2(x1)E[V 2(Z)] and β2 = (1 + E[exp(2s − α)|Z|)])/2. So
PV 2

k are well defined as the second moments are finite. We apply the stationary version of
Theorem 2.1 to obtain

E
[

exp
(
λ

n∑
k=1

(g(Xk)− E[g])− 1 + β̄(R)((R− 1)/c(R)−R)

1− β̄(R)

n∑
k=1

1

2
(PV 2

k + V 2
k )
)]
≤ 1.

As PV 2
k is not observed, we over estimate it by V 2

k−1E[V 2(Z)] for 2 ≤ k ≤ n. The negligible
term εn correspond to the fact that PV 2

1 = E[V 2(X)] is replaced by V 2
nE[V 2(Z)] in the

expression of σ̂2n(V ). Finally we apply Corollary 2.2 of [7] to obtain the desired result.

4 Discussion and simulations study

We provide in this section some discussions accompanied by some simulations study.

Discussion about the Luyapunov’s function V : Compared with [6], the approach is very
dependent on the choice of the Lyapunov’s function V . It is good because then the con-
stants involved can be reasonable if V is well chosen. Moreover, for the MCMC application
when f(X1, . . . , Xn) =

∑n
k=1 g(Xk), it seems more efficient to take V as close to |g| as

possible, i.e. as small as possible. Indeed, the larger is V and the larger b is in (2.1).

11



So the larger is R in β̃ and the smaller is c(R) in (2.2). By a convex argument, one can
actually shows that the drift condition (2.1) holds for all Lyapunov’s functions V p with
0 < p < 1. So the range of admissible Lyapunov’s function is quite large. For instance,
in the Metropolis algorithm, any V (x) = exp(s|x|) for s < 2α is admissible. However,
we are not aware of any other Lypunov’s functions for this algorithm and the Metropolis
algorithm will have good properties for functions g with exponential shape. An interested
issue is to know wether, given an unbounded g, one can always find an algorithm such that
(2.1) is almost satisfied for |g|.

Discussion about the quantitative bounds: The explicit constant in Theorem 2.1 is very
large. For instance, the contracting normals toy-example considered in [2] satisfies our
conditions; it corresponds to the case of an AR(1) model Xk = 0.5Xk−1 +

√
3/4Nk where

Nk are iid standard gaussian random variables. The stationary solution is the standard
gaussian distribution, g(x) = x, E[g] = 0 and V (x) = 1 + x2, see [2] and [15] for more
details. Then the constant K = (1+2β̄(R)((R−1)/c(R)−R)/(1−β̄(R)) ≈ 7, 000, 000, 000,
is larger by 3 orders of magnitude than the constants in [16]. Note that [15] improved the
constants of [16] by 5 orders of magnitude. Our bounds are much larger because of the
use of our coupling argument. It would be interesting to obtain an empirical Bernstein’s
inequality by applying the Nummelin’s scheme directly on the Markov chain trajectory
(X1, . . . , Xn).

Those large constants are due to the poor irreducible properties of the toy-example,

c(R) = 2(Φ(
√

3d)− Φ(
√

3/d) with R =
√

2 + (d2 − 1)/4,

see [2] and [16] for details on those elementary computations. As small values of c(R) are
the main issue to control the constant, it is worth to improve the irreducibility properties
of the Markov chain. The hybrid algorithms as the one of Brockwell and Kadane [5] offer
a simple way of increasing c(R). The only drawback is that it also increases the necessary
runs in the algorithms to generate a trajectory of fixed length. In figure 2 we compare
the MSE computed on 100 Monte Carlo simulations of n = 10000 runs of the Hybrid (1),
Rejection (2) and Metropolis (3) algorithms. The proposal distribution is the standard
gaussian (d = 1) and π(x) = e−(x−1)

2 , x ∈ R. The initial value for the Metropolis al-
gorithm is 0. The bias issue could explain why the Metropolis algorithm is slightly over
performed by the hybrid algorithm. The large number of rejects, even if the ratio π/(kq)
has been optimized, should explain why the Rejection algorithm is over performed by the
hybrid algorithm. When π(x) = e−x

2 then c(R) is reasonable for the hybrid algorithm and
K ≈ 2, 650, 000. It still requires more than 100 ∗ log(10) ∗K ∗ log(K)/2 ≈ 4, 500, 000, 000
runs for obtaining a confident interval of level 0.1 and of reasonable length ≈ σ(V )/10.

Discussion about the median trick: We based our comparaison with previous quanti-
tative bounds of [16] and [15] above on confident intervals of level 0.1. As the previous
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Figure 2: Comparaison of the MSE of the Hybrid (1), Rejection (2) and Metropolis (3)
algorithms.

bounds [16] and [15] are based on the Chebychev’s inequality

P

(∣∣∣∣∣
n∑
k=1

g(Xk)− E[g]

∣∣∣∣∣ > ε

)
≤
‖g‖2V σ̂2n(V )

nε
,

they are not efficient to produce confidence intervals with small levels. To bypass the
problem, the median trick of [13] is used. The trick is to approximate E[g] thanks to the
median ofm independent approximations 1

n

∑n
k=1 g(Xi,k), 1 ≤ i ≤ m of MCMC algorithms

with the same confidence interval length of level a < 1/2. Then if m ≥ 2 log(α)/ log(4a(1−
a)) the confidence level of the interval around the median is reduced to α < a, see Lemma
4.4 in [16]. However, exponential Bernstein’s inequalities as (2.4) shows that the interval
around the mean of the m independent approximations (based on mn runs) has level α < a
whenm ≥ log(α)/ log(a). So, when Theorem 2.1 applies, the mean 1

m

∑m
i=1

1
n

∑n
k=1 g(Xi,k)

seems to have better concentration properties than the median.
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