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Estimation of Heat Source Term and Thermal Diffusion in Tokamak

Plasmas Using a Kalman Filtering Method in the Early Lumping

Approach*

Sarah Mechhoud1, Emmanuel Witrant1, Luc Dugard1 and Didier Moreau2

Abstract— In this paper, early lumping estimation of space-
time varying diffusion coefficient and source term for a non-
homogeneous linear parabolic partial differential equation
(PDE) describing Tokamak plasma heat transport is considered.
The analysis of this PDE is achieved in a finite dimensional
framework using the cubic b-splines finite element method with
the Galerkin formulation. This leads to a finite dimensional
linear time-varying state-space model with unknown parame-
ters and inputs. The Extended Kalman Filter with Unknown
Inputs Without Direct Feed-through (EKF-UI-WDF) is applied
to estimate simultaneously the unknown parameters and inputs
and an adaptive fading memory coefficient is introduced in
the EKF-UI-WDF, to deal with time varying parameters.
Conditions under which the direct problem is well posed and the
reduced order model converges to the initial one are established.
Insilico and real data simulations are provided to evaluate the
performances of the proposed technique.

I. INTRODUCTION

Distributed parameter systems (DPS) widely exist in in-

dustrial processes. These physical and chemical systems are

governed by partial differential equations (PDE) and complex

spatio-temporal nonlinear dynamics. In many situations, it

is difficult to get an accurate nominal PDE description due

to incomplete physical or chemical knowledge (unknown

system parameters, unknown disturbances...). These uncer-

tainties make the modelling problem tedious. Three different

problems in DPS are of prime interest: (i) model reduction

when the objective is to reduce the process high-order to limit

computation loads, (ii) system identification (”black-box

modelling”) for which the structure of the PDE is unknown

and the problem is to capture the dominant dynamics, and

(iii) parameter estimation (”grey-box modelling”), where the

PDE structure is available and only some parameters need to

be known. This late problem constitutes our field of interest.

Thermonuclear fusion is a very complex physical process

where several DPS phenomena (magnetohydrodynamics)

occur. It has been proposed as a promising alternative to

fossil fuels and as a sustainable energy source since the

40s. A nuclear fusion reaction between light atoms such as
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the hydrogen isotopes deuterium and tritium yields to large

amounts of energy: from 100 mg of deuterium plus 150 mg
of tritium, it is possible to extract the same energy as the

one produced by 7 barrels of oil. To extract energy from a

fusion reaction, different confinement concepts exist: mainly

inertial confinement (high-energy beams of laser light, elec-

trons or ions) and magnetic confinement (in stellerators and

tokamaks). Tokamak plasmas are considered in this work.

A major drawback of nuclear fusion is that the fuel burns

at a temperature of hundreds of million Kelvin, rendering

precise physical modelling and feedback design particularly

difficult to achieve.

To obtain and maintain plasma conditions that are optimized

for energy generation and to guarantee safe fusion operations

(especially in advanced scenarios), the control of heat and

particles transport in tokamaks is mandatory. Understand-

ing heat transport mechanisms helps in explaining plasma

instability and energy losses and this may lead to reliable

predictions of the tokamak performances [1]. In this work,

electron heat transport is described by a one-dimensional

diffusion equation in a cylinder, where electrons and ions

heat diffusivities are distributed (space-time varying). Several

empirical models for the diffusion coefficient in hot plasmas

exist ([2], [3], [4] and references therein). They depend on

several conditions (tokamak dimensions, discharge parame-

ters and temperature profiles to name a few), but all of them

assert the diffusivity dependence on the temperature gradient

and the magnetic and velocity shears. As a consequence, the

heat model becomes nonlinear, complex and coupled with

other variables. Another unknown quantity is the heating

energy absorbed by the particles, called the source term. It

depends on the power deposition profiles and on the efficien-

cies of the various heating systems (radio-frequency waves

and high-energy neutral beams), and is sometimes difficult

to model because of parasitic phenomena and anomalous

energy losses. To derive an experimentally-based model, the

diffusion coefficient formula is assumed to be of an unknown

form and we aim to reconstruct this coefficient and the source

term using parameter identification tools. Note that, in all

previous studies which dealt with the heat diffusivity esti-

mation in tokamak plasmas (see [5] and references therein),

the source term was supposed to be a known quantity. In

these works, only heating by Electron Cyclotron Resonance

Heating (ECRH) was considered: experimental results have

proved that using this mean of heating, plasma’s electrons

absorb almost ≃ 100% of the heating power [6], [5]. When



the heating mode is different (Low Hybrid , Neutral Beam

Injection and Ion Cyclotron Resonance Heating) the source

term is an ambiguity (see [7]).

The main contribution of this paper is that it considers the

estimation problem of both the diffusion coefficient and the

source term with no a priori assumptions and free of the

Tokmak’s operational conditions.

The estimation of these parameters is needed to optimize

current and pressure profiles which allows the reactor to be

run close to the stability limits of magnetic confinement in

a controlled manner (see [1]).

In general, estimating a partial differential equation (PDE)

is a challenging task. This work is dedicated to propose some

answers to this problem in the finite dimensional framework,

called also early lumping approach. It consists in performing

a spatial discretization of the PDE to generate a set of

ordinary differential equations (ODE) that constitutes an

approximation of the original PDE model. For this reduced

model, an estimation design is developed in the framework

of the classical estimation/identification theory of lumped

parameter systems (LPS). It must be noted that through early

lumping, the finite dimensional model may be of high order

and thus difficult to implement.

In this paper, we first convert the PDE model for heat

transport into a finite dimensional system, i.e. a set of

ODEs by means of the finite element method (FEM) in

the Galerkin formulation using cubic b-splines functions [8]

(FEM-Galerkin cubic b-splines method). Since diffusion and

source term are functional parameters, in the early lumping

approach the distributed PDE equation is converted into a

linear time-varying system (LTV) with unknown parameters

and inputs using the projection/interpolation methods. In

order to reconstruct them, an estimation procedure has to

be developed.

In the literature, model-based state and input estimation

have received considerable attention since the 70’s. In [9],

the unknown input was considered as a part of the state with a

Gaussian distribution. This assumption is not valid for every

input variable: some are deterministic whereas many others

are not Gaussian. In [10], an unbiased minimum variance

filter was proposed to estimate the state independently of

the unknown inputs. Since [10], several papers dealt with

this problem in the MVU (minimum variance unbiased)

framework [11], [12], [13], [14], where optimality conditions

in the scope of unbiased minimum variance estimation were

generated. Other methods, especially for observer-based de-

sign using matrix manipulations [15], [16], sliding modes

[17] or linear matrix inequalities [18] were developed. Most

of these methods address the problem of joint state and

input estimation and cannot be easily extended to include

the parameter estimation. They typically do not guarantee

optimality in the least square sense. To cope with this

situation, the Kalman Filter for Unknown Inputs Without

Direct Feed-through (KF-UI-WDF) is a good approach [19].

This filter guarantees the optimality both in the MVU and

the least-squares sense.

By minimizing a weighted least squares objective function

with respect to an extended variable including the actual

states and all unknown inputs from the initial measurement

time t0 to the current one tk, a recursive least-squares

estimation approach is performed and the KF-UI-WDF is

derived. Throughout this paper, we assume that distributed

sensing and measurements are available. The question of

input estimation is not only related to heat transport but

arises, to cite few, in fault detection, machine tool and

manipulator applications, chaotic systems and general inverse

problems.

This paper is organized as follows. In Section II, the

electron heat model and its well-posedness’s conditions are

presented. In Section III, the early lumping estimation ap-

proach using the projection method and the EKF-UI-WDF

are introduced after proving the convergence of the finite

dimensional estimation problem. The case of time varying

parameters using an adaptive fading memory is considered

in Section IV. Computer simulations using both simulated

and real data are provided to demonstrate the efficiency of

the proposed methodology.

II. ELECTRON HEAT TRANSPORT IN A TOKAMAK

A. Model description

Assuming poloidal and toroidal axisymmetry, the tokamak

is considered as an infinite cylinder where space variations

occur along only the small plasma radius a. This hypothesis

typically referred to as the ”cylindrical approximation” and

implies the symmetry of the variables with respect to the

plasma center. Applying the energy conservation principle,

the electron heat transport model is given by the following

parabolic partial differential equation [20]:

3

2

∂(nT )

∂t
=

1

r

∂

∂r
(rnχe(r, t)

∂T

∂r
)− 3

2τ
nT (r, t) + Pe(r, t)

(1)

where t is the time, r is the radial variable along a, χe is the

electron diffusivity, τ(< ∞) is a damping time modelling

the energy losses, T is the electron temperature, n is the

electron density and Pe is the power density absorbed by

the particles from an external heating system. The spatio-

temporal variations of the electron density are assumed to be

negligible with respect to the temperature variations during

the heating process, and using the normalized variable z =
r

a
, (1) can be written as:



































∂T

∂t
=div

(

χe(z, t)
∂T

∂z

)

− 1

τ
T (z, t) + S(z, t), z ∈ Ω, t ∈ [0, tf ]

∂T

∂z
(z = 0, t) = 0, T (z = 1, t) = 0, t ∈ [0, tf ],

T (z, t = 0) = 0, z ∈ Ω,
(2)

where Ω is the interval ]0, 1[, tf is the final time and div is

the divergence operator in the cylindrical axisymmetry con-

figuration: div(.) :=
1

z

∂

∂z
(z .). The normalized source term

S(z, t) and diffusivity coefficient χe(z, t) are respectively



given by:














S(z, t) =
2

3n
Pe(z, t)

χe(z, t) =
2

3 a2
χe(r, t)

(3)

In system (2), the second and third equations represent initial

and boundary conditions, chosen to guaranty the plasma

symmetry (no gradient at z = 0) and a negligible temperature

at the plasma edge (T (1, t) = 0) in comparison with the

central temperature. The initial temperature is set to zero by

considering that all the energy is brought by the external

sources S(z, t).
Even if it has been shown (e.g see [21]) that the diffusion

coefficient χe depends on the temperature gradient, in order

to take advantage of the linear aspect of our PDE, in this

paper it is assumed that there is no a priori assumption on

χe.

B. Well-posedness of the direct problem

A well-posed problem is a problem which satisfies the

Hadamard well-posedness conditions: (i) existence of at least

one solution to the problem, (ii) uniqueness of this solution

and (iii) stability of this solution with respect to data [22]. In

this work, the variational formulation is used to find under

which conditions a weak solution of (2) is guaranteed to

satisfy Hadamard conditions.

We first introduce the separable Hilbert spaces of interest:

* L2(Ω) =

{

f :

∫

Ω

f2 ∂Ω <∞
}

and its usual norm ‖.‖0

defined by: ‖f‖0 =
(∫

Ω

f2 ∂Ω

)1/2

.

* H1
0,{1}(Ω) = {f ∈ L2(Ω) : f |1 = 0 , ∇f ∈ L2(Ω)}

endowed with the inner product (. , .) and the norm ‖ .‖1,

defined respectively as follows:














∀f , g ∈ (H1
0,{1}(Ω))

2 : (f, g) =

∫

Ω

f g ∂Ω.

∀f ∈ H1
0,{1}(Ω) : ‖ f‖1 = ‖ f ‖0 + ‖∇f ‖0.

(4)

The spaces H1
0,{1}(Ω), L2(Ω) and H−1(Ω) form a ”Gelfand

triple” (see [23], chapter 5), where H−1(Ω) is the dual

space of H1
0,{1}(Ω).

Let Xe be a special Banach space defined as:

∀x ∈ Ω , ∀ t ∈ [0, tf ]

Xe =
{

f∈L2(0, tf ;L
2(Ω)): ∃ c1, c2∈R∗

+ : c2>f(x, t)> c1

}

To get the variational formulation of this problem, we first

multiply equation (2) by a test function v(z) ∈ H1
0,{1}(Ω)

and then integrate on Ω:

∫ 1

0

∂T

∂t
v(z)dz =

∫ 1

0

div

(

χe(z, t)
∂T

∂z

)

v(z)dz

− 1
τ

∫ 1

0

T (z, t)v(z)dz +

∫ 1

0

S(z, t)v(z)dz.

(5)

Using the Gauss’ divergence formula:

∫ 1

0

div

(

χe(z, t)
∂T

∂z
v(z)

)

dz = χe(z, t)
∂T

∂z
v(z)

∣

∣

∣

1

0

and:

div

(

χe
∂T

∂z
v(z)

)

= v(z) div

(

χe
∂T

∂z

)

+ χe
∂T

∂z

dv

dz
,

we obtain the following integration by parts for the diver-

gence term:

∫ 1

0

div

(

χe
∂T

∂z

)

v(z)dz = χe
∂T

∂z
v(z)

∣

∣

∣

1

0
−
∫ 1

0

χe
∂T

∂x

dv

dz
.

Taking into account the boundary conditions, equation (5)

becomes:
∫ 1

0

∂T

∂t
v(z)dz = −

∫ 1

0

χe(z, t)
∂T

∂z

dv

dz
dz

− 1
τ

∫ 1

0

T (z, t)v(z)dz +

∫ 1

0

S(z, t)v(z)dz.

(6)

Since we are dealing with evolution equations, it is con-

venient to adopt the following viewpoint. Assume that for

every t ∈ [0, tf ] (or at least almost everywhere in [0, tf ])
the function u(z, t) belongs to the Hilbert space H1

0,{1}(Ω).

Then the function u(t) is considered as a function of the real

variable t with values in H1
0,{1}(Ω):

u : [0 , tf ] −→ H1
0,{1}(Ω). (7)

We can then write T (t) and Ṫ (t) instead of T (z, t) and
∂T

∂t
(z, t). Accordingly χe(z, t) := χe(t), S(z, t) := S(t).

From the variational formulation (6), the bilinear form

b(T, v;χe) defined on (H1
0,{1}(Ω))

2 which gets its values

in R is given by:

b(T, v;χe) =

∫ 1

0

χe(t)
∂T

∂z

dv

dz
dz +

1

τ

∫ 1

0

T (t)v(z)dz,

(8)

and L(v;S) is a linear form defined on L2(0, tf ;H
−1(Ω))

such that:

∀v ∈ H1
0,{1}(Ω), L(v;S) =

∫ 1

0

S(t) v(z) dz. (9)

Equation (6) can then be written as:






(Ṫ , v) + b(T, v;χe) = L(v;S); ∀v ∈ H1
0,{1}(Ω),

T (0) = 0,
(10)

which is the weak formulation of problem (2).

Theorem 2.1: For all χe in Xe, τ in R
∗
+ and S in

L2(0, tf ; L
2(Ω)), the system (10) admits a unique solution

in L2(0, tf ;H
1
0,{1}(Ω)) which is stable with respect to the

data (χe, τ, S).

Proof See Appendix I.



To get the classical solution of system (2) such that T (z, t) ∈
C1(0, tf ;C

2(Ω)), i.e continuously differentiable once over

the time range [0, tf ] and twice over the space range Ω the

following regularity conditions are required:






χe ∈ C0(0, tf ; C
0(Ω)) ∩Xe,

S ∈ C0(0, tf ;C
1(Ω)) ∩ L2(0, tf ; L

2(Ω)).

Note that these regularity conditions are not restrictive and

are consistent with the physical properties of χe and S.

Finding the well-posedness conditions of the heat model

(2) ensures the existence, uniqueness and stability of its

solution and allows us to derive an approximate solution

to this direct problem. In the following we will investigate

the well-posedness conditions of the inverse problem: given

the measurements of T , is it possible to find a unique

χe ∈ Qχe
⊂ Xe and S ∈ QS ⊂ L2(0, tf ; L

2(Ω)) such that

the PDE (2) is satisfied.

The answers to the direct and inverse problems guarantee

the bijection of the mapping relating T to its parameters

χe and S. The bijection proof will be brought in the finite

dimensional framework as we design an early lumping

approach for parameters’ estimation. Note that it is well

known that even if we are able to prove the existence and

uniqueness of the inverse problem solution, its stability

is not guaranteed, due to measurement noises. This is an

inherent difficulty for inverse problems.

III. EARLY LUMPING APPROACH FOR THE JOINT

DIFFUSION AND INPUT ESTIMATION

In early lumping approaches, the PDE is first converted

into a finite dimensional system and then an estimation

method is used to recover the unknown variables.

In this section, we first prove the convergence of the approx-

imate finite dimensional estimation problem to the infinite

dimensional initial one. Then, the b-spline Galerkin formu-

lation and the projection (or parameter interpolation) method

are combined to transform the PDE into an approximate set

of ordinary differential equations (ODEs). This set provides a

reduced state-space model with unknown time-varying inputs

and parameters. Finally, an estimation method based on the

Kalman filter approach is used to identify the unknown

parameters.

A. Convergence of the finite dimensional estimation problem

First, we assume that the forms b and L defined in

the previous section are continuous and H1
0,{1}(Ω)-coercive

uniformly in χe ∈ Qχe
and S ∈ QS . Let q = (χe, S) ∈

Q := Qχe
×QS denote the unknown parameter vector.

The identification problem can be formulated as a standard

output least squares optimization problem: finding the pa-

rameters which give the best fit of the parameter-dependent

solution of the partial differential equation to the system

response measurements. Thus, given the experimental tem-

perature profile {Texp(ti)}Nt

i=1 corresponding to the PDE

(2) with sampled observations at each time ti, we aim at

minimizing the least square output functional over q ∈ Q:

min
q∈Q

J(q, Texp) =

Nt
∑

i=0

∫ 1

0

(Texp(ti)− T (ti; q))
2dz, (11)

and satisfying the model constraints (2) and where

T (ti;χe;S) is the parameter-dependent solution of (2). Note

that distributed sensing of the system state T is assumed to

be available.

The minimization of (11) involves an infinite dimensional

state space H1
0,{1}(Ω) and an infinite dimensional admis-

sible parameter set Q. To construct a method which can

be implemented without loosing the parameters distribution

property, we consider Galerkin type approximations in the

context of the variational formulation (10). Thus, let HN

be a sequence of finite dimensional subspaces of H1
0,{1}(Ω)

and Qnp a sequence of finite dimensional subsets of Q. The

approximate solution of T denoted TN is obtained using the

orthogonal projection PN of H1
0,{1}(Ω) onto HN as follows:

PN : H1
0,{1}(Ω) −→ HN

T 7−→ TN

and TN is the solution of the finite dimensional approxima-

tion of (10) given by:







( ˙TN , v) + b(TN , v;χr
e) = L(v;Sd), ∀v ∈ HN (Ω),

T (0) = 0.
(12)

Note qnp := [χr
e, S

d] the vector of the approximate param-

eters with np = r + d. Thereby, the minimization problem

of (11) is converted to a family of approximation estimation

problems with finite dimensional states and parameters, and

the finite dimensional least squares criterion minimization is

given by:

min
qnp∈Qnp

JN (qnp , Texp) =

Nt
∑

i=0

∫ 1

0

(Texp(ti)−TN(ti; q
np))2dz,

(13)

under constraints (12).

In order to prove the convergence of the approximate prob-

lem (12) and (13) toward the original one involving (10)

and (11), we have first to attest under which conditions

TN(t, qnp), solution of the problem (12), converges to

T (t; q), solution of the variational problem (10). Then, it

is necessary to show that for some assumptions on the

parameter space Q (and Qnp), the sequence {qnp} (or a

subsequence of {qnp}) solution of (13) converges to the

solution of (11). In what follows, H1
0,{1} is denoted H ,

and since we are dealing with functional parameters, the

parameter space Q is considered as a Banach space endowed

with a norm denoted | . |Q.

Theorem 3.1: Consider the state spaces H (and HN )

previously defined and assume that they satisfy:

∀ψ ∈ H : ‖ψ − PNψ‖1 → 0 for N → ∞. (14)



Suppose that the form b (and L) defined in (8)-(9) in

addition to being continuous, bilinear (linear) symmetric and

H−coercive, satisfy the following inequalities:

∀ T, v ∈ H : |b(T, v;χe)−b(T, v;χ∗
e)| ≤ γ1|χe−χ∗

e|Q‖T ‖1‖v‖1,
(15)

∀ v ∈ H : |L(v;S)−L(v;S∗)| ≤ γ2 |S−S∗|Q ‖v‖1 .
(16)

Let qnp be an arbitrary sequence in the parameter space Q
such that: limnp→∞ qnp = q, (q ∈ Q).

Then the following result holds:

T
N→∞
np→∞

N (t; qnp) → T (t; q)

Proof See Appendix II.

Once the convergence conditions of problem (12) to (10)

are established, conditions under which the solution of the

approximate estimation problem (12) and (13) converges to

the solution of the initial infinite dimensional one, given in

(10) and (11), have to be found. The following proposition

answers to this question.

Proposition 3.2: Let Q and Qnp be two compact spaces

endowed with a norm denoted | . |Q. Let inp be a ”mapping”
from Q into Qnp such that:

inp : Q −→ Qnp

q 7−→ inp(q),
(17)

and suppose that inp(q) → q when np → ∞ uniformly in

Q.

If {qr}r∈N∗ is a sequence solution of (12) and (13), qr → q̄
(r → ∞) and TN(t; qr) → T (t; q), q̄ is a solution of (10)

and (11).

Proof See Appendix III.

The key of this proof comes from the fact that parameter

spaces Q and Qnp are Banach compact spaces. For more

details on the choice of approximate spaces HN and Qnp ,

see [24].

The compactness property plays a critical theoretical and

computational role in proving the convergence of the approx-

imate finite dimensional solution of the problem (13) to the

solution of the initial problem (11). From a computational

viewpoint, the compactness criterion is reduced to uniform

constraints on the admissible parameters and their deriva-

tives. It can be added explicitly by imposing these constraints

in the estimation algorithm as it was done in [25] where it

was shown that the compactness ensures the convergence

of the resulting algorithms, or implicitly using the Tikhonov

regularisation as it was discussed for example by [26] and

[27].

Remark:

In the early lumping approach, the choice of the basis gen-

erating the approximate state-space HN and the parameter

space Qnp is of paramount importance. It is not only a

question of the approximate spaces dimensions but even the

properties of the basis and thus the method of discretization

itself. In [28] there is an exhaustive bibliography on Grey-

box modelling in finite dimensional framework, where it is

shown that many discretization methods were developed and

implemented in various applications. It illustrates that an a

priori knowledge of the studied system is needed in order

to guarantee the effectiveness of the chosen discretization

technique. This means that some experience has to be

collected to be able to choose the discretization technique.

B. Building the approximate parameter estimation problem

The Galerkin formulation belongs to the weighted residual

methods (WRM) which is one of the most often used and

most efficient lumping methods [28]. It is an extension of the

eigenfunction method where the basis functions are chosen

such that the residual of the PDE approximation is made

orthogonal to each basis function. Thus, in the Galerkin

method the approximate solutions TN , vN of the variational

form established in (12) are written as:






TN(z, t) =
∑N

k=0 xk(t)ωk(z),

vN (z) =
∑N

k=0 κk ωk(z),

(18)

where {ωi}Ni=0 is the sequence of basis functions span-

ning HN and {xk(t)}Nk=0, {κk}Nk=0 is the sequence of

the corresponding weighting functions. The key is to select

appropriate basis functions satisfying (14) and to construct

the finite-order (reduced-order) temporal model . Several

choices are available [28].

By replacing (18) in (12), we get the following expression

for i = 0, ..., N :

i=N
∑

i=0

(∫ 1

0

wi(z)wj(z)dz

)

ẋi(t) =

∫ 1

0

S(z, t)wj(z)dz

−
i=N
∑

i=0

[

∫ 1

0

χe(z, t)
dwi

dz

dwj

dz
dz +

1

τ

∫ 1

0

wi(z)wj(z)dz

]

xi(t).

(19)

By introducing the state vector X(t) =
[x0(t), x1(t), ..., xN (t)]T (X ∈ R

N+1), the stiffness

matrix M ∈ R
N+1×N+1, non-singular (by definition),

symmetric and diagonally dominant, the transition matrix

A(t) ∈ R
(N+1)×(N+1) and the input vector B(t) ∈ R

N+1

given by:

M =















∫ 1

0

w
2

0(z)dz ...

∫ 1

0

w0(z) wN (z)dz

...
. . .

...
∫ 1

0

w0(z) wN (z)dz ...

∫ 1

0

w
2

N (z)dz















,

A(t) =










∫
1

0

χe(z, t)w
′2

0 (z)dz ...

∫
1

0

χe(z, t) w′

0(z) w′

N (z)dz

.

.

. ...
.
.
.

∫ 1

0

χe(z, t) w′

0(z) w′

N (z)dz ...

∫ 1

0

χe(z, t) w
′2

N (z)dz










︸ ︷︷ ︸

A1(t)

+
1

τ
M,



B(t) =















∫ 1

0

S(z, t) w0(z)dz

...
∫ 1

0

S(z, t) wN (z)dz















,

where the symbol (.
′

) denotes the derivative operator with

respect to the spatial variable z, the equation (19) is trans-

formed to a state-space continuous model given by:














Ẋ(t) = −M−1

(

A1(t) +
1

τ
M

)

X(t) +M−1B(t),

X(0) = 0.

(20)

Since the bilinear form b is coercive, the transition matrix

A(t) is symmetric, definite and positive. Note that this model

provides the approximate solution to the direct problem. It

is based on the knowledge of χe and S.

To construct efficiently the approximation spaces HN and

Qnp , the cubic b-splines functions are used to span them.

They naturally fulfil the requirements of (14), (15) and (16)

(see [24], chapter 4).

For Qnp , standard cubic b-splines [29] are utilized whereas

modified ones which satisfy the boundary conditions of (2)

have to be formulated to generate HN .

The cubic b-splines finite element method is one of the

widely used methods that provide accurate approximate

solutions of class C2(Ω). In the following, this technique

is briefly summarized (details can be found in [8], [30],

[31]). Specifically, let {zi}Ni=0 be a uniform mesh of Ω,

∆z = 1/N the mesh size and {πi}Ni=0 the sequence of

standard piecewise cubic b-splines functions that vanish

outside ]zi−2, zi+2[, has value 4 and slope 0 at zi, value

1 and slope −3/∆z at zi+1, and value 1 and slope 3/∆z at

zi−1 for all πi, i = 0, ..., N.
This reasoning is applied to the functional parameters χe

and S where the dimensions of their approximate spaces

may differ. For χe we choose a basis of dimension r while

for S the basis dimension is equal to d. The values of r and

d are not free since we have to impose that r+d ≤ N+1 to

ensure the structural identifiability of the estimation problem

[32]. This leads to the following approximate parameter

expressions:

χer (z, t) =

r
∑

k=1

λk(t) πk(z) = θT (t) P (z), (21)

where:






θT (t) = [λ1(t), λ2(t), ..., λr(t)] , θ ∈ R
r

P (z) = [π1(z), π2(z), ..., πr(z)]
T

The source term writes as:

Sd(z, t) =

d
∑

k=1

ζk(t) πk(z) = B(z) β(t). (22)

where :






β(t) = [ζ1(t), ζ2(t), ..., ζd(t)]
T , β ∈ R

d

B(z) = [π1(z), π2(z), ..., πd(z)]

To span the space HN as it was noted above some modi-

fications on the basis functions has to be done. In fact, the

modified cubic b-splines basis elements {ωi(z)}Ni=0 have the

following expression [30]:

ωi(z) =























π0(z), if i = 0,
π−1(z) + π1(z), if i = 1,
πi(z), for i = 2, ..., N − 2,
πN−1(z)− πN+1, if i = N − 1,
πN (z)− 4πN+1(z), if i = N.

(23)

Replacing (21) and (22) in (20)’s matrices, the PDE given

in (2) is converted to a set of ordinary differential equa-

tions (ODE) defining a linear time-varying state-space time-

continuous model (using the combined Galerkin and projec-

tion method). This leads to:














Ẋ(t) =

(

M−1A(θT (t)) +
1

τ
IN+1

)

X(t) +M−1Dβ(t)
X(0) = 0
y(t) = X(t)

(24)

where the new form of the transition (or damping) matrix
A(t) ∈ R

(N+1)×(N+1) writes as:

A(θT (t)) = −θT (t) ⊗










∫
1

0

P (z)ω′ 2
0 (z)dz · · ·

∫
1

0

P (z)ω′

0(z)ω
′

N (z)dz

.

.

.
. . .

.

.

.
∫ 1

0

P (z)ω′

0(z) ω′

N (z)dz · · ·

∫ 1

0

P (z)ω′ 2
N (z)dz










and the input vector B is converted into a known input

matrix D ∈ R
(N+1)×d multiplying the unknown input vector

β(t). The matrix D has the following form:

D =















∫ 1

0

ω1(z)π1(z) dz · · ·
∫ 1

0

ω1(z)πd(z) dz

...
. . .

...
∫ 1

0

ωN (z)π1(z) dz · · ·
∫ 1

0

ωN (z)πd(z) dz















Remark:

The FEM-Galerkin formulation is an efficient method for

linear stable parabolic equations, and the B-splines are

becoming (if not they already are) standard approximate

functions that provide a unique C2 solution and are widely

used in many domains, such as interpolation and curve

fitting. It is important to point out that once the discretization

method is chosen it is, at the best knowledge of the authors,

impossible to change it when the estimation procedure starts.

Remark:

The discretization method has an important impact on the

approximate state-space model and the solution of the ap-

proximate inverse problem characteristics. It has to ensure

that the model structure is structurally and numerically

identifiable in order to guarantee the well-posedness of the



estimation solution. As it is a discretization-based estima-

tion method, in order to end with a good approximation

close to the description of the original infinite dimensional

phenomenon, the dimensions of the approximate space HN

have to be chosen such that the major system dynamics

are captured. This may lead to a high order model and

which will complicate the estimation problem. Conversely,

a reduced order HN implies a limited basis dimension for

Qnp . Hence, to get a structurally identifiable estimation

problem, the approximation of the functional parameters χe

and S is constrained by the HN dimension. The number of

unknowns r+d has to be less than N +1 the number of the

equations. A trade-off between the parameters approximation

accuracy and the number of spatial sensors has to be made.

Nevertheless, the early lumping approach is widely used

and developed in the literature [28] as it is reasonably easy

to implement. Many softwares integrating different FEM

techniques are available.

IV. JOINT ESTIMATION OF UNKNOWN PARAMETERS AND

INPUTS USING THE EXTENDED KALMAN FILTER FOR

UNKNOWN INPUTS WITHOUT DIRECT FEED-THROUGH

(EKF-UI-WDF)

Once the approximate finite dimensional estimation prob-

lem is built and its convergence to the original one is

established, an estimation method can be applied to retrieve

the unknown parameter vector θ and the input vector β(t) of

the reduced model (24). Note that this problem is different

from what is usually considered in unknown input observers

[33], [11], [12]. Our objective is not the estimation of θ in

the presence of some unknown inputs β (the free-unknown

inputs estimation) but to infer the values of both θ and β
from the measurements.

In [19], a Kalman filter based estimator which guarantees,

under the model observability condition, the global optimal-

ity for both state and unknown inputs estimation in a least

square sense (LS), was proposed. This filter was developed

for a discrete state space model with unknown inputs and

without direct feed-through. Hence it was named the Kalman

Filter for Unknown Inputs Without Direct Feedthrough (KF-

UI-WDF). Unlike the minimum-variance unbiased (MVU)

estimators ([12], [34], [35]) where only the MVU optimality

is provided, the KF-UI-WDF is a natural extension of the

Kalman filter (KF) to the unknown inputs estimation problem

without any constraints (a pre-determined input gain matrix)

and conserves all the KF performances and practical knowl-

edge [19]. By minimizing a weighted least squares objective

function with respect to an extended variable including

the actual states and all unknown inputs from the initial

measurement time t0 to the actual one tk, a recursive least

squares estimation (LSE) approach is performed and the KF-

UI-WDF is derived.

In this section the KF-UI-WDF is extended to estimate also

the parameter θ using the same philosophy as the EKF [36].

To this end, we first extend the state vector in (24) to include

the unknown parameter vector θ and then discretize the

system dynamics.

Define:

f(X, θ, β, k) =







(I + dtM−1A(θT (k))− 1

τ
IN+1)X(k) + dtM−1Dβ(k)

θ(k)







The discrete extended model is given by:






xext(k + 1) = f(X, θ, β, k) + w(k)

y(k) = C xext(k) + v(k)
(25)

where x
ext

(k + 1) =

(

X(k + 1)
θ(k + 1)

)

is the extended state,

C = [IN+1 0] is the observation matrix, dt is the time

step, w(k) ∈ R
N+1+r and v(k) ∈ R

N+1 are respectively

the model uncertainty and the measurements noise vectors,

assumed to be independent, white and Gaussian. They are

characterized by:






































E(w) = E(v) = 0,

E(w(i)wT (j)) =Wδij ,

E(v(i) vT (j)) = V δij ,

E(v(i)wT (j)) = 0.

(26)

Based on the above representation (25)-(26), the EKF-UI-

WDF approach can be used to estimate the extended state

x̂ext(k|k) and the inputs β̂(k − 1|k), given all the available

observations (prior and including time k). The EKF-UI-WDF

algorithm is given by Table I, where: E is the expectation

operator, K is the extended state gain matrix, U is the input

gain matrix, x̂−ext(k+1) is the a priori estimate of xext(k+1),
β̂−(k+1) is the a priori estimate of β(k+1) and x̂+ext(k+1)
is the a posteriori estimate of xext(k + 1). The a priori and

a posteriori estimates of a random variable α at time k are

defined as:






α̂−(k) = E[α(k)| y(1), · · · , y(k − 1)]

α̂+(k) = E[α(k)| y(1), · · · , y(k)]
The EKF asymptotic convergence for observable systems

is proved in [38]. In [19], the optimality conditions are

analysed. The only restriction of this filter is to impose that

the dimension of the outputs has to be larger than that of the

inputs (N+1 > d), to ensure the uniqueness of the estimated

variables. For the extended case, N+1 has to be larger than

or equal to r + d, where r is the length of the parameters

vector.

Unfortunately, like the KF, the limitations of this filter are

the hypotheses on the model and measurements noises (only

additive noises) and the need of a perfect knowledge of the

covariance matrices W and V . Nevertheless, the EKF has

proved its performances in practice even with some missing

knowledge, provided that all the implementation steps listed

in [39] are respected.



EKF-UI-WDF Algorithm

Initialize:

x̂+
ext(0) = E(xext(0)), W = E[wwT ], R = E[v vT ],

P+(0) = E[(xext(0) − x̂+
ext(0) (xext(0) − x̂+

ext(0))
T ],

for k = 0 to N − 1:

Time update equations:

xext(k + 1) = f(x̂ext(k), dt)|β=0

P−(k + 1) = AkP
+(k)AT

k
+W

K(k + 1) = P−(k + 1)CT [CP−(k + 1)CT + V ]−1

U(k + 1) = [(D)T CT R−1 (I − C K(k + 1))C (D)]−1

β̂−(k + 1) = U(k + 1)DT CT R−1 (I − C K(k + 1))

[yexp(k + 1) − C xext(k + 1)]

x̂−

ext(k + 1) = f(x̂ext(k), β̂−(k), dt)

Measurement update equations:

x̂+
ext(k + 1) = x̂−

ext(k + 1) +K(k+ 1)

[yexp(k + 1)− f(x̂−

ext(k + 1),D β̂−(k + 1))]

P+(k + 1) = (I −Kx(k + 1)C)

[P−(k + 1) +DU(k + 1)DT (I −K(k + 1)C)T ]

end

TABLE I: EKF-UI-WDF’s algorithm [37]

In this paper, since the estimation is considered in a deter-

ministic framework, the covariance matrices W and V are

used as tuning parameters.

For the EKF, it is well known that we can, at most, have

asymptotic convergence properties for well-behaved systems

(small size, well-scaled, well-conditioned,...) and unfortu-

nately divergence in the opposite case.

In subsection III-A, it has been shown that the compactness

of the approximate parameter space is primordial even from

a numerical point of view to prove the convergence of

the estimation method. In the EKF-UI-WDF, this can be

incorporated using ideas developed in [39]. In MATLAB, this

can be implemented using the Optimization Toolbox with the

fmincon solver.

V. CASE OF TIME VARYING PARAMETERS: THE

ADAPTIVE EKF-UI-WDF

The EKF-UI-WDF as it is formulated can not take into

account time-variations of the parameters. As mentioned in

[40], adding a fading memory parameter may recover this

problem. In [41], based on Taylor expansion, a technique

to estimate time varying parameters in the case of RLS

estimation was proposed. The generalization of this method

to Kalman filtering is not an easy task. In the other hand,

expanding a parameter vector multiplies its dimension which

may complicate its estimation.

In the literature, several formulations of the fading memory

parameter are available and a summary can be found in

[42]. In this section, the adaptive tuning law of the fading

memory parameter presented in [43] is chosen. In this

method, the fading memory parameter is tuned only by the

parameter time-variations contribution independently of the

measurement noise effect. Therefore, in the EKF-UI-WDF

algorithm presented in Table I, the a priori estimation error

covariance matrix is modified as follows:

P−(k) = λ(k) (Ae(k − 1)P+(k − 1)Ae(k − 1)T ) +We(k),

where λ(k) is the adaptive fading memory parameter com-

puted using [43]’s technique (see [37] for more details

on how to implement this technique in a Kalman filtering

approach). Throughout this paper, the EKF-UI-WDF using

[43]’s method is called the adaptive EKF-UI-WDF.

Remark:

For the EKF-UI-WDF, as it was discussed, since it is a

Kalman-based filter it inherits all its advantages and dis-

advantages. If only state and input simultaneous estimation

in a linear state-space model with perfect knowledge on

the noise and model uncertainties covariances is considered,

then optimality in MVU and LSE is guaranteed even in the

presence of a coloured noise [39]. In the nonlinear case (the

extended state to parameters), only asymptotic convergence

is assumed [38]. However, for mild nonlinear problems such

as the simultaneous state and parameters estimation, the EKF

has proved in practice to be an efficient algorithm.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Using simulated data

Simulated data is generated based on the a priori quali-

tative knowledge on χe and S experimental profiles. It was

reported in plasma physics that the diffusion coefficient has

an increasing profile from the center to the edge in the

validity domain and that S has a Gaussian form (see [21],

[44] and [45]). In the following simulations, χe and S are

described by:






























χe(z, t) =
(

1 + 9z − 36z2 + 32z3
)

g(t),

S(z, t) =
106√
2 π σ

exp

(−(z − µ)2

2 σ2

)

f(t),

z ∈ [0, 1], t ∈ [0, 25], dz = 0.05, dt = 0.01, τ = 0.1,

(27)

where the reaction coefficient τ is assumed to be constant,

g(t) and f(t) model respectively the time variations of χe

and S.

To prove the EKF-UI-WDF tracking abilities using the adap-

tive fading memory technique developed in [43], a space-

time varying χe is assumed in simulation even if in plasma

physics, only its space variations are considered ([5], [44],

[2]).

Two cases are investigated in this section;

In Example 1, χe has a slowly time variation to which

the temperature profile T is insensitive.



In Example 2, χe has a time sinusoidal form.

In both cases, the time variations of the source term S are

described by a rectangular periodic signal given by:

f(t) =























2 if t ≤ α tperiod,

1 if t ∈ [α tperiod, tperiod]

f(t+ tperiod) = f(t).

(28)

where α is the signal duty cycle (equal to 0.4 in our

simulations) and tperiod is the signal f(t) period. The formula

of g(t) will be presented for each example.

The initial variables of the adaptive EKF-UI-WDF algo-

rithm are selected as: µ = 0.9, P̂ (0|0) = 104 Ir+N+1, W =
10−2 IN+r+1, V = 10−4 IN+1, θ̂(0) and β̂(0) are arbitrary.

However, it should be noted that there are no constraints on

the fading memory variable λ and various trial and error tests

were necessary to tune µ, W and V .

1) Example 1: χe(z, t) is slowly time varying: First, we

start with the profiles presented in Fig. 1, generated using

equations (27) and (28) with:

g(t) = 0.1 +
1

1 + e−20∗(t−5)
, t ∈ [0, 25]. (29)

Thus, g(t) is a sigmoid function modelling a smooth jump

of about 10% at t = 5s. From Fig. 1, it is clear that the

time variations of T are mainly due to the source term S,

whereas the time variation’s impact of χe on T profile is

invisible. This choice of χe is a challenging task to the

adopted algorithm as it tests its capacities to estimate such a

small variation. From the estimation results given in Fig. 2,

the adaptive EKF-UI-WDF performs well and is able to

estimate both χe and S. After each input jump, the filter

estimates converge rapidly to the real parameters.

2) Example 2: χe(z, t) and S(z, t) are time varying: The

purpose of this example is to prove that even when χe is a

time varying coefficient (and the influence of this variation

is visible on the T profile), the adaptive KF-UI-WDF is able

to estimate efficiently the unknown parameters (χe and S)

without modifying the previous initial variables.

In this example, the χe time profile g(t) is given by:

g(t) = sin(2 π t (2/tf)) + 2, (30)

where tf is the final time. The profiles of T , χe and S
are illustrated in Fig. 3. Comparing the results presented

Fig. 4 to those in Fig. 2 shows that the adaptive EKF-UI-

WDF conserves qualitatively its properties even if the relative

estimation errors are more important in this example, but still

acceptable (≤ 1% between two input jumps).

B. Using experimental data

The chosen estimation strategy is implemented on real

data provided by the Tore Supra tokamak. It is a large

tokamak with supraconducting toroidal magnets of minor

radius a = 0.72m, major radius R = 2.4m, toroidal

magnetic field BT ≤ 4T , circular cross-section and which

often runs discharges in the range of 10 s to 30 s. It has

(a) Spatio-temporal profile of T (z, t)

(b) χe(z, t) profile

(c) S(z, t) profile

Fig. 1: Example 1: Profiles of T (z, t), S(z, t) and χe(z, t)

even obtained discharges of 6 min [46]. The availability of

multi-megawatt radio frequency heating and the possibility

to vary the injected power during the shot make Tore Supra

a unique machine to study plasma transport properties and

their dynamics.

On Tore Supra tokamak, electron temperature is measured

using Electron Cyclotron Emission (ECE) diagnostics. Based

on Rayleigh-Jeans approximation of Planck’s black body

radiation laws, ECE can be used for spatially and tempo-



rally resolvent measurement of electron temperature T (see

[1], [47] and [48] for more details on ECE physics). The

standard system employed for T profile measurement is a

32-channel heterodyne ECE radiometer with 1 GHz spacing

and 500 MHz bandwidth. Fast acquisition for the profile

radiometer is done with a video bandwidth of 42kHz at

a sampling rate of 84 kHz [46]. More relevant details on

this detection system, its electronics and data-analysis may

be found in [46]. To reduce the thermal noise and improve

physical information obtained from these measurements, ad-

vanced data-analysis techniques such as correlation ECE are

employed. The main features of this technique are discussed

in [46], where the ECE diagnostics setup, noise filtering

using correlation analysis (a sequence of passband filters

with shifted central frequencies followed by a detection to

estimate the power spectrum of the measured signals) and

estimation of measurement error are also discussed. This di-

agnostic provides temperature fluctuation measurements with

a radial resolution of 1 cm, which supports the hypothesis

that the full temperature state is available for estimation

purpose.

In this section, we consider the discharge TS-33632 in Fig. 5,

where the heating is mainly due to the radio-frequency power

at the Ion Cyclotron Resonant Heating (ICRH). For the

projection method, as with simulated-data the temperature

projection basis is N = 20 and for χe and S, the orders of

the bases are r = d = 10.

Fig. 7 presents the estimated profiles of χe and S in the

spatial validity interval (z ≤ 0.8). Both are positive without

enforcing this constraint in the Kalman filter criterion. From

Fig. 6, the EKF-UI-WDF performs well since the relative

estimation error of T is strictly less than 1%.

Using the estimated source term, the absorbed power is

computed by the following formula:

Pe∗(r, t) =
3

2
ne(r, t)S(r, t),

where ne is the electron density. The absorbed power Pe is

given by:

Pe(t) =

∫∫∫

volume

Pe∗(r, t) dvolume. (31)

The tore volume writes as:

volume = 2 π2Rr2,

where r = a z. By considering the tokamak axisymmetry,

equation (31) becomes:

Pe(t) = 6 π2 a2 e

∫ 1

0

ne(z, t)S(z, t) dz, (32)

where e = 1.6× 10−19 J is the electron charge ensuring the

conversion of eV to J (1eV = |e| J).

In Fig. 8, the absorbed power Peestim computed using (32)

is compared to the total power Peinput. This figure shows

that the time variations of the absorbed power correspond to

those of the input one and gives an idea on the amplitude of

the energy losses.

VII. CONCLUSION

In this paper, the problem of space-time parameter esti-

mation in a distributed linear parabolic PDE equation mod-

elling the heat transport in tokamak plasma was considered

in the early lumping framework. To get a good approxi-

mate reduced order model (finite dimensional) that respects

the distributed behaviour of the studied phenomenon, the

Galerkin finite element method and the parameter projec-

tion/interpolation technique were associated to discretize the

PDE and to define a linear time-varying state-space model

with unknown parameters and inputs. The EKF-UI-WDF

was then chosen to estimate these unknown variables and an

adaptive tuning fading memory coefficient was introduced to

take into account the time variations of the parameters.

Simulation results on both simulated and experimental data

attest the efficiency of the chosen methodology to handle

parameter and input estimation for heat transport in tokamak

plasmas. However, if the basis dimensions constraint can be

covered using late lumping methods (as we have done in

[49] and [50]), the problem of the noise measurement effect

was not addressed in this paper. This is beyond the scope of

our present work since we dealt with filtered measurements

using correlation electron cyclotron emission diagnostics (see

[46] and references therein). The question of how to develop

such a filter or to include the filtering in the tuning of the

measurement noise covariance matrix is not an easy task and

will may be considered in the future.

APPENDIX I

Proof of Theorem 2.1 First note that the bilinear form b is

upper bounded by the following expression:

∀χe ∈ Xe, τ ∈ R
∗
+ :

|b(T, v; t)| ≤
(

‖χe(z, .)‖0 +
1

τ

)

‖v‖1 ‖T ‖1,

≤
(

c2 +
1

τ

)

‖v‖1 ‖T ‖1 (33)

from the Cauchy-Schwarz inequality and norm’s ‖.‖1 defi-

nition and where |.| is the absolute value operator. Second:

∀v ∈ H1
0,{1}(Ω), ∀χe ∈ Xe : |b(v, v)| ≥ c1

√

(1 + C(Ω))
‖v‖1

where C(Ω) is the Poincaré constant. Hence, the bilinear

form b is continuous and H1
0,{1}-coercive.

For the linear form L, we have from (9) that:

∀S ∈ L2(0, tf ;L
2(Ω)) : |L(t)(v)| ≤ ‖S(x, t)‖0‖v(x)‖1

and thus L is continuous. Using the Lax-Milgram theorem

([51], chapter 07) the results of theorem are guaranteed,

which conclude the proof.

APPENDIX II

Proof of Theorem 3.1 The proof is in the spirit of the one

given in [52]. The difference is in the type of PDE problem

considered. In this work, we consider a parabolic PDE while



in [52] it was a hyperbolic PDE.

For all T ∈ H and TN ∈ HN we have:

‖TN(t; qnp)− T (t; q)‖1 ≤ ‖TN(t; qnp)− PNT (t; q)‖1

+‖PNT (t; q)− T (t; q)‖1.
(34)

and from (14): ‖PNT (t; q)− T (t; q)‖1 →
N→∞

0 thus if:

‖TN(t; qnp)− PNT (t; q)‖1 →
N→∞

0 (35)

then:

‖TN(t; qnp)− T (t; q)‖1 →
N→∞

0

Thus it suffices to show (35) to get the convergence result.

Denote:

TN := TN(t; qnp), T := T (t; q),

∆N := TN − PNT, ∆̇N := ṪN − d

dt
PNT = ṪN − PN Ṫ .

Considering (10) and (12):

(

∆̇N , ψ
)

=
(

ṪN − Ṫ + Ṫ − PN Ṫ , ψ
)

=
(

Ṫ − PN Ṫ , ψ
)

+ L(ψ;Sd)

−b(TN , ψ;χr
e)− L(ψ;S) + b(T, ψ;χe).

(36)

In the other hand, b(TN , ψ;χr
e) can be written as:

b(TN , ψ;χr
e) = b(∆N , ψ;χr

e) + b(T, ψ;χr
e)

−b(T − PNT, ψ;χr
e),

(37)

so (36) becomes:

(

∆̇N , ψ
)

+ b(∆N , ψ;χr
e) =

(

Ṫ − PN Ṫ , ψ
)

+ L(ψ;Sd)

+b(T, ψ;χe)− b(T, ψ;χr
e)

−L(ψ;S) + b(T − PNT, ψ;χr
e).

(38)

Equality (38) is satisfied for any test function ψ in H (or

HN ) and thus it is true for ψ = ∆N , and using the fact that
(

∆̇N ,∆N
)

=
1

2

d

dt
‖∆N‖21, (38) is equivalent to:

1

2

d

dt
‖∆N‖21 + b(∆N ,∆N ;χr

e) =
(

Ṫ − PN Ṫ ,∆N
)

+L(∆N ;Sd − S)
+b(T,∆Nχe − χr

e)
+b(T − PNT,∆N ;χr

e).

(39)

The bilinear form b is continuous and H−coercive; so from

the definition of space Xe, we have:

b(∆N ,∆N ;χr
e) ≥ c1 ‖∆N‖21

b(T − PNT,∆N ;χr
e) ≤ c2 ‖T − PNT ‖1 ‖∆N‖1

Using (15) et (16) and the Young’s inequality:

|b(T,∆N ;χe − χr
e)| ≤

γ2

4ǫ
|χe − χr

e|2Q ‖T ‖21 + ǫ‖∆N‖21,

we get:

1

2

d

dt
‖∆N‖21 + c2 ‖∆N‖21 ≤

1

2

d

dt
‖∆N‖21 + b(∆N ,∆N ;χr

e)

≤ γ2

4ǫ
|χe − χr

e|2Q ‖T ‖21 + ǫ‖∆N‖21

+
(

Ṫ − PN Ṫ ,∆N
)

+c1‖T − PNT ‖1 ‖∆N‖1

(40)

Note that the constants c1 and c2 (defining the upper and

lower bounds imposed on χe with respect to the Q-norm)

are uniform (independent of time t).

When: N → ∞ : T − PNT → 0, np → ∞ (r → ∞ and

d → ∞): Sd → S and χr
e → χe thus for np, N → ∞ the

right term in inequality (40) converges to 0 and:

0 ≤ 1

2

d

dt
‖∆N‖21 + (c2 − ǫ) ‖∆N‖21 ≤ 0 for N, np → ∞

and hence: ∆N → 0 in L2(0, tf ;H) for N,np → ∞ and

TN(t; qnp) → T (t; q) in L2(0, tf ;H). This concludes the

proof.

APPENDIX III

Proof of Lemma 3.2 Let {qr}r∈N∗ be a sequence solution

of the optimization problem (12) and (13), and let {q̂k}k∈N∗

be an arbitrary sequence in Q such that inp(q̂k) = q.

Since Q et Qnp are two compact spaces, we can al-

ways extract a subsequence of {qr} and {q̂k} such that:

limr→∞ qr = q̄ and limrk→∞ q̂k = q.

Since {qr} is the solution of (12) and (13), {qr} is an optimal

solution and thus:

JN (qr) ≤ JN (inp(q̂k))

when: N → ∞ and r → ∞: TN(t; qr) → T (t; q) (from

theorem 3.1) and:

JN (qr) → J(q̄)

JN (inp(q̂k)) → J(q),

Consequently:

J(q̄) ≤ J(q)

We conclude that q̄ is the solution of (10) and (11).
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signification physique,” Princeton University Bulletin, vol. 13, pp. 49–
52, 1902.

[23] H. T. Banks, A functional analysis framework for modelling, estimation

and control in science and engineering, C. Press, Ed. Taylor &
Francis Group, 2012.

[24] H. T. Banks, R. C. Smith, and Y. Wang, Smart Materials Structures:

Modeling, Estimation and Control, M. Wiley, Ed., Paris/Chichester,
1996.

[25] H. T. Banks and D. W. Iles, “On compactness of admissible parameter
sets: convergence and stability in inverse problems,” Lecture notes in

control and information sciences, vol. 97, pp. 130–142, 1987.

[26] C. Kravis and J. H. Seinfeld, “Identification of parameters in dis-
tributed parameter systems by regularization,” SIAM J. Control and
Optimization, vol. 23, pp. 217–241, 1985.

[27] W. Yu and J. H. Seinfeld, “Identification of parabolic distributed pa-
rameter systems by regularization with differential operators,” Journal

of mathematical analysis and applications, vol. 132, pp. 365–387,
1988.

[28] H. X. Li and C. Qi, “Modeling of distributed parameter systems for
application- a synthesised review from time-space separation,” Journal

of Process Control, vol. 20, pp. 891–901, 2010.
[29] C. De Boor, A practical guide to splines, Springer-Verlag, Ed. Ap-

plied Mathematical Sciences, 2001.
[30] P. M. Prenter, Splines and variational methods, Pure and applied

mathematics, Eds. Jhon Wiley & Sons, 1989.
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á configuration variable,” Review of Scientific Measurements, vol. 76,
no. 9, 2005.

[49] S. Mechhoud, E. Witrant, L. Dugard, and D. Moreau, “Adaptive
distributed parameter and input estimation in plasma tokamak heat
transport,” 1st IFAC Workshop on systems governed by Partial Dif-

ferential Equations, Paris, France, 2013.
[50] ——, “Adaptive space-time distributed parameter and input estimation

in heat transport with unknown bounds,” IEEE International Confer-

ence on Systems and Control, Algiers, Algeria, 2013.
[51] L. C. Evans, Partial differential equations: Graduate studies in Math-

ematics, 2nd ed. American Mathematical Society, 2010, vol. 19.
[52] H. T. Banks and M. Pedersen, “Well-posedness of inverse problems for

systems with time dependent parameters,” Arabian Journal for Science

and Engineering. Section B: Engineering, vol. 34, pp. 39–58., 2009.



5 10 15 20 25
0.1

0.12

0.13

0.14

0.150.15

T
ra

ce
 o

f P
+ (k

)

time(s)

(a) Trace of P+(k)

0 5 10 15 20 25

10
−2

10
0

10
2

Fa
di

ng
 m

em
or

y

time(s)

(b) Time evolution of the fading memory λ(k)

0 5 10 15 20 25

10
−5

10
0

time(s)

R
el

at
iv

e 
es

tim
at

io
n 

er
ro

r 
of

 
χ e (

%
)

(c) Relative estimation error of χe(z, t)

0 5 10 15 20 25

10
−5

10
0

time(s)

R
el

at
iv

e 
es

tim
at

io
n 

er
ro

r o
f S

 (%
)

(d) Relative estimation error of S(z, t)

Fig. 2: Simulation results using the adaptive EKF-UI-WDF

for the reconstruction of S and χe in Example 1

(a) Spatio-temporal profile of T (z, t)

(b) χe(z, t) profile

(c) S(z, t) profile

Fig. 3: Example 2: Profiles of T (z, t), S(z, t) and χe(z, t)
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Fig. 4: Simulation results using the adaptive EKF-UI-WDF

for the reconstruction of S and χe in Example 2
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Fig. 6: Performances of the EKF-UI-WDF for the estimation

of Texp for the experimental data of Tore Supra shot TS −
33632.
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