
HAL Id: hal-01222844
https://hal.science/hal-01222844

Preprint submitted on 30 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Good Production Cycles for Circular Robotic Cells
Florence Thiard, Nicolas Catusse, Nadia Brauner

To cite this version:
Florence Thiard, Nicolas Catusse, Nadia Brauner. Good Production Cycles for Circular Robotic Cells.
2015. �hal-01222844�

https://hal.science/hal-01222844
https://hal.archives-ouvertes.fr

Good Production Cycles for Circular Robotic Cells

Florence Thiard, Nicolas Catusse, Nadia Brauner

Univ. Grenoble Alpes, G-SCOP, F-38000 Grenoble, France
CNRS, G-SCOP, F-38000 Grenoble, France

e-mail: {florence.thiard, nicolas.catusse, nadia.brauner}@g-scop.grenoble-inp.fr

October 30, 2015

Abstract

In this paper, we study cyclic production for throughput optimization in robotic flow-shops.
We are focusing on simple production cycles. Robotic cells can have a linear or a circular layout:
most classical results on linear cells cannot be extended to circular cells, making it difficult to
quantify the potential gain brought by the latter configuration. Moreover, though the problem
of finding the best one part production cycle is polynomial for linear cells, it is NP-hard for
circular cells.

We consider the special case of circular balanced cells. We first consider three basic pro-
duction cycles, and focus on one which is specific to circular cells, for which we establish the
expression of the cycle time. Then, we provide a counter-example to a classical conjecture still
open in this configuration. Finally, based on computational experiments, we make a conjecture
on the dominance of a family of cycle, which could lead to a polynomial algorithm for finding
the best 1-cycle for circular balanced cells.

1 Positioning of the problem

Robotic cells consist in a flowshop where the machines are served by a robot. Present in many
industries, they are frequently used in semi-conductor manufacturing and electroplating (Dawande
et al., 2007). The model was first introduced by Asfahl (1985) to describe a production cell for truck
differentials, while Sethi et al. (1992) provided the first formal study for small dimension cells. The
robotic flow-shop problem for the production of multiple part types has been proven NP-complete
for 3 machines by Hall et al. (1998).

As robotic cells constitute an adequate environment for large-scale production of a few different
types of products, the throughput – the number of part produced per time unit – is a natural
measure for their performance.Dawande et al. (2007) present a survey on throughput optimization
in robotic cells.

1.1 Notations and problem specification

Formally, a robotic cell consists of m machines, denoted by M1,M2, ...,Mm, and a robot in charge
of the handling of the parts in-between machines. The cell is also equipped with an input buffer,

1

which provides the parts to be produced in infinite quantity, and an output buffer, also of infinite
capacity. These buffers are modeled by two additional machines, respectively M0 and Mm+1. As in
a classical flow-shop, all parts must be processed successively on machines M1 . . .Mm in that order.

The input of the problem consists of travel times, processing times and loading/unloading times.
In the general case, travel times and processing times are machine-dependent: δi,j denotes the travel
time between machines Mi and Mj while pi,j represents the processing time of a part j on machine
i. Loading and unloading times are generally assumed identical and denoted by ε.

However, if the robot travels at a constant speed, with no acceleration in-between machines,
then the only information needed for travel times is the time between two consecutive machines δi.
In this case, the travel times are called additive: this is a fairly common assumption. Additionally, if
the time between any two consecutive machines is the same (if the machines are regularly disposed),
the cell is called regular. In cases where the cell is used to group operations of similar length, it is
relevant to consider machine-independent processing times. The cell is then called balanced.

Note that for a regular balanced cell producing one type of part, the problem input consists of
only 4 numbers, m, δ, p, ε.

Depending on the type of robot used, the machines and the input and output stations can be
disposed in several ways. Two main configurations are studied in the literature: on the one hand,
linear or semi-circular layouts (Figure 1(a)), where the input and output buffers are separated and
located respectively at each end of the line (Crama and van de Klundert, 1997), and on the other
hand, circular layouts (Figure 1(b)), where the machines are arranged in a circle, with the input
and output buffers either occupying the same spot (M0 = Mm+1), or very close (Rajapakshe et al.,
2011; Jung et al., 2015).

This paper focuses on the classical robotic cell model, which means that the cell is served
by a single robot which can hold a single part at a time, and the machines are bufferless: as a
consequence, a machine cannot be loaded with a new part until processing is finished and the part
transferred onto the next machine.

We will also assume that parts may stay on a given machine as long as necessary after processing
is finished (this is referred to as unbounded waiting-times or free-pickup criterion). Other policies
include no-wait (the part must be retrieved as soon as the processing is finished), and interval
(waiting times are bounded), also called Hoist Scheduling Problems (HSP).

Out

M1

M2

M3

In

(a) semi-circular layout

M1

M2

M3

In/Out

(b) circular layout

Figure 1: Three-machine robotic cells

2

1.2 Identical parts production

In the general case, where multiple part types must be produced, two types of decisions must be
made: sequencing the parts, and scheduling the robot moves. In the case where only one type of
part is to be produced, the part sequencing is of course trivial: the problem reduces to finding an
optimal robot move schedule. Brauner (2008) presents a survey on single part-type production in
robotic cells.

In this case, robot move sequences can be described using the concept of activities, introduced
by Crama and van de Klundert (1999). Activities are elementary robot moves defined as such: for
i ∈ {0 . . .m}, activity Ai refers to the following sequence of events:

1. The robot unloads a part from Mi;

2. The robot travels to Mi+1;

3. The robot loads the part onto Mi+1.

1.3 Cyclic programmation

For large-scale production, it is operationally relevant to prefer a cyclic programmation. This
means that the robot repeats indefinitely the same move sequence, each iteration leaving the cell
in the same state, with the same machines loaded and the same machines empty. Moreover, cyclic
programmations are dominant (Dawande et al., 2005a), which means that for any set of parameters,
there always exists an optimal programmation which is cyclic. The elementary sequence is called a
cycle.

One-cycles are particular cycles which produce one part exactly: during one iteration, exactly
one part enters the cell at M0, and one processed part leaves the cell. More generally, a k-cycle is a
cycle of production of k parts. One-cycles are easy to describe and enumerate using the concept of
activities, as they are exactly the permutations of the m+1 activities (Crama and van de Klundert,
1999). They are also easier to implement operationally.

As a consequence, it is convenient to restrict the possible move sequences to 1-cycles only. But
does this allow to find an optimal sequence? Sethi et al. (1992) formulate the 1-cycle conjecture:

Conjecture 1 (1-cycle conjecture Sethi et al. (1992)) The set of 1-cycles is dominant (for
any set of parameters, there always exists a 1-cycle which is optimal).

Unfortunately, this conjecture has been proven false on the general case for more than 4 ma-
chines (Dawande et al., 2005b; Brauner and Finke, 2001), meaning that 1-cycles are not generally
optimal. However, it is interesting to consider their performance compared to general cycles and
their dominance for special cases of robotic cells, as well as finding the best 1-cycle. In this paper,
we are interested in the last two problems.

1.4 Impact of the layout

The answers to these questions depend on the cell layout. In fact, although requiring more sophis-
ticated robots, circular layout can improve the travel time, as the robot takes the shortest path
around the cell. For example, in a regular balanced cell, travel time between machine Mi and Mj

is δi,j = |i− j|δ, while on a similar cell with circular layout, it is δi,j = min(|i− j|,m+ 1− |i− j|)δ.

3

In order to make a decision regarding the layout of the cell or quantify the potential gain of
a circular layout, it is necessary to study the best programmation for either layout. However,
dominant sequences for linear cells might not be dominant with a circular layout (Geismar et al.,
2005). Most studies on circular cells consider models which relax the blocking constraints one way
or another: robot with swapping ability (Jolai et al., 2012), dual-gripper robots (Sethi et al., 2001;
Jung et al., 2015; Drobouchevitch et al., 2006), or machine buffers (Drobouchevitch et al., 2010).
On the contrary, circular classical single gripper cells, studied by (Geismar et al., 2005; Rajapakshe
et al., 2011; Jung et al., 2015) are not as well understood yet as their linear counterparts.

1.4.1 1-cycle conjecture

The 1-cycle conjecture is valid for 2-machine cells regardless of the layout (Sethi et al., 1992). For
linear layouts, it is valid for 3-machine cells (Crama and van de Klundert, 1997), and false for
4-machine cells (Brauner and Finke, 2001). For the special case of regular balanced cell, it is valid
up to 15 machines (Brauner, 2008). However, for circular cells with more than 2 machines, it is
still open, even for the regular balanced case.

In Section 3 we provide a counter-example to the 1-cycle conjecture for 6-machine regular
balanced cells.

1.4.2 Best 1-cycle problem

Finding the best 1-cycle is polynomial in linear additive cells: Crama and van de Klundert (1997)
proved the dominance of a family of permutations within 1-cycles, and derived a polynomial algo-
rithm for solving this problem. However, these results do not stand for circular layouts, and Ra-
japakshe et al. (2011) showed that in a circular regular cell, this same problem is NP-hard. The
authors also provide regions of optimality for classical cycles and a 5

3 -approximation of the best
1-cycle. Jung et al. (2015) extend these results to k-cycles.

For the special case of regular balanced cell, the complexity of finding the best 1-cycle is still
unknown (Table 1). In Section 4, based on computer simulation, we conjecture that in this case,
the problem is polynomial.

Table 1: Complexity of the best 1-cycle problem
linear layout circular layout

additive P (Crama and van de Klundert, 1997) NP-hard (Rajapakshe et al., 2011)
regular balanced P (Crama and van de Klundert, 1997) ?

2 Cyclic analysis of circular regular balanced cells

From now on, we consider only regular balanced cells with circular layout. To simplify algebraic
expressions, we will assume that loading/unloading times are negligible. Thus, the parameters of
the problem are m the number of machine, p the processing times and δ the travel time between
two consecutive machines.

We will use c to represent a generic cycle and π a generic 1-cycle.

4

For any cycle c, we denote the long run average cycle time by T (c). Finding a robot move
sequence which minimizes the throughput is equivalent to finding a cycle which minimizes the cycle

time divided by the number of parts produced in one iteration (formally, T (ck)
k for the k-cycle ck).

In this section we present some classical bounds on the cycle time, and study the region of
optimality of three basic cycles. Two of them are already well known for linear configuration; the
third one is specific to circular layouts; we give a formulation of its cycle time.

2.1 Bounds on the cycle time

First, we present two classical lower bounds, valid both for linear and circular layout. The formu-
lation is adapted to the regular balanced case.

Proposition 1 (Crama and van de Klundert, 1997)
Any k-cycle c verifies

T (c) ≥ k(p+ 4δ) (1)

This bound is the minimum time between two loadings of the same machine.

Proposition 2 (Dawande et al., 2002)
Any k-cycle c verifies

T (c) ≥ k((m+ 1)δ +mmin(p, δ)) (2)

Intuitively, if an activity Ai is immediately followed by the subsequent activity Ai+1, then the
robot waits p time units; if not, it adds at least δ to its minimum travel time.

2.2 Three basic cycles

We call identity cycle (also named uphill permutation or forward cycle in the literature) the cycle
πid = (A0A1...Am). Trivially, the cycle time of this cycle is

T (πid) = (m+ 1)δ +mp (3)

In this cycle, the robot circles the cell once. Intuitively, this cycle is interesting for instances
for which p is much smaller than δ. From the lower bound in Proposition 2, one can immediately
derive the following:

Proposition 3 If p ≤ δ, then the identity cycle πid is optimal.

Downhill cycle

We call downhill cycle (also named reverse cycle) the cycle πd = (A0AmAm−1...A1). The cycle time
of this cycle is

T (πd) = 3(m+ 1)δ + max(0, p− (3m− 1)δ) (4)

In this cycle, each inter-machine spot is visited by the robot three times. Intuitively, this cycle is
interesting for instances for which p is much greater than δ. From the lower bound in Proposition 1,
one can easily derive the following:

Proposition 4 If p ≥ (3m− 1)δ, then the downhill cycle πd is optimal.

5

Odd-Even cycle

In circular cells, a third 1-cycle of particular interest is the odd-even cycle, defined as such:
For m even,

πoe = (A0A2A4 . . . AmA1A3A5 . . . Am−1)

and for m odd,
πoe = (A0A2A4 . . . Am−1A1A3A5 . . . Am)

In this cycle, the robot circles around the cell twice: the first time performing even activi-
ties (thus loading odd machines), the second time performing odd activities (thus loading even
machines). This cycle is dominated in cells with linear layout (Crama and van de Klundert, 1997).

2.3 The odd-even cycle

For cells with circular layouts, the odd-even cycle offers a good compromise between travel time
and waiting time. The formal expression of its cycle time is not as trivial as the other two basic
cycles presented in Section 2.2. Here, we establish this expression for regular balanced cell and give
the main ideas of the proof.

Proposition 5 The cycle time for the odd-even cycle is

T (πoe) = 2(m+ 1)δ +
2α− 1

α
max(0, p− (m+ 1)δ)

with m =

{
2α if m even

2α− 1 if m odd

Proof To understand this expression of the cycle time, it is convenient to consider α consecutive
iterations of πoe, and follow the path of one same part in the cell. Figure 2 presents an example for
a 4-machine cell; the position of the robot in the cell is represented as a function of time. Dashed
lines represent empty robot moves while solid lines represent loaded robot moves.

The robot travels 2(m + 1)αδ, circling the cell 2α times. During the first robot loop, the part
is loaded on machine M1 with A0. It is then unloaded during the second loop with A1. Between
the loading and the unloading, the robot travels (m + 1)δ and the part must stay on M1 at least
p, so the robot must wait max(0, p− (m+ 1)δ). Similarly, during any loop, the part is loaded on a
machine, then unloaded and taken to the next machine during the next loop, and the robot must
wait max(0, p− (m+ 1)δ). If m is odd, the part exits on the last loop. If m is even, it is loaded on
Mm during the last loop.

Eventually, for this one part, the robot must wait at least (2α− 1) max(0, p− (m+ 1)δ) over α
iterations of the cycle. Adding the waiting times and travel times, we get the expression above as
a lower bound of the cycle time.

We prove that this expression is indeed the exact value of the cycle time by exhibiting a fixed
point of the waiting times sequence which realizes it; that part is not detailed here. �

6

0 5 10 20
IN

OUT

1

2

3

4

time

machines

p

p

p

Figure 2: Two consecutive iteration of πoe on a 4-machine cell. If p ≥ 5δ, then T (πoe) ≥ 1
2 (3p+5δ).

2.4 Regions of optimality within 1-cycles

We now restrict the study to 1-cycles, and seek to determine the dominance of πid, πoe, πd over
1-cycles for certain sets of parameters.

For 1-cycles, the bound in Proposition 2 can be slightly improved:

Proposition 6 If p ≥ δ, and π is a 1-cycle with π 6= πid, then

T (π) ≥ 2(m+ 1)δ (5)

Based on Propositions 3, 4, 6, and πoe cycle time, we can establish the following region of
optimality within 1-cycles:

Proposition 7

(i) if p ≤ m+1
m δ, then the identity permutation πid dominates 1-cycles.

(ii) if (m+1)
m δ ≤ p ≤ (m+ 1)δ, then the odd-even cycle πoe dominates 1-cycles.

(iii) if p ≥ 3(m− 1)δ, the downhill permutation πd is dominates 1-cycles.

To visualize these regions of optimality, one can use graphic representations such as presented
in Figure 3. This graph represents the cycle time as a function of p, for fixed values of δ and m
(here, δ = 1, m = 6). Note that cycle times are piecewise linear functions in p.

Remain instances where (m+ 1)δ ≤ p ≤ (3m− 1)δ, represented by the dashed area on Figure 3.

3 Counter-example to the 1-cycle conjecture

In this section we provide a counter-example to the 1-cycle conjecture for circular cells, and give
the main ideas of the proof.

Theorem 1 In a regular balanced unbounded 6-machine cell with circular layout, the 2-cycle

ĉ = (A0A2A5A4A1A6A0A3A2A5A1A4A3A6)

dominates all 1-cycles for the following instance:

δ = 1 ε = 0 p = 11

7

0 5 10 15 20
0

10

20

30

40

50
δ = 1, m = 6

p

ti
m

e

LB1

LB2

LB3
πid
πd
πoe

Figure 3: Lower bounds and cycle times of the basic 1-cycles as a function of p. LB1, LB2, and
LB3 represent respectively equations (1), (2), and (5)

To prove Theorem 1, we first establish that for 6-machine cells, no 1-cycle performs strictly better
than {πid, πoe, πd}. For p ≤ (m+ 1)δ and p ≤ 3m− 1, an optimal cycle is given by Proposition 7.
For (m+1)δ ≤ p ≤ (3m−1)δ, we establish some necessary structural properties of optimal 1-cycles.
Intuitively, such cycles must have their total travel time comprised between two and three times
the size of the cell (otherwise they are dominated by either πoe or πd). They must not contain any
sequence of two consecutive activities (otherwise the overall waiting time is too important). Finally,
the minimum travel time between the subsequent loading and unloading of a machine must be long
enough to avoid excessive waiting at the machine.

On can formalize these conditions and verify that for 6 machines, no 1-cycle satisfies them,
therefore the set {πid, πoe, πd} dominates all 1-cycles.

For the parameter set given in Theorem 1, the cycle times of the three basic cycles are:

T (πid) = 73

T (πoe) = 20 +
2

3
T (πd) = 21

while T (ĉ)
2 = 20 < T (πoe) (only one time unit of waiting is necessary for each iteration; see

Figure 4).

4 Best 1-cycle problem

In this section, we are interested in the problem of finding the best 1-cycle. For a small number of
machine (m ≤ 5), it can be solved by case studies. For 6 ≤ m ≤ 8, on can prove that {πid, πoe, πd}

8

0 10 20 40
IN

OUT

2

4

6

t

machines

Figure 4: An iteration of ĉ, for p = 11 and δ = 1

dominates all 1-cycles, using the properties establishes in Section 3. For greater values of m, these
conditions are not sufficient to filter out all non-optimal 1-cycles.

4.1 Simulation

In order to study the best cycles for larger dimension cells, we developed a tool in Java allowing to
simulate the behavior of the cell and therefore experimentally compute cycle times.

The program can be used in two main ways:

• Given an instance of the problem and a list of cycles, compute the cycles times and point out
the best ones for this instance. An example is given in Figure 5, for a 10-machine regular
balanced cell with p = 17 and δ = 1. The most efficient cycles of the list are highlighted: note
that for these parameters, the three basic cycles {πid, πoe, πd} (respectively ”cycle identité”,
”cycle pair-impair” and ”cycle descendant”) are dominated.

• Given an instance and the problem and one cycle, produce in LATEX format the cycle’s chrono-
gram (like in Figure 6) over a number of iterations specified by the user. This is useful to
identify structural properties of cycle.

Travel times and processing times can be either integer or fractional.
The state of the cell is represented by the position of the robot, and a vector of fractional values

representing the state of the machines. If the value for a machine is non-negative, it represents the
remaining processing time on this machine. If not, it means the machine is empty.

Brauner (1999) proved that for any cycle, independently of the initial state, the cells reaches
a periodic steady state, after a finite number of cycle iterations. This means that there exists a
number of iterations (a period) that leaves the cell in exactly the same state, as defined above. Note
that if the minimum period is strictly greater than one, cycle time may differ between consecutive
iterations. Therefore, to compute the long run average cycle time, it is necessary to consider a full
period.

To compute the cycle time, the program first performs several initialization iterations to ensure
the cell is running in a periodic steady state (the number of initial iterations can be set by the
user). The period is then calculated by monitoring the cell’s state after each subsequent iteration.
The programs then outputs the average value of the cycle time over one period.

9

Figure 5: Experimental cycle time computation for a 10-machine cell; the best cycle times are
highlighted.

4.2 Experimentations and conjecture

One-cycles are permutations of the (m+1) activities, and as such, their number grows exponentially
with the number of machines. Up to 14 machines, it is still possible to generate and test them all.

Table 2 shows the cardinal of a minimum set containing a best 1-cycle for any values of the
parameters, up to 14 machines. Although for m ≥ 10, the set {πid, πoe, πd} is dominated for some
values of the parameters, at most 2 additional cycles seem to be necessary to form a dominant set
within 1-cycles. This can be formally proved for m ≤ 11.

Structurally, these additional cycles appear to be similar to the odd-even cycle, but with two
slight alterations regularly disposed. For example, for m = 10, {πid, πoe, πd, π2w} form a dominant
set within 1-cycles, with

π2w = A0A3A2A5A8A10A1A4A7A6A9

represented in Figure 6.
With the odd-even cycle, between a loading and unloading of the same machine, the robot

travels exactly (m+ 1)δ. Intuitively, to reduce waiting times, it is necessary to increase this value,
which comes at the price of an increase of the overall travel time. With π2w, the time between a
loading and unloading of the same machine is at least (m+ 5)δ while the global travel time is only
increased by 4δ compared to the odd-even cycle.

10

Table 2: Cardinal of a minimum dominant set of cycles. Highlighted values (m ≥ 12) are experi-
mental and not yet confirmed by a formal proof.

m 3 4 5 6 7 8 9 10 11 12 13 14

#cycles 3 4 4 3 3 3 4 4 4 5 4 4

0 10 20 30
IN

OUT

2

4

6

8

10

time

machines

Figure 6: A new dominant cycle for a 10-machine cell: π2w = A0A3A2A5A8A10A1A4A7A6A9

The cycle π2w can be defined for any m ≥ 10, and always dominates {πid, πoe, πd} for some
value of the parameters (this can be proved by algebraic formulation of the cycle time).

For m big enough, the definition of π2w can be extended to πnw, formed by similarly altering
the odd-even cycle with n regularly disposed alterations.

We conjecture that for any value of m ≥ 10, a dominant set within 1-cycle can be formed by
{πid, πoe, πd, π2w} and at most 2 cycles from the family (πnw).

Proving the validity of this conjecture would lead to a polynomial algorithm for finding the best
1-cycle in a regular balanced cell with circular layout.

ACKNOWLEDGMENTS

This research has been partially supported by the LabEx PERSYVAL-Lab (ANR11-LABX-0025).

References

Asfahl, C. R. (1985). Robots and manufacturing automation. John Wiley & Sons, New York, NY.

Brauner, N. (1999). Ordonnancement dans des cellules robotisées. Thèse de doctorat, Université
Joseph Fourier, Grenoble, France.

Brauner, N. (2008). Identical part production in cyclic robotic cells: Concepts, overview and open
questions. Discrete Applied Mathematics, 156(13):2480–2492. SWITZERLAND, AUG, 2006.

Brauner, N. and Finke, G. (2001). Cycles and permutations in robotic cells. Mathematical and
Computer Modelling, 34(5-6):565–591.

Crama, Y. and van de Klundert, J. (1997). Cyclic scheduling of identical parts in a robotic cell.
Operations Research, 45(6):952–965.

11

Crama, Y. and van de Klundert, J. (1999). Cyclic scheduling in 3-machine robotic flow shops.
Journal of Scheduling, 2:35–54.

Dawande, M., Geismar, H., and Sethi, S. (2005a). Dominance of cyclic solutions and challenges in
the scheduling of robotic cells. SIAM Review, 47(4):709–721.

Dawande, M., Geismar, H. N., Sethi, S. P., and Sriskandarajah, C. (2005b). Sequencing and
scheduling in robotic cells: Recent developments. Journal of Scheduling, 8(5):387–426.

Dawande, M., Sriskandarajah, C., and Sethi, S. (2002). On throughput maximization in constant
travel-time robotic cells. Manufacturing and Service Operations Management, 4(4):296–312.

Dawande, M. W., Geismar, H. N., Sethi, S. P., and Sriskandarajah, C. (2007). Throughput Opti-
mization in Robotic Cells. Springer.

Drobouchevitch, I. G., Geismar, H. N., and Sriskandarajah, C. (2010). Throughput optimization
in robotic cells with input and output machine buffers: A comparative study of two key models.
European Journal of Operational Research, 206(3):623 – 633.

Drobouchevitch, I. G., Sethi, S. P., and Sriskandarajah, C. (2006). Scheduling dual gripper robotic
cell: One-unit cycles. European Journal of Operational Research, 171(2):598 – 631.

Geismar, H., Sethi, S., Sidney, J., and Sriskandarajah, C. (2005). A note on productivity gains in
flexible robotic cells. International Journal of Flexible Manufacturing Systems, 17(1):5–21.

Hall, N. G., Kamoun, H., and Sriskandarajah, C. (1998). Scheduling in robotic cells: Complexity
and steady state analysis. European Journal of Operational Research, 109(1):43 – 65.

Jolai, F., Foumani, M., Tavakoli-Moghadam, R., and Fattahi, P. (2012). Cyclic scheduling of a
robotic flexible cell with load lock and swap. Journal of Intelligent Manufacturing, 23(5):1885–
1891.

Jung, K. S., Geismar, H. N., Pinedo, M., and Sriskandarajah, C. (2015). Approximations to optimal
sequences in single-gripper and dual-gripper robotic cells with circular layouts. IIE Transactions,
47(6):634–652. Accepted manuscript.

Rajapakshe, T., Dawande, M., and Sriskandarajah, C. (2011). Quantifying the impact of layout on
productivity: An analysis from robotic-cell manufacturing. Operations Research, 59(2):440–454.

Sethi, S., Sidney, J., and Sriskandarajah, C. (2001). Scheduling in dual gripper robotic cells for
productivity gains. IEEE Transactions on Robotics and Automation, 17(3):423–341.

Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W. (1992). Sequencing of
parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems,
4:331–358.

12

