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Higher-Order Methods for Relativistic Magnetohydrodynamics

A higher-order finite volume method based on WENO7 reconstruction for solving the relativistic magnetohydrodynamics equations in two-dimensional domains is presented. In the presence of strong shocks, a WENO3 reconstruction is used instead. The time discretization is performed by a Strong Stability-Preserving Runge-Kutta method of fourth order. Numerical results include the Orszag-Tang vortex, the Rotor problem and the Spherical Blast Wave problem.

Relativistic Magnetohydrodynamics

Considering the Minkowski spacetime with Cartesian coordinates (t, x, y, z), the equations of the special relativistic magnetohydrodynamics form a system of conservation laws which can be written as

∂ D ∂ t + ∇ • (Dv) = 0, (Conservation of Mass) (1a) ∂ S ∂ t + ∇ • (S ⊗ v + ) = 0, (Conservation of Momentum) (1b) ∂ E ∂ t + ∇ • S = 0, (Conservation of Energy) (1c) ∂ B ∂ t + ∇ • B ⊗ v -v ⊗ B = 0, (Induction Equations) (1d)
with the tensor defined as

= p + |B| 2 2Γ 2 + (v • B) 2 2 - B Γ 2 + (v • B)v ⊗ B, (2) 
where the quantity in the first bracket is the total pressure (which has contributions from the thermal and magnetic pressure).

D = ρΓ , (3a) 
S = ρhΓ 2 + |B| 2 v -(v • B)B, (3b) 
E = ρhΓ 2 -p + |B| 2 2 + |v| 2 |B| 2 2 - (v • B) 2 2 , (3c) 
B = B. ( 3d 
)
Γ is the Lorentz factor, defined by Γ = (1v 2 ) -1/2 .

Finite Volume Methods

Given the system of conservation laws

∂ u ∂ t + ∂ f (u) ∂ x + ∂ g(u) ∂ y = 0, (4) 
by integrating it over the cell Ω i j , we get the semi-discrete scheme

du i j dt = fi-1 2 , j -fi+ 1 2 , j ∆x + ĝi,j-1 2 , -ĝi,j+ 1 2 , ∆ y , ( 5 
)
where, in the context of finite volume methods, u i j is the spatial average of u in the cell Ω i j at time t

u i j = 1 ∆x 1 ∆ y x i+ 1 2 x i-1 2 y j+ 1 2 y j-1 2 u(x, y) d y dx (6)
and fi± 1 2 , j , and ĝi,j± 1 2 are spatial averages of the physical fluxes over the cell faces x i± 1 2 , y j± 1 2 , respectively, at time t

fi± 1 2 , j = 1 ∆ y N G P α=1 f u(x i± 1 2 , y α ) ω α , ĝi,j± 1 2 = 1 ∆x N G P α=1 g u(x α , y j± 1 2 ) ω α . ( 7 
)
Because of only the cell averages u i j are known, we require a high-order accurate numerical procedure to reconstruct the point-wise values of u at the Gaussian integration points at the faces. By employing a high-order WENO reconstruction, we will have high-order accurate solutions in smooth parts of the flow, and essentially non-oscillatory properties around discontinuities.

Building Blocks for the RKFV Contour plots of the rest-mass density (left) and magnetic field magnitude (right) at simulation time t = 3 and t = 5. A RKFV method has been used with WENO7 reconstruction. A mesh of 400 × 800 points has been employed.

  the rest-mass density (left) and the square of the magnetic field magnitude (right) at simulation time t = 7.5. A RKFV method has been used with WENO7 reconstruction. A mesh of 600 × 600 cells has been employed. the rest-mass density (left) and the square of the magnetic field magnitude (right) at simulation time t = 1.0. A RKFV method has been used with WENO7 reconstruction. A mesh of 600 × 600 cells has been employed. the rest-mass density (left) and the Mach number (right) at simulation time t = 0.3. A RKFV method has been used with WENO7 reconstruction. A mesh of 600 × 600 cells has been employed. the pressure (left) and the Mach number (right) at simulation time t = 0.4. A RKFV method has been used with WENO7 reconstruction. A mesh of 600 × 600 cells has been employed.

Scheme Numerical Computations Relativistic Current Sheet

  

• Time Discretization . . . . . . . . . . : SSPRK3, SSPRK4 • Spatial Reconstruction. . . . . . .: WENO3, WENO5 and WENO7 • Numerical Fluxes . . . . . . . . . . . . : Rusanov, HLL, HLLC, HLLD • Solenoidal Constraint. . . . . . . .: Generalized Lagrange Multiplier • Shock Indicator . . . . . . . . . . . . . . : Jameson Indicator • Shock Capturing . . . . . . . . . . . . . : Robust WENO3