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Abstract. In this work, a novel robust image hashing scheme for image authentication is proposed based 

on the combination of the quaternion discrete Fourier transform (QDFT) with the log-polar transform. 

QDFT offers a sound way to jointly deal with the three channels of color images. The key features of the 

present method rely on (i) the computation of a secondary image using a log-polar transform; and (ii) the 

extraction from this image of low frequency QDFT coefficients’ magnitude. The final image hash is 

generated according to the correlation of these magnitude coefficients and is scrambled by a secrete key 

to enhance the system security. Experiments were conducted in order to analyze and identify the most 

appropriate parameter values of the proposed method and also to compare its performance to some 

reference methods in terms of receiver operating characteristics curves. The results show that the 

proposed scheme offers a good sensitivity to image content alterations and is robust to the common 

content-preserving operations, and especially to large angle rotation operations. 

Keywords: Robust image hashing quaternion discrete Fourier transform log-polar transform, image 

authentication. 



1. INTRODUCTION 

 

  With the widespread use of sophisticated image editing tools, image contents can be easily tampered or forged. 

Verifying image authenticity is therefore a major issue in many applications. Robust image hashing is widely 

applied in image authentication [1-3]. Schematically, image hashing methods extract essential image features from 

which a short binary or real number sequence, called hash, is generated to represent the image content. Such a hash 

should be robust to image content-preserving operations while being sensitive to malicious tampering ones. 

Because robust image hashing captures the main image characteristics, it has attracted interest for other 

applications like image forensic [4, 5], image retrieval [6, 7], digital watermarking [8, 9], and so on. Regarding 

image authentication, a robust image hash should also have good anti-collision (discriminative) capability for 

visually distinct images as well as a satisfactory level of security in order to make very difficult for an adversary to 

forge the hash value. To meet these requirements simultaneously, the construction of a robust image hashing is still 

a challenging task. 

  In general, the construction of an image hash is based on three basic steps, i.e., pre-processing, image feature 

extraction and construction of hash. Among them, the most critical one is certainly the image feature extraction 

step [10]. Existing feature extraction methods for robust image hashing can be roughly classified into the following 

categories. 

Discrete Cosine Transform (DCT)-based image hashing methods: Fridrich and Goljan [8] used the DCT to capture 

the essential features of image blocks. They observed that it is very difficult to change the correlation of the 

low-frequency DCT coefficients without tampering the content of an image. Therefore, low-frequency DCT 

coefficients can be utilized as features to build the hash. De Roover et al. [11] defined a radial variance vector 

(RAV) based on the radial projection of the image pixels, and then applied the DCT to compress the RAV feature 



vector and construct the image hash. This method is robust to content-preserving operations and small angle 

rotations. 

Discrete wavelet transform (DWT) -based image hashing methods: Ahmed et al. [1] used a wavelet transform to 

extract the image features. Since the wavelet transform has a good time-frequency localization property, their 

method can locate tampered regions with a good accuracy but at the price of a longer image hash. Wu et al. [12] 

combined the Radon transform (RT) and the DWT to deal with print-scan attacks. Tang et al. [13] developed an 

image hashing scheme after observing that the entropy of pixel blocks, a measure used to characterize image 

texture, is approximately linearly changed after content-preserving operations. Then, they applied DWT to image 

block’s entropies to realize feature compression and construct the image hash. Recently, color vector angle 

combined with DWT [14] were applied to robust image hashing. Their results show good robustness to common 

content-preserving operations and small angle rotation. Liu et al. [15] utilized the wave atom transform to extract 

image features arguing that this approach has a sparse expansion and is capable to better capture texture properties. 

Furthermore, they observed that the coefficients of the third scale band are more suitable to serve as image hash 

features than the other scale bands. 

Discrete Fourier transforms (DFT)-based image hashing methods: Most DFT based approaches are combined with 

other transforms in order to resist to geometric distortions. For example, Swaminathan et al. [10] proposed a robust 

image hashing scheme based on the Fourier-Mellin transform. Qin et al. [16] introduced another scheme where a 

secondary image is first obtained after a rotation projection similar to the RAV of the image. A non-uniform 

sampling is then performed to extract the image features after applying the DFT. This method is robust to small 

angle rotations. Lei et al. [11] first carried out a RT and then computed moment features before applying DFT on 

these moments. The first fifteen significant DFT coefficients were then normalized and quantized to obtain the 

image hash value. This method shows satisfactory results when facing geometrical distortions. 



Matrix decomposition-based image hashing methods: Kozat et al. [17] used singular value decomposition (SVD) 

to get robust image features and to generate an image hash. Their hashing algorithm consists of two major steps. In 

the first one, intermediate features are extracted from pseudo-random (PR) semi-global regions via SVD. In the 

second step, the SVD is again applied to the intermediate features so as to construct the final hash. Monga et al. [18] 

also introduced a new PR signal representation method using non-negative matrix factorization (NMF) to capture 

the features and to form the image hash. Their method shows better performance than the SVD based method. 

Recently, Tang et al. [19] proposed a robust image hashing method based on ring partition and NMF. Their results 

show good performance to common content-preserving operations and large angle rotation operation. 

Others image hashing methods: In [20], Xiang et al. proposed a histogram-based image hashing scheme, which is 

robust to geometric distortions but not to additive noise, brightness adjustment and contrast enhancement. Battiato 

et al. [21] adopted an image representation based on a set of SIFT features (called “bag of features”, BOF) to 

construct the hash and explored a non-uniform quantization of histograms of oriented gradients (HOG) to get 

tamper localization capabilities. Zhao et al. [3] combined global and local features to construct an image hash. The 

global features correspond to the Zernike moments of the luminance and chrominance components of the image, 

while the local ones include the positions and the texture information of salient regions. This algorithm can identify 

the type of image tamper as well as the modified areas’ location. Other robust feature extraction methods for 

constructing image hashes were also reported including the random Gabor filtering [22], the ring partition [23] and 

shape contexts [24]. 

When applied to color images, most of the above schemes convert three color channels (i.e., Red, Green, Blue or 

RGB) into gray-scale images while discarding the chrominance information. However, exploiting the chrominance 

information may not only improve the detection performance [3, 16], but may also make image forgery more 

difficult due to the fact that the hash contains both luminance and chrominance information. Quaternions can offer 



a sound way to simultaneously deal with the three color channels without discarding the chrominance information. 

They have already been successfully employed in color image registration [25], image analysis [26-30] and 

watermarking [31-33]. Recently, quaternion discrete Fourier transform (QDFT) was used to generate image 

hashing and applied to image retrieval [34]. By following the same path, we proposed a novel image hashing 

method based on QDFT and log-polar transform for image authentication. QDFT can handle simultaneously the 

three channels (RGB) of color image without discarding chrominance information. Similar to DFT, the 

low-frequency coefficients of QDFT contain the main energy of the image and represent essential image features. 

In addition, QDFT can be combined with the log-polar transform so as to achieve a set of features that are rotation 

invariant. We propose thus to take advantage of QDFT used here to build a novel and compact image hash that is 

robust to content-preserving operations, geometric attacks while being sensitive to malicious tampering operations. 

The rest of this paper is organized as follows. Section 2 gives a brief overview of quaternion and QDFT. 

Section 3 introduces the proposed scheme including its pre-processing, image feature extraction, and hash 

construction steps as well as its image authentication procedure. Experiments and comparison results are provided 

in Section 4. Some concluding remarks are given in Section 5. 

2. PRELIMINARIES 

2.1 Quaternion 

Quaternion is a generalization of complex numbers and was introduced by Hamilton in 1843 [26]. A quaternion 

number has four parts: one real part and three imaginary parts, and can be written as follows: 

q a b c d= + + +i j k ,                                       (1) 

where a , b , c and d are real numbers, i, j and k are imaginary units obeying the following rules: 

2 2 2 1= = = −i j k , , ,i = − = = − = = − =j ji k jk kj i ki ik j .                      (2) 

From Eq. (2), it can be found that the multiplication rule of quaternion is not commutative. The conjugate and 



modulus of a quaternion q are respectively defined as follows: 

q a b c d= − − −i j k ,   2 2 2 2q a b c d= + + + .                      (3) 

A quaternion q with a zero real part is called a pure quaternion. One pixel of a color image f at the spatial position 

(x, y) has three components, and can be represented as a pure quaternion [27]: 

( , ) ( , ) ( , ) ( , )R G Bf x y f x y f x y f x y= + +i j k ,                            (4) 

where ( , )Rf x y , ( , )Gf x y and ( , )Bf x y  are respectively the RGB component values of f (x, y). 

2.2 Quaternion discrete Fourier transform 

Quaternion or hypercomplex Fourier transform was first introduced in the image processing community by Ell 

[28]. Due to the non-commutative property of the quaternion multiplication, there are three different types of QDFT, 

namely, right-side, left-side and two-side [29]. Since that the right side QDFT can be processed in a similar way as 

the left side QDFT, and the operations are much easier with the left side DQFT or right side QDFT than that with 

the two-side QDFT [25, 33], we decided to use the left-side QDFT. For a color image f(x, y) of size M × M, the 

QDFT and its inverse transform IQDFT are defined as follows [30]: 
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where  is any unit pure quaternion that can be defined as a linear combination of i, j, and k such as:  = i + j 

+ k, , ,   R, | | = 1. 

3. PROPOSED SCHEME 

  Our robust image hashing scheme is shown in Fig. 1. Like any robust hashing strategy, it includes an image 

pre-processing stage followed by an image feature extraction process and a hash construction. We detail each of 

these stages below. 
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      Fig. 1. Block diagram of the proposed robust image hashing scheme. 

3.1. Pre-processing 

The pre-processing procedure we use is illustrated in Fig. 2 for Lena test image. This one takes I0 as an input 

image which is first rescaled to a fixed size M×M. This step ensures that the generated image hash will be of fixed 

length while making it robust against image scaling operation. In this paper, the value M = 256 is chosen. In a 

second step, to make the generated image hash more robust, a smoothing (i.e. averaging filter) operation based on a 

k×k window is applied. Its aim is to preserve the essential structures while removing insignificant details without 

endangering the image content (see Fig. 2(b)). Then, considering that an image can be rotated, we propose to only 

consider the smoothed pixels within the image inscribed circle as illustrated in Fig. 2 (d). This is obtained by 

setting to zero the pixels outside the inscribed circle. As exposed in Fig. 2 (d) and Fig. 2 (e), the image and its 

rotated version have the same pixel values. This allows us minimizing the influence of information loss, especially 

the loss of pixels in the image corners, in the case of image rotations with large angles. 

 

Fig. 2. Pre-processing procedure applied to an image and to a rotated version of an angle of 45°. (a) Image I0, 

(b)-(c) Smoothed images, (d)-(e) inscribed circle in smoothed images (b) and (c).  

 

3.2. Feature extraction 



Robustness to image scaling being handled in the pre-processing stage, the image features we are looking for 

have to be robust to image rotation. To do so, we propose to first transform the pre-processing image into log-polar 

domain and then to apply the QDFT. 

Let f1(x, y) be a rotated version of the original color image f0(x, y) with rotation angle 0: 

1 0 0 0 0 0( , ) [( cos sin ),    ( sin cos )]f x y f x y x yθ θ θ θ= − + .                      (7) 

If we use the log-polar coordinates: 

   
cos     

sin  

x e

y e

ρ

ρ

θ

θ

=

=
                                    (8) 

where 2 2

0 0ln ( ) ( )x x y yρ = − + −  denotes the logarithm of the radial distance from the origin (x0, y0) of the 

image, ( ) ( )( )0 0arctan y y x xθ = − −  the polar angle in the log-polar system, e the base of the log, the origin (x0, 

y0) being located at the center of the image. Then, Eq. (7) can be rewritten as [25]: 

1 0 0( , ) [ ,  ( )]f fρ θ ρ θ θ= + .                                (9) 

  

(a)                         (b) 

Fig. 3. Results of Log-Polar Transform applied to Fig. 2(d) and (e) 

 

Eq. (9) indicates that the image rotation causes a cyclical shift 0 along the angle axis. The results of the 

log-polar transform applied to the pre-processed images given in Fig. 2(d) and (e) are shown in Fig. 3(a) and (b), 

respectively. As it can be seen, they are similar except for a cyclical translation along the horizontal axis. When 

both sides of Eq. (9) are transformed by means of QDFT using Eq. (5), we obtain: 

02

1 0( , ) ( , )

v

MF u v e F u v

θ
µπ−

= ,                               (10) 

where F0(u, v) and F1(u, v) respectively denote the frequency coefficients of QDFT before and after image 



rotation, (u, v) denotes the frequency coordinates, and |.| represents the magnitude operator obtained by means of 

(3), 0 is rotation angle, and M denotes the size of image. 

Eq. (10) indicates that
1 0( , ) ( , )F u v F u v= . In other words, the QDFT magnitudes of both f1( , ) and its 

translated versions f0( , + 0) are invariant to rotation. Due to the fact that the low-frequency components of 

QDFT hold the major part of the image energy and represent the main information on the image content, like for 

the DFT, we propose to use the magnitude of these low-frequency coefficients as features. More precisely, p 

magnitude coefficients of a square region from the low-frequency spectrum are selected for that purpose. For 

example, after the low-frequency coefficients are shifted into the center, if the center of QDFT coefficients is 

located at u = 129 and v = 129, and p is set to the size 5×5, then the range of selected low-frequency coefficients is: 

u, v ∈ [127,131].  

As stated in Ref [35], if the feature extraction part of a hashing scheme is not dependent of the knowledge of a 

secret key, or if it is not secured, an adversary will be able to construct a visually different image while reserving 

the original hash, or able to destroy the hash by introducing small distortion into the image, i.e, preserving its 

content. In order to secure our perceptual hash extraction, we apply the Arnold transform [33, 36], parameterized 

by the secret key K, so as to secretly scrambled the previously p selected QDFT coefficients. 

To sum-up, both QDFT and log-polar transform are used in our scheme to capture image features onto which 

our image hash is built. 

3.3. Hash construction 

Let us represent the p QDFT magnitude coefficients of the selected and scrambled square region into a row 

vector (1) (2) ( )[ , ,..., ]pZ z z z= , where z(i) corresponds to the i
th

 QDFT magnitude coefficient of vector Z, and i =1, …, 

p. Each z(i) is determined from the square region according to the selection sequence from top to bottom and from 

left to right. The robust hash HG is then generated as follows [16]: 



( ) ( 1)

( ) ( 1)

1,     0,    
( ) 1,..., -1.  

0,     0,

i i

G

i i

if z z
H i i p

if z z
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− <
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In order to enhance the security of HG, this one is secretly scrambled based on a process parameterized by a secret 

key KH. Without the knowledge of KH, one will not be able to generate a valid hash. Here, we used the MatLab 

function randperm () to encrypt. In fact, it is a randomly permutation problem. According to the secret key, it 

generates a scrambled serial number. The encrypted hash is formed by the scrambled serial number. 

3.4 Image authentication 

In a classical scenario, the original image I0 is transmitted along with its robust hash HG0 to a recipient through 

the Internet or a third party certification organization. At the reception, the recipient can then check the image 

authenticity. The received image 1I , a version of I0 that may have undergone some content-preserving or malicious 

tampering operations, is utilized to generate the hash 1GH according to the same procedure described above. These 

two hashes, 0GH and 1GH , are then compared to determine whether the received image is tampered or not. The 

normalized Hamming distance D1 is used in our system to measure the similarity between the two hashes: 

1
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−
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where ‘⊕ ’ represents the exclusive-or operation, and Key(.) denotes the encryption operation. If the distance D1 is 

less than a pre-fixed threshold , the two images are considered as similar images; otherwise, they are viewed as 

distinct images or tampered images. The determination of the parameters of our robust image hashing scheme is 

analyzed in the experimental section. 

 

Fig. 4. Examples of test image 

 



4. EXPERIMENTAL RESULTS 

4.1 Image data sets, performance criteria 

  To evaluate the performance of the proposed scheme, the UCID [37] image database (including 1338 color 

images of size 512×384 or 384×512 pixels) was selected. In all the experiments, the first 1000 images of this 

database were used unless stated otherwise. Some example images are displayed in Fig. 4. 

The receiver operating characteristics (ROC) [38] is used to evaluate the influence of the parameters and the 

authentication performance in comparison with other methods. The true positive rate (PTPR) and the false positive 

rate (PFPR) of the ROC curve indicate the perceptual robustness and the discriminative capability (or anti-collision 

capability) of an image hash, respectively. They are defined as follows: 

1 1
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n D
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λ
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=                          (13) 

where n1 corresponds to the amount of pairs of visually identical images classified into similar images, n2 is the 

amount of pairs of different images classified into similar images, while N1 and N2 denote the total number of pairs 

of visually identical and different images, respectively.  

Table1 Content-preserving operations with different parameter values 

Operations Descriptions Parameters 

Pepper & salt noise 

Gaussian noise 

Median filter 

Average filter 

Gaussian filter 

Brightness adjustment 

Contrast adjustment 

Gamma correction 

JPEG compression 

Rotation 

Scaling 

Cropping  

 Noise density 

Noise variance 

Windows size 

Windows size 

Windows size 

Ratio  

Range of adjustment 

Gamma value 

Quality factor 

Rotation angle 

Scaling factor 

Ratio  

0.01, 0.02, 0.03, 0.05, 0.1 

  0.001,0.005,0.01, 0.02, 0.05  

  3×3, 5×5, 7×7, 9×9, 11×11, 

  3×3, 5×5, 7×7, 9×9, 11×11, 

  3×3, 5×5, 7×7, 9×9, 11×11, 

1.5, 1.3, 1.1,0.8, 0.6 

[0.1 0.9], [0.1 0.8], [0.1 0.7], [0.2 0.9], [0.2 0.8] 

0.75, 0.8, 0.9, 1.1, 1.25 

10, 30, 50, 70, 90 

    2°, 10°, 30°, 45°, 210° 

2, 1.5, 1.2, 0.8, 0.6 

1%, 2%, 3% 

4.2. Parameter determination 

Some operations and parameters have a direct influence on the performance of our approach and need to be 



determined, among which the pre-processing filter window, the number p of low-frequency coefficients used as 

image features, the authentication threshold . 

Table 2 Normalized Hamming distance given in average for different sizes of pre-processing average filter window 

as well as for different content-preserving operations 

Content- 

preserving 

 operations 

Para- 

meter 

Averaging filter  

window of size 3×3 

Averaging filter  

window of size 5×5 

Averaging filter  

window of size 7×7 

Averaging filter  

window of size 11×11 

DD1 DD2 DD1 DD2 DD1 DD2 DD1 DD2 

Pepper & salt 

noise 

0.01 0.051  0.468 0.030 0.447 0.025 0.438 0.024  0.422 

0.02 0.073  0.466 0.042 0.445 0.035 0.439 0.031  0.423 

0.03 0.091  0.466 0.049 0.448 0.039 0.439 0.038  0.422 

Gaussian 

noise 

0.001 0.032  0.465 0.018 0.446 0.018 0.438 0.019  0.422 

0.002 0.046  0.464 0.025 0.446 0.023 0.439 0.021  0.422 

0.003 0.056  0.467 0.031 0.446 0.026 0.439 0.024  0.422 

Brightness 

adjustment 

1.3 0.058  0.466 0.059 0.445 0.059 0.440 0.061  0.421 

1.1 0.017  0.465 0.018 0.445 0.021 0.439 0.022  0.421 

0.8 0.006  0.465 0.009 0.446 0.013 0.439 0.016  0.421 

Averaging 

filter 

7×7 0.209  0.456 0.102 0.442 0.084 0.431 0.080  0.415 

9×9 0.263  0.453 0.135 0.440 0.108 0.428 0.105  0.412 

11×11 0.305  0.450 0.174 0.433 0.112 0.426 0.125  0.410 

Median 

filter 

3×3 0.063  0.463 0.040 0.448 0.035 0.439 0.033  0.421 

7×7 0.195  0.458 0.113 0.444 0.094 0.437 0.086  0.416 

11×11 0.287  0.455 0.183 0.438 0.105 0.431 0.133  0.413 

JPEG 

compression 

0.4 0.048  0.464 0.030 0.446 0.027 0.439 0.025  0.421 

0.2 0.070  0.464 0.047 0.447 0.039 0.439 0.035  0.422 

0.1 0.106  0.466 0.071 0.447 0.062 0.439 0.056  0.423 

Rotation 5° 0.072  0.467 0.045 0.447 0.040 0.438 0.045  0.421 

30° 0.112  0.466 0.095 0.448 0.108 0.434 0.127  0.420 

45° 0.134  0.467 0.110 0.448 0.121 0.437 0.144  0.422 

120° 0.214  0.465 0.149 0.449 0.138 0.434 0.144  0.421 

Average - 0.114  0.463 0.072 0.445 0.063 0.436 0.063  0.420 

DD3 - 0.349 0.367 0.373 0.357 

 

In this work, we experimentally identify the values of these parameters so as to ensure a good trade-off in terms 

of detection performance of our system. To do so, the first 1000 of the UCID images were used in this experiment 

as original image database, each image being submitted to 58 content-preserving operations, the parameterization 

of which is given in Table 1. These operations include pepper & salt noise, Gaussian noise, brightness adjustment, 

different filters, JPEG compression, cropping, scaling and rotation. There are thus a total of N1=58000 visually 



identical images pairs, which are looked as constituting the visually identical image database. The normalized 

Hamming distance D1 between the original image database and the visually identical image database is computed 

[3]. Note that there are N2 = 1000× (1000–1)/2 =499500 pairs of different images. 

(1) Influence of the pre-processing average filter window size (k). To evaluate the influence of the pre-processing 

stage average filter and to select its suitable window size, we calculated the average Hamming distance between 

hashes on the whole image test set (i.e. 499500 pairs of different images and of 58000 pairs of similar images) for 

different window sizes k = 3, 5, 7, and 11 while considering a larger number of QDFT coefficients p (fixed to 

p=1000). These distances are shown in Table 2, where DD1 and DD2 denote the mean of normalized Hamming 

distance between hashes of visually similar images and distinct images, respectively. Small values of DD1 reflect a 

good robustness while large values of DD2 mean a good discriminative capability. We also introduce DD3 which 

corresponds to the absolute difference between DD2 and DD1. A large value of DD3 indicates that the 

corresponding average filter window size achieves a good trade-off between robustness and discriminative 

capability. 

As it can be seen, if the averaging filter window is of very small size, e.g. 3×3, the value of DD1 is large (see 

bold numbers in Table 2) making our hash non-robust to content preserving operations like average and median 

filtering. When increasing the size of the filter window, DD1 values decrease whatever the image modification. The 

averaging filter induces an image information loss which influences the robustness of our hash. At the same time, 

this filtering operation also impacts the discrimination capability of our scheme as shown by DD2 values. These 

values decrease when increasing the window size. However, a good tradeoff in terms of robustness and 

discrimination capability of our hash can be achieved by looking at DD3, the highest value of which DD3=0.373 is 

obtained for a window of 7×7 pixels. Based on these experiments, we decided to fix the averaging filter window 

size to k = 7. 



(2) Influence of the number of selected low-frequency QDFT coefficients (p). As exposed in Section 3.3, the length 

of our robust hash depends on the parameter p. In general, the smaller the value p is, the better the perceptual 

robustness will be but the worse the anti-collision performance is, and vice-versa. 
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(a) ROC curve of different p values            (b)  Zoom-in view of the ROC curves 

Fig. 5.  ROC curves for different values p . 

In order to find an appropriate trade-off, the previous test color images we built from the UCID ones were 

authenticated considering different values of p within the set 52, 92, 132, 172, 212, 252 and 512. Fig. 5 shows the 

corresponding ROC curves, with a zoom in Fig. 5(b) of Fig. 5(a). Slight improvements are observed when p is 

increasing from 81 to 289. For higher values the performance decreases. Thus, one can see that a good trade-off 

between the perceptual robustness and the anti-collision capability of our hash is obtained for p values in the range 

[169, 289]. In the rest of this paper, the value p=152=225 was retained in order to have an appropriate short hash 

length. Indeed, in that case, HG is of 224 bits according to Eq. (11). 
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(a) Identical image pairs                   (b) Different image pairs 

Fig. 6. Distribution of the normalized Hamming distance 1D  

(3) Authentication threshold . Fig. 6(a) and (b) show respectively the Hamming distance distributions for hashes 

of visually identical color images and for hashes of visually different images. It can be seen that almost all 



distances for different image pairs are larger than 0.2, while almost all distances between identical images are less 

than 0.2. This is the reason why the authentication threshold we use in the sequel is set to  = 0.2. 

4.3. Performance test 

   As described in the introduction, robust image hashing should contain some key properties: perceptual 

robustness, anti-collision capability, sensitivity and security. In this section, we examined these aspects so as to 

establish the performance of our hash. 

(1) Perceptual robustness. Perceptual robustness means that both the received image and the original image have 

a very high probability of generating similar hash. Fig. 6(a) shows the perceptual robustness of the proposed 

method considering the above parameterization. It can be seen that only a few image pairs (about 0.2%) are looked 

as different images when  is set to 0.2. Notice that these misclassified images are due to strong parameter attacks 

such as pepper and salt noise with density 0.1 and a median filter with a window size 11×11. We further use the 

well-known images such as Lena, Airplane, Pepper, Mandrill and Sailboat and lake to show the robustness.  

Almost all attacks described in Table 1 were applied. The normalized Hamming distance values corresponding to 

each operation are displayed in Fig. 7. It can be seen that the normalized Hamming distance DD1 is less than 0.2. 

This perceptual robustness can be achieved for three main reasons: (i) the generated hash utilizes the low-frequency 

QDFT coefficients whose interrelation is hardly changed by content-preserving operations; (ii) the average 

preprocessing filter makes the method more robust against content-preserving operations such as noise, filtering 

operation and JPEG compression; (iii) the magnitude of QDFT coefficients of the log-polar transformed image is 

invariant to rotation. The proposed method is thus perceptually robust not only to geometric attacks but also to 

content-preserving operations. 
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Fig. 7. The distribution of distances DD1 in different content- preserving operations 

 

(2) Anti-collision capability. Anti-collision or discriminative capability means that two visually distinct images 



have a very low probability of generating similar hash. If the distance DD2 of two distinct images is less than the 

threshold , the collision occurs. According to Fig. 6(b), the collision probability we achieved over our whole 

image test set is close to zero when the threshold  is set to 0.2 since all distance pairs of different image are more 

than 0.2, indicating good anti-collision performance of our scheme. 
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Fig. 8. Distribution of normalized Hamming distance when using 50000 wrong secret keys 

(3) Security. To validate the security of the system, we tested 50000 wrong secret keys. The hash distance 

distribution of image pairs between right and wrong secret keys KH is shown in Fig. 8. We observe that all these 

distances are higher than 0.2. If one does not know the secret key and the hash algorithm, the probability of 

generating the same hash is about 1/2224 since our hash length is 224 bits. If one does not know the secret key but 

know the hash algorithm, it is a special permutation problem of 224 bits. Therefore, the proposed method meets 

also the security requirements. 

(4) Sensitivity. When some tampering operations are applied to an image, the corresponding image hash should 

be distinct from the original image one. To validate the sensitivity of the proposed method to such visual content 

alterations, we have simulated two kinds of tampering operations. They rely on copying a portion of a “source 

image” and pasting it into a “destination image” which can be same as the source image (“copy-move attack”) or 

another image (“cut-and-paste attack”). As illustrated in the second and third row of Fig. 9, the upper left corner of 

the pasted area corresponds to the destination image center. We have considered different sizes of the copied area 

so as it correspond to 4%, 9%, 16% and 25% of the destination image dimensions. It can be seen from Fig. 9 that 

for such kind of attack the resulting normalized Hamming distances DD2 are higher than 0.2. As shown, our 



method is sensitive to content alterations taking advantage of the fact that the magnitude of QDFT coefficients 

contains both the luminance and the chrominance information. 

     

     

    

      

Fig. 9.  Examples of original and tampered images. Top: original images. Second row: tampered images after a 

copy-move attack of size 4%, 9%, 16%, 25%, obtained normalized Hamming distance are DD2=0.3259, 0.3527, 

0.3839, 0.4107, respectively. Third row: tampered image after a cut-and-paste attack of size 4%, 9%, 16%, 25%, 

obtained normalized Hamming distance values are DD2=0.2902, 0.4107, 0.4107, 0.4241, respectively. Fourth row: 

tampered image after a tampering rate of 10%.  The resulting normalized Hamming distance values are 

DD2=0.2679, 0.2143, 0.2455, 0.3438, respectively. 

 

To further validate the sensitivity of our hash to visual content alterations, the first 1000 images from the UCID 

database were also tested. Similarly to the above copy-move and cut-and-paste attacks, tampering ratios that were 

considered are of 4% 9% 16% 25% 36% and 49%, leading thus to 6000 normalized Hamming distances shown 

in Fig. 10. We observe that all distances are larger than 0.2 except for one image where the tampering ratio is equal 

to 4%. This confirms that the proposed method is sensitive to content alterations when the tampering ratio is higher 



than 4%. In addition, we have also conducted experiments with a tampering position near the boundary (a 

tampering ratio about 10% was chosen) as shown in the fourth row of Fig. 9. We observe that such operation leads 

to a sensitivity decrease (DD2 is higher than 0.2 but close). 
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Fig. 10. Distribution of normalized Hamming distances for 6000 different tampering image pairs 

   

(a)                 (b)               (c) 

   

                       (d)                 (e)               (f) 

Fig. 11.  Examples of original images and image region color changing. Top: original images. Second row: 

tampered images based on color change, where the obtained normalized Hamming distance values are 

DD2=0.0982, 0.1339, 0.2634, respectively.  

 

 Image color change is another tampering operation. This change can operate in two ways. The first one does not 

change the image content as simulated in Fig. 11(d) and (e). Their normalized Hamming distance values are 0.0982 

and 0.1339, respectively. The second one modifies the image content as depicted in Fig. 11(f); the corresponding 

normalized Hamming distance value is 0.2634. Experimental results show that our scheme is insensitive to the first 

kind of region color changing ways; this is not the case for the second kind of tampering.  

4.4. Performance comparison 



4.4.1 Robustness and anti-collision performance comparison 

In order to better evaluate the performance of our QDFT based scheme, we compared it with different methods 

based on DFT [16], QDFT [34], Zernike moments [3] and NMF [19]. On one hand, these methods represent the 

current state of the art and, on the other hand, their authors suggested working on color images. In order to further 

examine the influence of the log-polar transform on the performance of scheme; three QDFT based schemes were 

compared. The first one, denoted by QDFT1, corresponds to the method already described. The second one, 

denoted by QDFT2, is identical to QDFT1 except that the log-polar transform is omitted. The parameters used for 

these two methods are the same. The QDFT method reported in [34] is referred to as QDFT3. As previously, the 

first 1000 images of the UCID image database were used to generate similar image pairs and distinct image pairs.  

The comparison is worked out using ROC curve, which is a good measure for a fair comparison since it allows 

comparing methods based on different distance measurement criterion (i.e. Zernike moments [3] use Euclidean 

distance, NMF [19], the correlation coefficients, DFT [16], QDFT [34] and our scheme, the Normalized Hamming 

distance). The ROC curves are displayed in Fig. 12 (a). It can be seen that both QDFT1 and QDFT2 leads to a 

better behavior than the other hashing methods, QDFT3 shows the worst performance. The main reason stands on 

the way this hash is constructed. Basically, it directly divides the frequency domain into block of size 8×8, and then 

generates the hash component value by comparing the average energy of block with the one of the whole image. 

But due to the fact about 9% of low-frequency coefficients carry more than 99.5% of the image energy as stated in 

[35], most of hash component values are ‘0’, and only a few ones have value ‘1’. This leads to a very bad 

anti-collision capability and also impacts the overall performance of this scheme. 
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              (b)   Salt and Pepper noise               (c) Gaussian noise 
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(d)  Brightness adjustment              (e) Contrast adjustment 
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(f)  Gaussian filtering                (g) Median filtering 
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(h)  Average filtering              (i) JPEG compression 
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(j)   Rotation                     (k)   Cropping 

Fig. 12. Comparison of the methods through the ROC curves for different tampering operations 

 

To show clearly the advantages and disadvantages of these methods for different content-preserving operations, 

Fig. 12(b)-(k) show the ROC curves corresponding to each operation. From these results, it appears that these 

methods are robust to some content-preserving attacks such as Gaussian noise, Gaussian filtering, average filtering, 

JPEG compressing, etc. However, our method behaves better on the overall. For instance, Fig. 12(d)-(e) shows that 

the Zernike moment method is sensitive to brightness and contrast adjustment. Fig. 12(e), (g), (j) and (k) show that 

the QDFT3 is not robust to contrast adjustment, median filtering, rotation and cropping attack. For the rotation 

operations illustrated in Fig. 12(j), the NMF method and QDFT1 method obtain better performance than the other 

four methods. When comparing QDFT1 and QDFT2, the former shows better robustness to rotation and cropping 

attacks since it employs the log-polar transform in feature extraction process. Thus, the proposed method is robust 

to almost all content-preserving operations. This is due to the joint combination of (i) the low-frequency magnitude 

coefficients of QDFT, (ii) the log-polar transform of the image central part, and (iii) the filtering operation 



enhances its robustness and increases its discriminative capability. 

4.4.2 Sensitivity comparison  

 To do that, we have built three test image sets including three tampering situations: copy-move, cut-and-pasting 

and region color changing. Since it is a tedious and time-consuming work to generate the tampering images using 

Photoshop soft, the copy-move and cut-and-pasting tampering images were automatically generated by computer. 

The first test set (Data 1) contains 2000 tampering images as used in subsection 4.3 for copy-move and 

cut-and-pasting tampering operations. The second test set (Data 2) differs from the first test set by using the 10% 

ratio of tampering areas with a randomly selected position of pasting. The third test set (Data 3) contains 150 

tampering images. 50 region color changing tampering images were generated by Photoshop, another 100 

tampering images were selected from other two data sets (each one including 50 images). 

 Fig. 13 summarizes the results obtained. For Data 1, the proposed method provides the best rate of recognition 

with a better sensitivity to slight tampering area (4%) than the other three methods. For Data 2, the DFT method 

[19] leads to the best results. It remains insensitive to tampering position changes when the tampering area is larger 

than 10%. For Data 3, the Zhao’s method [3] provides the best rate of recognition in the case of region color 

changing. 
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Fig. 13 Sensitivity comparison for different methods 

4.4.3 Time complexity and qualitative comparison 

To synthetize the comparison of our method and other hashing methods, a qualitative overview with the current 



state of art is given in Table 3. We observe that the hash of our method has the shortest length and that it is robust 

against various content-preserving operations and any angle rotation operations. We also consider the average time 

required for generating a hash value in our experimental environment (i.e. CPU 3.2 GHz, 4G memory and running 

MatLab 7.12). Since the local features of Zhao’s method [3] are mainly used to classify and locate a tampered 

region, the time computation of the global features generating the hash is only considered. It can be seen that the 

time running for the five methods is very short and less than 0.22 s. The DFT method [19] is the fastest and needs 

only 0.07 s. 

Table 3 Overall performance comparison of hashing algorithms 

 DFT [16] Zhao [3] NMF [19] QDFT[34] Proposed  

Hash length 444bits 560 bits 64 digits 256bits 224bits 

Robustness against slight noise, filter, JPEG Yes Yes Yes yes Yes 

Robustness against large contrast adjustment Yes No No No Yes 

Robustness against any angle rotation No No Yes No Yes 

Capability of localization and classification No Yes No No No 

Average time for generating a hash (seconds) 0.07 0.19 0.21 0.1 0.18 

 

5. CONCLUSION 

In this paper, we have developed a novel robust image hashing method devoted to color images using QDFT and 

log-polar transforms. By exploiting the QDFT into the log-polar domain, we better take into account the three 

image color planes and the resulting hash is robust to rotation attacks as well as to common image 

content-preserving operations. The parameters’ values of our approach have been determined by means of intensive 

experiments on a large image data set so as to establish a good tradeoff in terms of hash robustness against 

content-preserving operations (JPEG compression, brightness adjustment, average and median filtering and large 

angle rotation attacks) and a good sensitivity to non-authorized image content alterations (copy-move and 

copy-paste attacks). Compared to the current state of art, for a hash length of 224 bits our scheme provides on the 

overall a better performance. Our future work will focus on designing a robust hash capable to locate tampered 



regions of an image as well as to determine the type of the tampering. 
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