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Abstract: Reducing the radiation in computerized tomography is today a major concern in radiology. 
Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, 
more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. 
lowered tube current or voltage values). In this paper we propose a Gamma regularization based 
algorithm for LDCT image reconstruction. This solution provides a good balance between the 
regularizations based on l0-norm and l1-norm. We evaluate the proposed approach using the projection 
data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results 
show that the Gamma regularization based reconstruction can perform better in both edge-preserving 
and noise suppression when compared with other regularizations using integer norms. 
Key words: Low dose computerized tomography (LDCT), Gamma regularization, weighted least 
square (WLS) 
 
1 Introduction 
CT examination is undoubtedly an effective and reliable medical tool in providing anatomical and 
pathological information for clinical diagnosis. However, it has been shown that the inherent radiation 
of CT scanners can induce cancer and other diseases (Brenner et al 2001, Brenner et al 2007, de 
González and Darby 2004). With reduced radiation harm to patients, low dose computerized 
tomography reconstruction has attracted more and more research attention. However, when the dose is 
reduced (e.g. by lowering the tube current or voltage values), the images reconstructed using for 
instance the Filtered Back Projection (FBP) suffer from increased noise and artifacts. Diagnostic 
mistakes might be induced in this case. In the past decades, a number of attempts have been carried out 
to overcome this shortcoming and to provide clinically acceptable LDCT images (Lange and Carson 
1984, Hsieh 1998, Lu et al 2001, Li et al 2004, Sidky et al 2006, Wang et al 2006, Hsieh 2009, Yu and 
Wang 2010, Hu et al 2011, Xu et al 2012, Chen et al 2013, Liu et al 2014, Niu et al 2014). Among all 
the low dose strategies, lowering the tube current values (milliampere (mA) or milliampere second 
(mAs)) or the voltage values (kilovolt (KV)) is the most straightforward and pragmatic solution. But in 
such case, the quality of projection data is degraded due to a decrease in photon number and an 
amplified noise turbulence (Hsieh 1998, Li et al 2004, Lu et al 2001). By better modeling the 
projection data and the imaging geometry, statistical reconstruction algorithms have been shown more 
effective than FBP in the LDCT (Lange and Carson 1984, Elbakri and Fessler 2002, Li et al 2004, 
Wang et al 2006).  

Another path has been recently open by compressed sensing (CS) with already wide applications 
in medical image processing, e.g. magnetic resonance imaging (MRI), bioluminescence tomography, 
optical coherence tomography (Candes et al 2006a, Candes et al 2006b, Donoho 2006, Lustig et al 
2007, Lu et al 2009, Fang et al 2013). Studies on CS theory unveil the possibility of recovering sparse 
signals when the requirement specified by the Nyquist sampling theorem cannot be satisfied (Candes et 
al 2006a). Although the restricted isometry property (RIP) condition is not often satisfied in practice, 
CS-based reconstruction can yield more satisfactory results than the traditional FBP algorithm in CT 
reconstruction (Yu and Wang 2010). It is notable that the CS based dictionary learning methods have 



been proved to be rather effective in improving LDCT image quality (Chen et al 2014, Chen et al 2013, 
Lu et al 2012, Xu et al 2012). The core of CS is based on the sparse assumption of some features in the 
reconstructed images. It is well-known that the l0-norm prior can provide a sparser representation than 
the l1-norm and l2-norm priors (Gonzalez et al 2004, Rudin et al 1992). But the application of l0-norm 
prior in reconstruction is often a NP hard problem, the l0-norm being a non-convex function in 
discontinuous form (Candes et al 2006a). 

Functions with fixed integer norms are often used in building regularized function for LDCT, e.g. 
the l1-norm and l2-norm based regularizations. Then, a natural question would be whether better results 
can be obtained if we use regularization forms with fractional norm between l0-norm and l1-norm. In 
this paper, we propose a Gamma regularization with tunable fractional order norm for LDCT 
reconstruction. This Gamma regularization allows a flexible regularization modulation and can achieve 
a good balance between the regularizations based on l0 norm and l1 norm. The rest of this paper is 
organized as follows. In section 2, we review the statistical reconstruction model and then detail the 
proposed Gamma regularization. The reconstruction algorithm using the proposed Gamma 
regularization is given in section 3. Section 4 includes the experiments conducted on the projection data 
from both simulated phantoms and scanned Catphan phantoms. The experiment results show that the 
proposed Gamma regularization leads to better reconstructions than those using integer norm 
regularizations. Concluding remarks and future work plan are sketched in section 5. 

 
2 Method 
2.1 Statistical reconstruction modeling 
The standard CT reconstruction problem can be considered as an inverse problem formulated by Eq. 
(1): 

Gf y=                                    (1) 
where f denotes the target image of discrete attenuation coefficients, and y represents the calibrated 
and log-transformed projection data as measurements.G is the system matrix operator reflecting the 
specific geometry of a given CT imaging system, which can be calculated via techniques like 
“pixel-driven” (Peters et al 1981, Joseph et al 1982), “ray-driven” (Siddon 1985, Zhuang et al 1994) or 
“distance-driven” (Man and Basu 2004). 

As pointed in Lu et al (2001) and Li et al (2004), for low dose CT with low tube currents, the 
calibrated log-transformed projection data is degraded by additive Gaussian noise, and the relation 
between the detected projection data !y  and the true projection data y  for each channel i  is: 

!yi = yi + µi = Gf( )i +Gaussian(0,! i
2 )                      (2) 
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                              (3) 

Here, 2(0, )iGaussian !  denotes the Gaussian noise term iµ  for each channel i  with zero mean and 
the variance specified by Eq. (3). 2

i!  is the variance of projection measurement iy  at channel i . 
T  and h  are object-independent parameters completely determined by the system and can be  
determined by fitting a large amount of projection data from repeated scanning. Through maximizing 
the likelihood estimation, we can reconstruct image f  by minimizing the weighted least square 
(WLS) model: 

f = argmin
f
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2
W Gf " !y
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Where W is a diagonal matrix, with the ith  entry 21 i! . Solving f  via Eq. (4) is in fact an 
ill-posed problem because the rank of the system matrix G  is often lower than the rank of f , which 
results in infinite possible solutions (Tikhonov and Arsenin 1997). Some prior knowledge on image 
f can be used to overcome this ill-posed problem by adding a regularization term ( )f!  into the Eq. 

(4), which leads to the following regularization model Eq. (5): 

f = argmin
f
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Here, !  is a positive regularization parameter modulating the trade-off between the fidelity term and 
the regularization term. The prior knowledge can be introduced in ( )f!  using different functions of 



gradients. We can for instance define the anisotropic regularization ( )a f!  and isotropic 
regularization ( )i f!  (Teboulle, 2009), (Guo and Yin, 2012): 
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In Eq. (6) and Eq. (7), !  is the regularization function acting on the gradient term, and ,i jf  
represents each 2-D pixel in the reconstructed 2D image with index 1,i m= ! and 1,j n= ! . Here, 

,i jf!  takes the form ( ), ,,v h
i j i jf f! !  including the vertical and horizontal gradients ,

v
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Different regularization function !  can be used in building ( )f! . Using ( ) 2x x! =  in the 
models expressed by Eq. (6) or Eq. (7), we obtain the l2-norm regularization based WLS reconstruction 
model (l2-WLS) (Gonzalez et al 2004): 
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If setting ( )=x x!  in Eq. (6) for the isotropic model, we obtain the l1-norm anisotropic regularization 
WLS reconstruction model (l1a-WLS) (Beck and Teboulle 2009, Guo and Yin 2012): 
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Similarly, with ( )=x x! in the isotropic model in Eq. (7), the l1-norm isotropic regularization WLS 
reconstruction model (l1i-WLS) (Rudin et al1992) can be derived: 
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2.2. The proposed Gamma regularization WLS model (!a-WLS and !i-WLS)  
 
Through calculus transform, we can easily rewrite the WLS reconstruction model with the l2-norm 
regularization Eq. (9) into Eq. (12): 
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Similarly, Eq. (10) and Eq. (11) can be respectively rewritten by Eq. (13) and Eq. (14): 
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f = argmin
f

!(f ) = 1
2
W Gf " !y

2

2
+ ! dt

0

#fi , j
h 2

+#fi , j
v 2

$j=1

n%i=1

m%
&
'
(

)(

*
+
(

,(
             (14) 

Based on Eq. (12)-(14), a generalized reconstruction model Eq. (15) can be obtained by introducing a 
integrand function ( )t! : 
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where ( )t!  denotes the general kernel function with positive constraint ( ( ) 0t! " ). Note Eq. (15) will 

become Eq. (9) or Eq. (10) when ( )=2  or 1t t! .  

We propose a new kernel function ( )! ; ,t! " #  based on the Gamma probability density function 
(PDF) in the forms of Eq. (16) and Eq. (17) (Hogg and Craig 1978): 
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In Eq. (16), !  and !  denote the shape parameter and the scale parameter, respectively. The 
Gamma-distributed random variable t  in Eq. (16) has expectation E = /! "  and variance V =

2/! " , respectively (Hogg and Craig 1978). Then, the Gamma regularization function ( ); ,x! " #$  
can be defined as: 
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Here, ( ); ,x! " #$  is in fact the cumulative distribution function (CDF) of the Gamma distributed 
random variable t  with shape parameter !  and scale parameter !  (Hogg and Craig 1978). Fig. 1 
depicts the regularization functions for l2-norm regularization, l1-norm regularization, l0-norm 
regularization, and the proposed Gamma regularization function ( ); ,x! " #$  with different shape 
parameter ! " {1.0, 1.2} and scale parameter ! !{2, 4, 6, 8}. We can see in Fig. 1 that the Gamma 
regularization functions can be modulated by selecting different values of !  and !  to get a flexible 
trade-off between l1-norm regularization and l0-norm regularization. 
 

 
Fig. 1: Regularization functions ( ) ( ) ( ) ( )

2 1 0
; ,, , ,( )l l lx x x x! ! ! ! " #$ for l2–norm, l1-norm, l0-norm, and Gamma regularizations 

(with different shape parameter ! and scale parameter ! in ( ); ,x! " #$ ). 

Consequently, the cost function for the reconstruction with anisotropic Gamma regularization 
(!a-WLS) can be given by Eq. (19): 
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Accordingly, the cost function for isotropic Gamma regularization (!i-WLS) is defined as : 

              f = argmin
f

!(f ) = 1
2
W Gf " !y

2

2
+ !#$i

f( )%
&
'

(
)
*

                      (21) 
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3 Optimization algorithm 
3.1 Algorithm description 
The conjugate gradient method (CG) (Boyd S and Vandenberghe 2004) was chosen to solve the 
reconstruction problems in Eq. (19) and Eq. (21). The CG algorithm is an improved steepest descent 
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algorithm, with the descent direction determined by the current descent direction as well as the 
previous search direction (Fletcher and Reeves 1964). Since the optimization of Eq. (19) is similar, we 
only derive the algorithm solving Eq. (21). We first define the partial derivative [ ] ,( ) i jf!" of the 

Gamma regularization term in Eq. (21) with respect to each image point ,i jf : 
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The partial derivative of the regularization term with respect to pixel ,i jf is: 
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The Gamma regularization term Eq. (22) can be approximated by Eq. (25): 
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Here, !  is a small constant used to avoid the zero denominator in Eq. (24) (when 2! < ). Then, the 
corresponding partial derivative of the regularization term Eq. (25) with respect to pixel ,i jf  is: 
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The overall solution is outlined in Algorithm 1 below. We applied the strategy of backtracking 
line search to improve its convergence. In this strategy, the iteration step !  is recursively selected to 
determine the maximum step along a given search direction by means of a backtracking line search 
with the Armijo-Goldstein condition (Armijo 1966, Frank and Wolfe 1956): 

 ( ) ( ) ( )
T

f d f f d
f

! "! # $%& + < & + &' (%) *
                            (27) 

where [ ]0,  0.5!" , d  is the descent direction and the superscript “T” denotes the matrix transpose 
operator. The basic idea of the backtracking line search is to recursively decrease the step ! from a 
large preset value until a step !  is found to satisfy the constraint of Eq. (27). In the Algorithm 1, the 



iteration stopping is jointly controlled by the iteration update limit 0!  and the maximum iteration 
number 0N . 
 
 

Algorithm 1: WLS Reconstruction with Gamma Regularization   
Input : projection data !y  
Output: reconstructed image f  
Set  ! , ! , ! , ! , ! , ! , 0N , 0! , 1k =  
Initialize  0f , 0g , 0d , 0W  

While 1 0k k kf f f !+ " > or 0k N<  

        while ( ) ( ) ( )
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k kf d f f d
f
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              ! "!=  
         end 
     1k k kf f d!+ = +  
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end 

 
From the above algorithm outline, we can easily obtain the following relation:  
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Where kf  denotes the thk  iterated image in reconstruction. This analysis shows that a monotonic 
decrement of the cost function can be ensured over iterations for the Algorithm 1, which means that a 
local minimum can be obtained for the proposed reconstruction algorithm.  
 
3.2 Gamma parameters setting 

The regularization function shown in Eq. (18) monotonically increases with respect to the image 
gradients and the approximation (to 1) goes stable as gradient increases. The inherent assumption is 
that the regularization effect should decrease as the gradient values increase because large gradients are 
often related to image edges, and small gradients often come from noise and artifacts. The shape 
parameter !  and the scale parameter ! ! jointly determine the regularization function in Eq. (18), 
and are crucial to the performance of the proposed reconstruction model. Fig. 2 (a) depicts the 
regularization function values for different ! ! when !  is fixed to 1.2, and Fig. 2 (b) the values of 
the regularization function Eq. (18) for different !  in the case of fixed ! . From Fig. 2 (a) and Fig. 2 
(b), we can see that the regularization function approximates more closely to the l0 norm as !  
increases or !  decreases. This observation means that the parameters !  and ! ! affect the 
approximation to l0 norm in opposite ways. Fig. 2 (c) and (d) illustrate the regularization functions 
when ! " {1.0, 1.1, 1.2, 1.3, 1.4, 1.5} and the ratio E  of !  and !  is fixed to 0.15 and 0.2, 
respectively. We can see in Fig. 2 (c) and (d) that the regularization functions take similar shapes for a 
fixed E  value when !  is varying. The plots in Fig. 2 (e) also show that the regularization function 
becomes closer to a binary function when the parameter !  increases to 150 and the E  is fixed (the 



!  can be deterministically calculated as E! ). Considering that a binary regularization function 
cannot reflect the spatially varying gradients in CT images, the !  value is selected within the range 
[1.0, 1.5] in this study.  

The plots in Fig. 2 (c) and (d) also show that we can modulate the shapes of regularization 
functions (or its approximation to 1) by selecting a suitable ratio E . The Eq. (29) can be derived in 
order to depict the relation between the regularization function and the ratio E :  
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The proof of Eq. (29) is provided below. 
Proof: by simply transforming the regularization function in Eq. (29), we can get: 
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Taking the derivative with respect to the variable! , we get: 
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Eq. (31) implies that the regularization function in Eq. (30) is a monotonically increasing 
function with respect to !  and we have: 
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Eq. (32) shows that the gradients larger than 5E  ( 5x E> ) will cause nearly constant value 1!with 
derivatives near to zero for the regularization function, and should be considered as image edges to be 
preserved in the reconstructed image. In the present study, we set the shape parameter !  to 1.2, and 
the value of 5E  to 25% quantile of the gradient values (R. Hyndman and Y. Fan 1996). Then the 
scale parameter !  can thus be simply calculated as / E! . This strategy of parameter setting was 
found robust in this study. In practical situation, the image to be reconstructed is unavailable, and we 
just use the FBP reconstructed image to calculate the 25% quantile of the gradient amplitudes.  
 

  

  

(a) (b) 

(c) (d) 



 
Fig. 2: The plots of the CDF of Gamma distribution ( ); ,x! " #

$
with different shape parameter ! and scale parameter ! .  

 

4 Experiments 
The performance of !a-WLS and !i-WLS was tested on two simulated numeric 2-D phantoms and 

the Catphan 600 physical phantom. Our experiments include the comparison with the methods l2-WLS, 
l1a-WLS and l1i-WLS. The abbreviations and their full names are listed in Table 1. The maximum 
iteration number 0N  was fixed to 500 in all the reconstructions, and 0!  was set to 1"10-7 and 1"10-8 
in the simulated and Catphan phantom, respectively. The shape parameter !  was set to 1.2, and the 
scale parameter !  to the value calculated according to the above parameter strategy. The balance 
parameter !  was adjusted to give the best visual effect in all the reconstructions.  
 

Table 1. Different methods used in experiment with the abbreviations. 

Abbreviation Reconstruction methods 

l2-WLS l2-norm regularization with weighted least square (Eq. (12)) 

l1a-WLS l1-norm regularization with anisotropic weighted least square (Eq. (13)) 

l1i-WLS l1-norm regularization with isotropic weighted least square (Eq. (14)) 

!a-WLS Gamma regularization with anisotropic weighted least square (Eq. (19)) 

!i-WLS Gamma regularization with isotropic weighted least square (Eq. (21)) 

 
4.1 Simulated numeric phantoms experiments 

The two simulated phantoms contain the Modified Shepp-Logan (MSL) phantom (Fig. 3 (a)) and 
a simulated non-uniform rational B-splines (NURBS) based cardiac-torso (NCAT) phantom (Fig. 3 (b)) 
(Segars and Tsui 2002). These phantoms are composed by 256"256 pixels with 1mm"1mm pixel size. 
A monochromatic CT parallel scanner with a total of 180 scanning views and 367 radial bins per view 
is modeled. We simulated two CT dose levels by adding noise1 and noise 2 according to Eq. (2) and (3) 
with parameters 10000T = , 5h =  and 10000T = , 10h =  (Lu et al 2001, Li et al 2004), 
respectively. For convenience, the corresponding low dose sinograms are named M-sin1(sinogram of 
MSL phantom with added noise1), M-sin2 (sinogram of MSL phantom with added noise2), N-sin1 
(sinogram of NACT phantom with noise1) and N-sin2 (sinogram of NACT phantom with noise2), 
respectively. All the simulated sinograms are illustrated in Fig. 4. Quantitative assessments are given in 
terms of PSNR (peak signal to noise ratio), SNR (signal to noise ratio), and SSIM (structural Similarity 
Index measuring) (Wang et al 2004). These quantitative metrics are defined by Eq. (33)-(35): 
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where  I  is the reconstructed image and P , the ground-truth image. maxP  denotes the maximum 
intensity value in  P . pµ  and iµ  are the mean values of the 8"8 square window in I  and P . 

p!  and i!  are the corresponding standard deviations, and pi!  is the corresponding covariance. 

1C , 2C  and 3C  are three constant parameters, which are set according to (Wang et al 2004).

( )21 0.01 LC = ! , ( )22 0.03C L= ! , 3 2 2C C= , with L  denoting the grayscale range of the image to 
reconstruct. 
 

  
Fig. 3: The phantoms used in this paper. (a) MSL phantom, (b) NACT phantom 

 

  
 

  
 

  
Fig. 4: Simulated projection data. (a): the simulated sinogram of MSL phantom; (a1)-(a2): the simulated low dose sinograms 
M-sin1 and M-sin2 for MSL phantom; (b): the simulated sinogram of NACT phantom; (b1-b2): the simulated low dose 
sinograms N-sin1 and N-sin2 for NACT phantom. 

 
The reconstruction results from the proposed approaches were compared with the results obtained 

from the l2-WLS, l1a-WLS and l1i-WLS methods. In the experiments conducted on the MSL phantom, 
with the shape parameter !  set to 1.2, the scale parameter !  was calculated to 6.0 and 4.2 for the 
!a-WLS and !i-WLS methods, respectively. In the experiments performed on the NACT phantom, with 
the shape parameter !  set to 1.2, the scale parameter !  was calculated to 16.7 and 11.8 for the 
!a-WLS and !i-WLS methods, respectively. Fig. 5 gathers the reconstructed images for all the 
simulations carried out with M-sin1, M-sin2, N-sin1 and N-sin2, Fig. 5 (a1-d1), (a2-d2), (a3-d3), 
(a4-d4) and (a5-d5) using l2-WSL, l1a-WSL, l1i-WSL !a-WLS and !i-WLS, respectively. We can see 
that the proposed !a-WLS and !i-WLS methods perform better in preserving edges and suppressing 
noise than other methods. Table 2 and Table 3 list the PSNR, SNR and SSIM values of the 

(a)! (b)!

(a)! (b)!

(a1)! (b1)!

(a2)! (b2)!



reconstructed images with respect to the reference phantom images. The !  values are also listed in 
Table 2 and Table 3. We can note that the !a-WLS and !i-WLS approaches lead to reconstructions with 
higher PSNR, SNR and SSIM values. However, the computation time required by the proposed 
algorithm is higher than for the other methods as shown in Table 2 and Table 3. Fig. 7 depicts the 
intensity profiles (specified as the red lines in Fig.6) for the reconstructions in Fig.5. A better match 
with the ground truth phantom profiles can be observed for the !a-WLS and !i-WLS methods. We can 
note that, though giving higher PSNR values than the !a-WLS algorithm, the !i-WLS algorithm can 
reconstruct images with no significant visual difference with respect to the results from the !a-WLS 
algorithm. 
 

    
 

    
 

    
 

    
 

    

Fig. 5: Reconstructed images from the sinograms M-sin1, M-sin2, N-sin1 and N-sin2, respectively. Columns from left to right 
correspond to the results reconstructed from M-sin1, M-sin2, N-sin1 and N-sin2, respectively. Rows from top to bottom 
correspond to the images reconstructed using the methods of l2-WSL, l1a-WSL, l1i-WSL, !a-WLS and !i-WLS, respectively.   
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Table 2: Quantitative evaluation of the reconstructed MSL phantom images for the different methods. 

Method 
MSL phantom 

M-sin1 M-sin2 
# PSNR SNR SSIM Iterations/ Time 

(in minutes) # PSNR SNR SSIM Iterations/ Time 
(in minutes) 

l2-WSL 6.8 24.48 12.37 0.60 127/0.96 5.6 23.81 11.69 0.62 269/1.88 
l1a-WSL 2.4 28.42 17.01 0.84 283/2.00 2.3 28.07 15.96 0.84 283/2.01 
l1i-WSL 4.6 28.71 16.60 0.93 170/1.43 3.3 27.73 15.62 0.90 176/1.33 
!a-WLS 2.5 31.55 19.43 0.96 234/2.30 2.0 28.33 16.22 0.95 201/1.97 
!i-WLS 4.4 32.03 19.92 0.97 262/2.32 3.0 29.19 17.07 0.95 271/2.35 

 
Table 3: Quantitative evaluation of the reconstructed NACT phantom images for different methods. 

Method 
NACT phantom 

N-sin1 N-sin2 
! PSNR SNR SSIM Iterations/ Time 

(in minutes) ! PSNR SNR SSIM Iterations/ Time  
(in minutes) 

l2-WSL 9.4 22.07 12.59 0.65 20/0.92 9.6 20.08 10.60 0.63 281/2.91 
l1a-WSL 3.2 24.94 15.47 0.87 355/0.87 3.3 24.76 15.29 0.89 79/0.82 
l1i-WSL 5.5 26.44 16.97 0.93 101/0.87 4.0 24.91 15.44 0.90 50/0.64 
!a-WLS 1.0 26.98 17.50 0.96 164/1.81 1.0 25.64 16.17 0.94 164/1.71 
!i-WLS 1.6 27.49 18.01 0.96 140/1.38 1.2 25.92 16.44 0.94 171/1.63 

 

  
 

Fig. 6: The profiles (the 128th row from the top) of the two phantoms 
 

  

    
Fig. 7: Depicts of the horizontal profiles (the 128th row, as shown in Fig. 6) of the phantoms images reconstructed by different 
methods. (a)-(b) are the horizontal profiles of images reconstructed from M-sin1 and M-sin2, respectively; (c)-(d) are the 
horizontal profiles of images reconstructed from N-sin1and N-sin2, respectively. 

(a)! (b)!

(c)! (d)!

(a)! (b)!



 
4.2 Catphan 600 data experiments 
Experiments on the Catphan 600 phantom under low dose protocol were also performed to evaluate the 
algorithm performance on the preservation of high resolution and low contrast features. The tube 
voltage and the current were set to 100 KVp and 10 mA. The images to reconstruct are composed by 
256"256 pixels with 1mm"1mm pixel size. The imaging geometry was specified as: the source to 
isocenter distance was 500 mm and the distance from the source to the detector was set to 1500 mm. 
The data were acquired from a monochromatic CT fan beam scanner with a total of 661 scanning views 
and 1024 radial bins per view. In the experiments worked out using the Catphan 528 phantom, with the 
shape parameter !  set to 1.2, the scale parameter !  was calculated based on the above parameter 
setting strategy as 550.46 and 322.58 for !a-WLS and !i-WLS, respectively. For the Catphan 404, !  
being still set to 1.2, following the same procedure, the scale parameter !  values were respectively 
calculated to be 419.58 and 402.68. The global parameter !  was set to give the best results in terms 
of edge preservation and noise suppression. 

The reconstructions of the central 2-D slices in phantoms Catphan 528 and Catphan 404 are 
displayed in Fig. 8 and Fig. 9, respectively. In Fig. 8 and Fig. 9, the reconstructed images (a)-(f) 
correspond to the algorithms FBP (with ramp filter), l2-WSL, l1a-WSL, l1i-WSL, !a-WLS and !i-WLS, 
respectively. We can see that the images reconstructed by FBP suffer from severe noise, and the 
l2-WSL algorithm leads to noise suppression at the cost of obvious detail blurring. The !a-WLS and 
!i-WLS methods perform better in noise suppression and edge preservation than the others. From Fig 8 
(c)-(f), it is found that the proposed methods provide reconstructions with higher resolution than the 
l1-norm regularization methods (see the structures pointed out by red arrows in Fig. 8). In Fig.(9), we 
can also observe that the proposed methods can preserve low contrast regions with clearer boundaries 
than the l1-norm regularization based methods in Fig.8 (c) and Fig.8 (d) (see the structures defined by 
red arrows in Fig. 9). 

  

   
 

   
 
Fig. 8: Reconstruction results of the central 2-D slice in phantom Catphan 528. (a) the image reconstructed by FBP (ramp filter). 
(b) the image reconstructed by the l2-WSL method (#=20), (c) the image reconstructed by the l1a-WSL method (#=0.4), (d) he 
image reconstructed by the l1i-WSL method (#=0.4), (e) the image reconstructed by the !a-WLS method (#=0.0061), (f) the image 
reconstructed by the !i -WLS method (#=0.0121).  
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Fig. 9: Reconstruction results of the central 2-D slice in phantom Catphan 404. (a) the image reconstructed by FBP (ramp). (b) 
the image reconstructed by the l2-WSL method (#=10), (c) the image reconstructed by the l1a-WSL method (#=0.4), (d) the image 
reconstructed by the l1i-WSL method (#=0.3) , (e) the image reconstructed by the !a-WLS method (#=0.009), (f) the image 
reconstructed by the !i -WLS method (#=0.011). 
  
4.3 Convergence  

The convergence property of the !a-WLS and !i-WLS algorithms is analyzed based on the cost 
functions in Eq. (19) and Eq. (21). M-sin1 was used for this analysis. The evolutions of the cost 
function values and the PSNR values over iterations are depicted in Fig. 10. We can observe monotonic 
decrease of the log-transformed cost function values and the monotonic increase of the PSNR values 
(of reconstructed images) as the iteration proceeds.  

 

 
Fig. 10: (a) and (b) show the values of cost function and PSNR versus iterations for the MSL phantom data with !a-WLS and 
!i-WLS algorithms, respectively.  
 
4.4 Sensitivity analysis of the shape parameter!   

Only the shape parameter !  needs to be set in the proposed parameter setting strategy. Fig. 11 
shows the reconstructed images with M-sin1 and N-sin1 using !a-WLS and !i-WLS when the shape 
parameter !  is set to 1.2, 1.8, 2.0 and 5.0, and the parameter !  calculated as / E!  following the 
above parameter setting strategy. Fig. 11 confirms the proposed parameter setting strategy and that the 
choice of !  equal to 1.2 leads to reconstructed images with higher quality than others. In particular, 
as !  is increased more noise from small gradients can be observed in the reconstructed images.  
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!=3.1, "=1.2, #=6          !=1.9, "=1.8, #=9             !=2.6, "=2, #=10            !=1.3, "=5, #=25 

    
!=4.7, "=1.2, #=4.2         !=3.2, "=1.8, #=6.4            !=3.3, "=2, #=7.1          !=2.5, "=5, #=17.7 

    
!=1.1, "=1.2, #=16.7           !=3.2, "=1.8, #=25          !=3.3, "=2, #=27.8          !=2.5, "=5, #=69.4 

    
!=1.8, "=1.2, #=11.8          !=3.5, "=1.8, #=17.7          !=3.3, "=2, #=19.6          !=4.9, "=5, #=49.1 

Fig. 11: (a1-d1): The reconstructed images by !a-WLS using M-sin1; (a2-d2): The reconstructed images by !i-WLS using M-sin1; 
(a3-d3): The reconstructed images by !a-WLS using N-sin1; (a4-d4): The reconstructed images by !a-WLS using N-sin1. 

 
4.5 Comparison with another l0-approximate regularization with tunable parameter 

In this section, we compared our method with another l0-approximate regularization with tunable 
parameter, which was proposed by Hu et al (Hu et al 2011). This regularization also uses a tunable 
parameter p  to realize an approximation to the l0 norm regularization, with the regularization 
function given by Eq. (36): 

( )Hu ; log( 1)xx p
p

! = +                           (36) 

Here, x  denotes image gradient. The regularization function Hu!  modulates the function by 
changing the scale through the parameter p . We can see in Fig. 12 (a) that the regularization function 

Hu!  exhibits a worse approximation to l0 norm regularization.  
We also provide the reconstructions of M-sin1 and N-sin1 employing our methods (!a-WLS and 

!i-WLS) and the regularization function Hu!  with the same weighted least square models used in 
above experiments. The methods using the regularization function Hu!  are referred as Ha-WLS and 
Hi-WLS for the anisotropic and isotropic models, respectively. The reconstruction results are illustrated 
in Fig. 13 with different combinations of parameters p  and !  given below. We can see that the 
proposed Gamma regularization leads to reconstruction results with better performance in both edge 
preservation and noise suppression than the reconstructions with Ha-WLS and Hi-WLS.  
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Fig. 12: (a) Regularization function ( )

Hu
;x p!  of Hu method (Hu et al 2011) with different tunable parameter p. (b) Gamma 

regularization function ( ); ,x! " #
$

 with different parameters for the proposed regularization. 

 

    
!=4.5, p=1                 !=4.7, p=1                 !=4.2, p=1                  !=4.8, p=1 
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Fig. 13: The reconstructed images of MSL phantom data for the approaches Ha-WLS, Hi-WLS and !a-WLS and !i-WLS. 
(a1)-(b1): the reconstruction results with Ha-WLS. (c1)-(d1): the reconstruction results with Hi-WLS. (a2-b2): the reconstruction 
results with !a-WLS. (c2-d2): the reconstruction results with !i-WLS. 

 
5 Conclusion 

In this paper, we described two iterative reconstruction algorithms !a-WLS and !i-WLS for LDCT 
image reconstruction based on a Gamma regularization and we compared them to several well-known 
schemes with integer norms. Both simulated data and Catphan 600 data were used to test the proposed 
methods. From the experiments, we have seen that the proposed Gamma regularizations have better 
performance in edge preservation and noise suppression than other methods. Nevertheless, practical 
application of the proposed algorithms still needs further validation using more clinical data. From the 
Table 2 and Table 3, we found that their computation times are higher than other methods, and some 
acceleration techniques should be applied to increase its feasibility. 

The proposed Gamma regularization realizes the rendering of a flexible regularization effect via 
modulating the shape parameter !  and the scale parameter ! . In this study, the shape parameter 
was set to 1.2 to obtain a regularization function adapted to the variations of the image gradients, and 
the value !  was selected based on the preset ratio E  with 5E  equal to about 25% quantile of the 
gradient amplitude ensemble. Though this parameter setting strategy is proved to be effective in the 
phantom experiments conducted so far, a thorough analysis on parameter sensitivity is still required 
through its application to clinical data.  
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