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Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other regularizations using integer norms.

Introduction

CT examination is undoubtedly an effective and reliable medical tool in providing anatomical and pathological information for clinical diagnosis. However, it has been shown that the inherent radiation of CT scanners can induce cancer and other diseases [START_REF] Brenner | Estimated risks of radiation-induced fatal cancer from pediatric CT[END_REF][START_REF] Brenner | Computed tomography-an increasing source of radiation exposure[END_REF][START_REF] De González | Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries[END_REF]. With reduced radiation harm to patients, low dose computerized tomography reconstruction has attracted more and more research attention. However, when the dose is reduced (e.g. by lowering the tube current or voltage values), the images reconstructed using for instance the Filtered Back Projection (FBP) suffer from increased noise and artifacts. Diagnostic mistakes might be induced in this case. In the past decades, a number of attempts have been carried out to overcome this shortcoming and to provide clinically acceptable LDCT images [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF][START_REF] Hsieh | Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[END_REF][START_REF] Lu | Noise properties of low-dose CT projections and noise treatment by scale transformations[END_REF][START_REF] Li | Nonlinear sinogram smoothing for low-dose X-ray CT[END_REF][START_REF] Sidky | Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[END_REF][START_REF] Wang | Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray CT[END_REF][START_REF] Hsieh | Computed Tomography Principles, Design, Artifacts, and Recent Advances[END_REF][START_REF] Yu | A soft-threshold filtering approach for reconstruction from a limited number of projections[END_REF][START_REF] Hu | L0 constrained sparse reconstruction for multi-slice helical CT reconstruction[END_REF][START_REF] Xu | Low-dose X-ray CT Reconstruction via Dictionary Learning[END_REF], Chen et al 2013[START_REF] Liu | Total Variation-Stokes Sparse-View X-ray CT Image Reconstruction[END_REF][START_REF] Niu | Sparse-view x-ray CT reconstruction via total Generalized variation regularization[END_REF]. Among all the low dose strategies, lowering the tube current values (milliampere (mA) or milliampere second (mAs)) or the voltage values (kilovolt (KV)) is the most straightforward and pragmatic solution. But in such case, the quality of projection data is degraded due to a decrease in photon number and an amplified noise turbulence [START_REF] Hsieh | Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[END_REF][START_REF] Li | Nonlinear sinogram smoothing for low-dose X-ray CT[END_REF][START_REF] Lu | Noise properties of low-dose CT projections and noise treatment by scale transformations[END_REF]. By better modeling the projection data and the imaging geometry, statistical reconstruction algorithms have been shown more effective than FBP in the LDCT [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF][START_REF] Elbakri | Statistical image reconstruction for polyenergetic X-ray computed tomography[END_REF][START_REF] Li | Nonlinear sinogram smoothing for low-dose X-ray CT[END_REF][START_REF] Wang | Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray CT[END_REF].

Another path has been recently open by compressed sensing (CS) with already wide applications in medical image processing, e.g. magnetic resonance imaging (MRI), bioluminescence tomography, optical coherence tomography (Candes et al 2006a, Candes et al 2006b[START_REF] Donoho | Compressed sensing[END_REF][START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging Magnetic Resonance in[END_REF][START_REF] Lu | Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information[END_REF][START_REF] Fang | Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation[END_REF]. Studies on CS theory unveil the possibility of recovering sparse signals when the requirement specified by the Nyquist sampling theorem cannot be satisfied (Candes et al 2006a). Although the restricted isometry property (RIP) condition is not often satisfied in practice, CS-based reconstruction can yield more satisfactory results than the traditional FBP algorithm in CT reconstruction [START_REF] Yu | A soft-threshold filtering approach for reconstruction from a limited number of projections[END_REF]. It is notable that the CS based dictionary learning methods have 2 Method

Statistical reconstruction modeling

The standard CT reconstruction problem can be considered as an inverse problem formulated by Eq.

(1):

Gf y =

(1)

where f denotes the target image of discrete attenuation coefficients, and y represents the calibrated and log-transformed projection data as measurements. G is the system matrix operator reflecting the specific geometry of a given CT imaging system, which can be calculated via techniques like "pixel-driven" [START_REF] Peters | Algorithms for fast back-and re-projection in computed tomography[END_REF][START_REF] Joseph | An improved algorithm for reprojecting rays through pixel images[END_REF], "ray-driven" [START_REF] Siddon | Fast calculation of the exact radiological path of a three-dimensional CT array[END_REF][START_REF] Zhuang | Numerical evaluation of methods for computing tomographic projections[END_REF] or "distance-driven" [START_REF] Man | Distance-driven projection and backprojection in three dimensions[END_REF].

As pointed in [START_REF] Lu | Noise properties of low-dose CT projections and noise treatment by scale transformations[END_REF] and [START_REF] Li | Nonlinear sinogram smoothing for low-dose X-ray CT[END_REF], for low dose CT with low tube currents, the calibrated log-transformed projection data is degraded by additive Gaussian noise, and the relation between the detected projection data ! y and the true projection data y for each channel i is:

! y i = y i + µ i = Gf ( ) i + Gaussian(0, ! i 2 )
(2)

2 exp i i y h T ! " # = $ % & ' ( (3) 
Here,

(0, )

i Gaussian ! denotes the Gaussian noise term i µ for each channel i with zero mean and the variance specified by Eq. (3). 2 i ! is the variance of projection measurement i y at channel i .

T and h are object-independent parameters completely determined by the system and can be determined by fitting a large amount of projection data from repeated scanning. Through maximizing the likelihood estimation, we can reconstruct image f by minimizing the weighted least square (WLS) model:

f = arg min f !(f ) = 1 2 W Gf " ! y 2 # $ % & ' ( (4) 
Where W is a diagonal matrix, with the ith entry 2 1 i ! . Solving f via Eq. ( 4) is in fact an ill-posed problem because the rank of the system matrix G is often lower than the rank of f , which results in infinite possible solutions [START_REF] Tikhonov | Solution of Ill-Posed Problem[END_REF]. Some prior knowledge on image f can be used to overcome this ill-posed problem by adding a regularization term

( ) f ! into the Eq.
(4), which leads to the following regularization model Eq. ( 5):

f = arg min f !(f ) = 1 2 W Gf " ! y 2 + !# f ( ) $ % & ' ( ) (5) 
Here, ! is a positive regularization parameter modulating the trade-off between the fidelity term and the regularization term. The prior knowledge can be introduced in ( ) f ! using different functions of gradients. We can for instance define the anisotropic regularization ( ) , 2009), [START_REF] Guo | Edge guided reconstruction for compressive imaging[END_REF]:

a f ! and isotropic regularization ( ) i f ! (Teboulle
( ) ( ) ( ) ( ) ( ) 1 1 , , = = m n i j v h a i j i j f f f f ! ! = = " " + # # $ $ (6) ( ) ( ) ( ) ( ) 1 1 2 2 , , = = m n i j v h i i j i j f f f f ! = = " " # $ % + % & ' ( ) * * (7) 
In Eq. ( 6) and Eq. ( 7), ! is the regularization function acting on the gradient term, and ,

i j f represents each 2-D pixel in the reconstructed 2D image with index 1, i m = ! and 1, j n = ! . Here, , i j f ! takes the form ( ) , , , v h i j i j f f ! !
including the vertical and horizontal gradients

, v i j f ! and , h i j f ! : 1, , , 0 i j i j v i j f f i m f i m + ! < " # = $ = % , , 1 , , 0 i j i j h i j f f j n f j n + ! < " # = $ = % , 1, i m = ! , 1, , j n = ! (8)
Different regularization function ! can be used in building ( )

f ! . Using ( ) 2 x x ! =
in the models expressed by Eq. ( 6) or Eq. ( 7), we obtain the l 2 -norm regularization based WLS reconstruction model (l 2 -WLS) [START_REF] Gonzalez | Digital Image Processing using MATLAB[END_REF]:

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! #f i, j v 2 + #f i, j h 2 $ % & ' ( ) j=1 n * i=1 m * + , - . / 0 (9) If setting ( )= x x

!

in Eq. ( 6) for the isotropic model, we obtain the l 1 -norm anisotropic regularization WLS reconstruction model (l 1a -WLS) [START_REF] Beck | Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[END_REF]Teboulle 2009, Guo and[START_REF] Guo | Edge guided reconstruction for compressive imaging[END_REF]:

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! #f i, j h j=1 n $ i=1 m $ + #f i, j v i=1 n $ i=1 m $ ( ) % & ' ( ) * (10) 
Similarly, with

( )= x x
! in the isotropic model in Eq. ( 7), the l 1 -norm isotropic regularization WLS reconstruction model (l 1i -WLS) (Rudin et al1992) can be derived:

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! #f i, j h 2 + #f i, j v 2 j=1 n $ i=1 m $ % & ' ( ) * (11) 

The proposed Gamma regularization WLS model (! a -WLS and ! i -WLS)

Through calculus transform, we can easily rewrite the WLS reconstruction model with the l 2 -norm regularization Eq. ( 9) into Eq. ( 12):

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! 2t 0 #f i , j v $ dt + 2t 0 #f i , j h $ dt % & ' ( ) * j=1 n + i=1 m + , - . / 0 1 (12)
Similarly, Eq. ( 10) and Eq. ( 11) can be respectively rewritten by Eq. ( 13) and Eq. ( 14):

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! dt 0 #f i , j h $ j=1 n % i=1 m % + dt 0 #f i , j v $ i=1 n % i=1 m % & ' ( ) * + , - . / 0 1 (13) f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! dt 0 #f i , j h 2 + #f i , j v 2 $ j=1 n % i=1 m % & ' ( ) ( * + ( , ( (14) 
Based on Eq. ( 12)-( 14), a generalized reconstruction model Eq. ( 15) can be obtained by introducing a integrand function ( )

t ! : f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + ! " t ( ) 0 #f i , j v $ dt + ! t ( ) 0 #f i , j h $ dt % & ' ( ) * j=1 n + i=1 m + , - . / 0 1 (15)
where ( ) t ! denotes the general kernel function with positive constraint ( ( ) 0 t ! " ). Note Eq. (15) will become Eq. (9) or Eq. ( 10) when ( )=2 ) ! ; , t ! " # based on the Gamma probability density function (PDF) in the forms of Eq. ( 16) and Eq. ( 17) [START_REF] Hogg | Introduction to Mathematical Statistics[END_REF]:

( ) ( ) 1 ! ; , = t t e t ! ! " " # ! " ! $ $ % (16) ( ) 1 0 t t dt e ! ! " # $ = % (17)
In Eq. ( 16), ! and ! denote the shape parameter and the scale parameter, respectively. The Gamma-distributed random variable t in Eq. ( 16) has expectation E = / ! " and variance V = 2 / ! " , respectively (Hogg and Craig 1978). Then, the Gamma regularization function ( )

; , x ! " # $ can be defined as:

( ) ( ) 1 0 ; , t x t e x dt ! ! " " # ! " ! $ $ % = % & (18)
Here, ( )

; , x ! " # $
is in fact the cumulative distribution function (CDF) of the Gamma distributed random variable t with shape parameter ! and scale parameter ! [START_REF] Hogg | Introduction to Mathematical Statistics[END_REF]. Fig. 1 depicts the regularization functions for l 2 -norm regularization, l 1 -norm regularization, l 0 -norm regularization, and the proposed Gamma regularization function

( ) ; , x ! " # $ with different shape
parameter ! " {1.0, 1.2} and scale parameter ! ! {2, 4, 6, 8}. We can see in Fig. 1 that the Gamma regularization functions can be modulated by selecting different values of ! and ! to get a flexible trade-off between l 1 -norm regularization and l 0 -norm regularization. )

l l l x x x x ! ! ! ! " # $
for l2-norm, l1-norm, l0-norm, and Gamma regularizations (with different shape parameter ! and scale parameter ! in ( )

; , x ! " # $ ).
Consequently, the cost function for the reconstruction with anisotropic Gamma regularization (! a -WLS) can be given by Eq. ( 19):

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + !# $ a f ( ) % & ' ( ) * (19) 
where

( ) ( ) ( ) , , 1 1 ! 1 1 1 1 0 0 v h i j i j a t t f f m n m n i j i j t e t e f dt dt ! ! " ! ! " " " ! ! # # # # $ $ = = = = % = + & & ' ' ' ' ( ( (20) 
Accordingly, the cost function for isotropic Gamma regularization (! i -WLS) is defined as :

f = arg min f !(f ) = 1 2 W Gf " ! y 2 2 + !# $ i f ( ) % & ' ( ) * (21) 
where

( ) ( ) 2 2 , , 1 ! 1 1 0 h v i j i j i t f f m n i j t e f dt ! ! " " ! # # $ + $ = = % = & ' ' ( (22) 
3 Optimization algorithm

Algorithm description

The conjugate gradient method (CG) [START_REF] Boyd | Convex Optimization[END_REF] was chosen to solve the reconstruction problems in Eq. ( 19) and Eq. ( 21). The CG algorithm is an improved steepest descent 
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algorithm, with the descent direction determined by the current descent direction as well as the previous search direction [START_REF] Fletcher | Function minimization by conjugate gradients[END_REF]. Since the optimization of Eq. ( 19) is similar, we only derive the algorithm solving Eq. ( 21). We first define the partial derivative [ ] ,

( ) i j f !" of the Gamma regularization term in Eq. ( 21) with respect to each image point ,

i j f : !"(f ) ! " # $ i, j = G T W Gf ! ! y ( ) ( ) i, j + ! ! !f i, j ! " i f ( ) ( ) (23) 
The partial derivative of the regularization term with respect to pixel ,

i j f is: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 2 2 1, , , 1 , 1 2 2 2 1, , , 1 , 1, 
, ,
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The Gamma regularization term Eq. ( 22) can be approximated by Eq. ( 25):

( ) ( ) 2 2 1 2 h , , 1 ! 1 1 0 v i j i j i t f f m n i j t e f dt ! ! " # " ! $ $ % & ' + ' + ( ) * + = = , - . / / 0 (25)
Here, ! is a small constant used to avoid the zero denominator in Eq. ( 24) (when 2 ! < ). Then, the corresponding partial derivative of the regularization term Eq. ( 25) with respect to pixel ,
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The overall solution is outlined in Algorithm 1 below. We applied the strategy of backtracking line search to improve its convergence. In this strategy, the iteration step ! is recursively selected to determine the maximum step along a given search direction by means of a backtracking line search with the Armijo-Goldstein condition (Armijo 1966, Frank and[START_REF] Frank | An algorithm for quadratic programming[END_REF]:

( ) ( ) ( ) T f d f f d f ! "! # $ % & + <& + & ' ( % ) * (27) 
where

[ ] 0, 0.5 ! "
, d is the descent direction and the superscript "T" denotes the matrix transpose operator. The basic idea of the backtracking line search is to recursively decrease the step ! from a large preset value until a step ! is found to satisfy the constraint of Eq. ( 27). In the Algorithm 1, the iteration stopping is jointly controlled by the iteration update limit 0 ! and the maximum iteration number 0 N .

Algorithm 1: WLS Reconstruction with Gamma Regularization

Input : projection data ! y

Output: reconstructed image f Set ! , ! , ! , ! , ! , ! , 0 N , 0 ! , 1 k = Initialize 0 f , 0 g , 0 d , 0 W While 1 0 k k k f f f ! + " > or 0 k N < while ( ) ( ) ( ) T k k f d f f d f ! "! # $ % & + >& + & ' ( % ) * ! "! = end 1 k k k f f d ! + = + 1 1 y k k G f + + = ! 1 1 exp(y / T) k k W h + + = ! 1 1 ( ) k k g f + + = ! ! 2 1 2 2 2 k k g g ! + = 1 1 k k k d g d ! + + = " + 1 k k = + end
From the above algorithm outline, we can easily obtain the following relation:

!(f k +1 ) = 1 2 W k +1 Gf k +1 " ! y 2 + ! " ! i #f i, j h 2 + #f i, j v 2 $ % & ' ( ) $ % & ' ( ) ! 1 2 W k Gf k " ! y 2 + ! " ! i !f i, j h 2 + !f i, j v 2 " # $ % & ' " # $ % & ' = ((f k ) (28) 
Where k f denotes the th k iterated image in reconstruction. This analysis shows that a monotonic decrement of the cost function can be ensured over iterations for the Algorithm 1, which means that a local minimum can be obtained for the proposed reconstruction algorithm.

Gamma parameters setting

The regularization function shown in Eq. ( 18) monotonically increases with respect to the image gradients and the approximation (to 1) goes stable as gradient increases. The inherent assumption is that the regularization effect should decrease as the gradient values increase because large gradients are often related to image edges, and small gradients often come from noise and artifacts. The shape parameter ! and the scale parameter ! ! jointly determine the regularization function in Eq. ( 18), and are crucial to the performance of the proposed reconstruction model. 18) for different ! in the case of fixed ! . From Fig. 2 (a) and Fig. 2 (b), we can see that the regularization function approximates more closely to the l 0 norm as ! increases or ! decreases. This observation means that the parameters ! and ! ! affect the approximation to l 0 norm in opposite ways. Fig. 2 (c) and (d) illustrate the regularization functions when ! " {1.0, 1.1, 1.2, 1.3, 1.4, 1.5} and the ratio E of ! and ! is fixed to 0.15 and 0.2, respectively. We can see in Fig. 2 (c) and (d) that the regularization functions take similar shapes for a fixed E value when ! is varying. The plots in Fig. 2 (e) also show that the regularization function becomes closer to a binary function when the parameter ! increases to 150 and the E is fixed (the ! can be deterministically calculated as E ! ). Considering that a binary regularization function cannot reflect the spatially varying gradients in CT images, the ! value is selected within the range [1.0, 1.5] in this study.

The plots in Fig. 2 (c) and (d) also show that we can modulate the shapes of regularization functions (or its approximation to 1) by selecting a suitable ratio E . The Eq. ( 29) can be derived in order to depict the relation between the regularization function and the ratio E :

( ) ( ) ( ) 1 5 0 5 ; , = 5 ; , 0.9 9 , s.t. 1 t E t e x E E dt ! ! " " # ! " # ! " ! ! " $ $ % % & = = ' % ' ( (29) 
The proof of Eq. ( 29) is provided below. Proof: by simply transforming the regularization function in Eq. ( 29), we can get: 

( ) ( ) ( ) ( ) 1 
! ! " ! ! " ! " # ! " ! ! " ! ! $ $ $ $ $ $ % & = % % ' = = % ( ( ( (30) 
Taking the derivative with respect to the variable ! , we get:

( ) ( ) ( ) 1 5 5 ; , 0 , s.t. 1 t t e E ! " ! # ! ! # ! $ $ % & ' = > & ( % (31)
Eq. ( 31) implies that the regularization function in Eq. ( 30) is a monotonically increasing function with respect to ! and we have: 

( ) ( ) ( ) ( ) ( ) 1 
! ! " ! # " ! # " # ! # ! $ $ $ % % % & > > = ' = ' % ' % ( ( (32) 
Eq. ( 32) shows that the gradients larger than 5E ( 5 x E >

) will cause nearly constant value 1! with derivatives near to zero for the regularization function, and should be considered as image edges to be preserved in the reconstructed image. In the present study, we set the shape parameter ! to 1.2, and the value of 5E to 25% quantile of the gradient values (R. [START_REF] Hyndman | Sample quantiles in statistical packages American Statistician[END_REF]. Then the scale parameter ! can thus be simply calculated as / E ! . This strategy of parameter setting was found robust in this study. In practical situation, the image to be reconstructed is unavailable, and we just use the FBP reconstructed image to calculate the 25% quantile of the gradient amplitudes. 

Experiments

The performance of ! a -WLS and ! i -WLS was tested on two simulated numeric 2-D phantoms and the Catphan 600 physical phantom. Our experiments include the comparison with the methods l 2 -WLS, l 1a -WLS and l 1i -WLS. The abbreviations and their full names are listed in Table 1. The maximum iteration number 0 N was fixed to 500 in all the reconstructions, and 0 ! was set to 1"10 -7 and 1"10 -8

in the simulated and Catphan phantom, respectively. The shape parameter ! was set to 1.2, and the scale parameter ! to the value calculated according to the above parameter strategy. The balance parameter ! was adjusted to give the best visual effect in all the reconstructions.

Table 1. Different methods used in experiment with the abbreviations.

Abbreviation

Reconstruction methods l2-WLS l2-norm regularization with weighted least square (Eq. ( 12)) l1a-WLS l1-norm regularization with anisotropic weighted least square (Eq. ( 13))

l1i-WLS l1-norm regularization with isotropic weighted least square (Eq. ( 14))

!a-WLS Gamma regularization with anisotropic weighted least square (Eq. ( 19))

!i-WLS Gamma regularization with isotropic weighted least square (Eq. ( 21))

Simulated numeric phantoms experiments

The two simulated phantoms contain the Modified Shepp-Logan (MSL) phantom (Fig. 3 (a)) and a simulated non-uniform rational B-splines (NURBS) based cardiac-torso (NCAT) phantom (Fig. 3 (b)) [START_REF] Segars | Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT phantom[END_REF]. These phantoms are composed by 256"256 pixels with 1mm"1mm pixel size. A monochromatic CT parallel scanner with a total of 180 scanning views and 367 radial bins per view is modeled. We simulated two CT dose levels by adding noise1 and noise 2 according to Eq. ( 2) and ( 3) with parameters 10000 T = , 5 h = and 10000 T = , 10 h = [START_REF] Lu | Noise properties of low-dose CT projections and noise treatment by scale transformations[END_REF][START_REF] Li | Nonlinear sinogram smoothing for low-dose X-ray CT[END_REF], respectively. For convenience, the corresponding low dose sinograms are named M-sin1(sinogram of MSL phantom with added noise1), M-sin2 (sinogram of MSL phantom with added noise2), N-sin1 (sinogram of NACT phantom with noise1) and N-sin2 (sinogram of NACT phantom with noise2), respectively. All the simulated sinograms are illustrated in Fig. 4. Quantitative assessments are given in terms of PSNR (peak signal to noise ratio), SNR (signal to noise ratio), and SSIM (structural Similarity Index measuring) [START_REF] Wang | Image Quality Assessment: From Error Visibility to Structural Similarity[END_REF]. These quantitative metrics are defined by Eq. ( 33)-( 35):

( ) ( ) 2 10 2 , , 1 1 PSNR , 10log 1 max m n i j i j i j P P I P I mn = = ! " # $ = # $ # $ % & ' ( ( (33) ( ) ( ) ( ) 2 , 1 1 10 2 , , 1 1

SNR , 10log

m n i j i j m n i j i j i j ( )

P P I P I

= = = = ! " # $ = # $ # $ % & ' ( ( ( ( (34) 
1 2 2 2 2 2 1 2 (2 )(2 ) 1 SSIM , ( )( ) p i pi p i p i C C P I mn C C µ µ ! µ µ ! ! + + = + + + + ( 35 
)
where I is the reconstructed image and P , the ground-truth image. max P denotes the maximum intensity value in P . p µ and i µ are the mean values of the 8"8 square window in I and P . The reconstruction results from the proposed approaches were compared with the results obtained from the l 2 -WLS, l 1a -WLS and l 1i -WLS methods. In the experiments conducted on the MSL phantom, with the shape parameter ! set to 1.2, the scale parameter ! was calculated to 6.0 and 4.2 for the ! a -WLS and ! i -WLS methods, respectively. In the experiments performed on the NACT phantom, with the shape parameter ! set to 1.2, the scale parameter ! was calculated to 16.7 and 11.8 for the ! a -WLS and ! i -WLS methods, respectively. Fig. 5 gathers the reconstructed images for all the simulations carried out with M-sin1, M-sin2, N-sin1 and N-sin2, Fig. 5 (a1-d1), (a2-d2), (a3-d3), (a4-d4) and (a5-d5) using l 2 -WSL, l 1a -WSL, l 1i -WSL ! a -WLS and ! i -WLS, respectively. We can see that the proposed ! a -WLS and ! i -WLS methods perform better in preserving edges and suppressing noise than other methods. Table 2 andTable 3 list reconstructed images with respect to the reference phantom images. The ! values are also listed in Table 2 and Table 3. We can note that the ! a -WLS and ! i -WLS approaches lead to reconstructions with higher PSNR, SNR and SSIM values. However, the computation time required by the proposed algorithm is higher than for the other methods as shown in Table 2 andTable 3. Fig. 7 depicts the intensity profiles (specified as the red lines in Fig. 6) for the reconstructions in Fig. 5. A better match with the ground truth phantom profiles can be observed for the ! a -WLS and ! i -WLS methods. We can note that, though giving higher PSNR values than the ! a -WLS algorithm, the ! i -WLS algorithm can reconstruct images with no significant visual difference with respect to the results from the ! a -WLS algorithm.

Fig. 5: Reconstructed images from the sinograms M-sin1, M-sin2, N-sin1 and N-sin2, respectively. Columns from left to right correspond to the results reconstructed from M-sin1, M-sin2, N-sin1 and N-sin2, respectively. Rows from top to bottom correspond to the images reconstructed using the methods of l2-WSL, l1a-WSL, l1i-WSL, !a-WLS and !i-WLS, respectively. 
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Catphan 600 data experiments

Experiments on the Catphan 600 phantom under low dose protocol were also performed to evaluate the algorithm performance on the preservation of high resolution and low contrast features. The tube voltage and the current were set to 100 KVp and 10 mA. The images to reconstruct are composed by 256"256 pixels with 1mm"1mm pixel size. The imaging geometry was specified as: the source to isocenter distance was 500 mm and the distance from the source to the detector was set to 1500 mm. The data were acquired from a monochromatic CT fan beam scanner with a total of 661 scanning views and 1024 radial bins per view. In the experiments worked out using the Catphan 528 phantom, with the shape parameter ! set to 1.2, the scale parameter ! was calculated based on the above parameter setting strategy as 550.46 and 322.58 for ! a -WLS and ! i -WLS, respectively. For the Catphan 404, ! being still set to 1.2, following the same procedure, the scale parameter ! values were respectively calculated to be 419.58 and 402.68. The global parameter ! was set to give the best results in terms of edge preservation and noise suppression.

The reconstructions of the central 2-D slices in phantoms Catphan 528 and Catphan 404 are displayed in Fig. 8 and Fig. 9, respectively. In Fig. 8 and Fig. 9, the reconstructed images (a)-(f) correspond to the algorithms FBP (with ramp filter), l 2 -WSL, l 1a l 1i -WSL, ! a -WLS and ! i -WLS, respectively. We can see that the images reconstructed by FBP suffer from severe noise, and the l 2 -WSL algorithm leads to noise suppression at the cost of obvious detail blurring. The ! a -WLS and ! i -WLS methods perform better in noise suppression and edge preservation than the others. From Fig 8 (c)-(f), it is found that the proposed methods provide reconstructions with higher resolution than the l 1 -norm regularization methods (see the structures pointed out by red arrows in Fig. 8). In Fig.( 9), we can also observe that the proposed methods can preserve low contrast regions with clearer boundaries than the l 1 -norm regularization based methods in Fig. 8 (c) and Fig. 8 (d) (see the structures defined by red arrows in Fig. 9). 

Convergence

The convergence property of the ! a -WLS ! i -WLS algorithms is analyzed based on the cost functions in Eq. ( 19) and Eq. ( 21). M-sin1 was used for this analysis. The evolutions of the cost function values and the PSNR values over iterations are depicted in Fig. 10. We can observe monotonic decrease of the log-transformed cost function values and the monotonic increase of the PSNR values (of reconstructed images) as the iteration proceeds. 

Sensitivity analysis of the shape parameter !

Only the shape parameter ! needs to be set in the proposed parameter setting strategy. Fig. 11 shows the reconstructed images with M-sin1 and N-sin1 using ! a -WLS and ! i -WLS when the shape parameter ! is set to 1.2, 1.8, 2.0 and 5.0, and the parameter ! calculated as / E ! following the above parameter setting strategy. Fig. 11 confirms the proposed parameter setting strategy and that the choice of ! equal to 1.2 leads to reconstructed images with higher quality than others. In particular, as ! is increased more noise from small gradients can be observed in the reconstructed images. 
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Comparison with another l 0 -approximate regularization with tunable parameter

In this section, we compared our method with another l 0 -approximate regularization with tunable parameter, which was proposed by Hu et al [START_REF] Hu | L0 constrained sparse reconstruction for multi-slice helical CT reconstruction[END_REF]. This regularization also uses a tunable parameter p to realize an approximation to the l 0 norm regularization, with the regularization function given by Eq. ( 36):

( ) Hu ; log( 1) x x p p ! = + (36) 
Here, x denotes image gradient. The regularization function Hu ! modulates the function by changing the scale through the parameter p . We can see in Fig. 12 (a) that the regularization function

Hu

! exhibits a worse approximation to l 0 norm regularization.

We also provide the reconstructions of M-sin1 and N-sin1 employing our methods (! a -WLS and ! i -WLS) and the regularization function Hu ! with the same weighted least square models used in above experiments. The methods using the regularization function Hu ! are referred as H a -WLS and H i -WLS for the anisotropic and isotropic models, respectively. The reconstruction results are illustrated in Fig. 13 with different combinations of parameters p and ! given below. We can see that the proposed Gamma regularization leads to reconstruction results with better performance in both edge preservation and noise suppression than the reconstructions with H a -WLS and H i -WLS. 

Conclusion

In this paper, we described two iterative reconstruction algorithms ! a -WLS and ! i -WLS for LDCT image reconstruction based on a Gamma regularization and we compared them to several well-known schemes with integer norms. Both simulated data and Catphan 600 data were used to test the proposed methods. From the experiments, we have seen that the proposed Gamma regularizations have better performance in edge preservation and noise suppression than other methods. Nevertheless, practical application of the proposed algorithms still needs further validation using more clinical data. From the Table 2 andTable 3, we found that their computation times are higher than other methods, and some acceleration techniques should be applied to increase its feasibility.

The proposed Gamma regularization realizes the rendering of a flexible regularization effect via modulating the shape parameter ! and the scale parameter ! . In this study, the shape parameter was set to 1.2 to obtain a regularization function adapted to the variations of the image gradients, and the value ! was selected based on the preset ratio E with 5E equal to about 25% quantile of the gradient amplitude ensemble. Though this parameter setting strategy is proved to be effective in the phantom experiments conducted so far, a thorough analysis on parameter sensitivity is still required through its application to clinical data. 
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  Fig. 1: Regularization functions

  Fig. 2 (a) depicts the regularization function values for different ! ! when ! is fixed to 1.2, and Fig. 2 (b) the values of the regularization function Eq. (

  Fig. 2: The plots of the CDF of Gamma distribution (
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  ! and i ! are the corresponding standard deviations, and pi ! is the corresponding covariance.

  C are three constant parameters, which are set according to[START_REF] Wang | Image Quality Assessment: From Error Visibility to Structural Similarity[END_REF]. denoting the grayscale range of the image to reconstruct.

Fig. 3 :

 3 Fig. 3: The phantoms used in this paper. (a) MSL phantom, (b) NACT phantom

  the PSNR, SNR and SSIM values of the

Fig. 6 :

 6 Fig. 6: The profiles (the 128 th row from the top) of the two phantoms

Fig. 8 :Fig. 9 :

 89 Fig. 8: Reconstruction results of the central 2-D slice in phantom Catphan 528. (a) the image reconstructed by FBP (ramp filter). (b) the image reconstructed by the l2-WSL method (#=20), (c) the image reconstructed by the l1a-WSL method (#=0.4), (d) he image reconstructed by the l1i-WSL method (#=0.4), (e) the image reconstructed by the !a-WLS method (#=0.0061), (f) the image reconstructed by the !i -WLS method (#=0.0121).

Fig. 10 :

 10 Fig. 10: (a) and (b) show the values of cost function and PSNR versus iterations for the MSL phantom data with !a-WLS and !i-WLS algorithms, respectively.

Fig. 11 :

 11 Fig. 11: (a1-d1): The reconstructed images by !a-WLS using M-sin1; (a2-d2): The reconstructed images by !i-WLS using M-sin1; (a3-d3): The reconstructed images by !a-WLS using N-sin1; (a4-d4): The reconstructed images by !a-WLS using N-sin1.

  Fig. 12: (a) Regularization function

Table 2 :

 2 Quantitative evaluation of the reconstructed MSL phantom images for the different methods.

						MSL phantom		
	Method	#	PSNR	M-sin1 SNR SSIM	Iterations/ Time (in minutes)	#	PSNR	M-sin2 SNR SSIM	Iterations/ Time (in minutes)
	l2-WSL	6.8	24.48	12.37	0.60	127/0.96	5.6 23.81	11.69 0.62	269/1.88
	l1a-WSL	2.4	28.42	17.01	0.84	283/2.00	2.3 28.07	15.96 0.84	283/2.01
	l1i-WSL	4.6	28.71	16.60	0.93	170/1.43	3.3 27.73	15.62 0.90	176/1.33
	!a-WLS	2.5	31.55	19.43	0.96	234/2.30	2.0 28.33	16.22 0.95	201/1.97
	!i-WLS	4.4	32.03	19.92	0.97	262/2.32	3.0 29.19	17.07 0.95	271/2.35

Table 3 :

 3 Quantitative evaluation of the reconstructed NACT phantom images for different methods.

						NACT phantom			
	Method	!	PSNR	N-sin1 SNR SSIM	Iterations/ Time (in minutes)	!	PSNR	N-sin2 SNR SSIM	Iterations/ Time (in minutes)
	l2-WSL	9.4	22.07	12.59	0.65	20/0.92	9.6	20.08	10.60 0.63	281/2.91
	l1a-WSL	3.2	24.94	15.47	0.87	355/0.87	3.3	24.76	15.29 0.89	79/0.82
	l1i-WSL	5.5	26.44	16.97	0.93	101/0.87	4.0	24.91	15.44 0.90	50/0.64
	!a-WLS	1.0	26.98	17.50	0.96	164/1.81	1.0	25.64	16.17 0.94	164/1.71
	!i-WLS	1.6	27.49	18.01	0.96	140/1.38	1.2	25.92	16.44 0.94	171/1.63
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