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PROOF OF THE LANDAU-ZENER FORMUTLA

Alain Joye

Abstract

We consider the tine dependent Schrodiger equation i the adiabatic Lo
whew the Tamiltoniau is an analytic unbowsded operator. [ s assumed that the
bamiltonian possesses for any thne fwo insbutanceots nomn degenerate cigenval-
nes sehiel display an avoided erossing of finite wininuum gap. We prove Lhat the
probability of @ quantinn transition between these fwo pog degenerate cigenval-

nes s given i the adiabatic it by the well known Landat.Zoner formula.
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1 Introduction

During the last few years, significant progresses have been made on the rigorous aspects
of the adiabatic regime of the Schrédinger equation. This regime is characterized by tle
singular limit ¢ — 0 of the evotution equation

.8

15‘5?[]:“!3} = H(t)U,(E,S) Ut('s!‘i):ﬂv (‘-I-}
where the generator or hamiltonian H(¢), ¢t € IR, is a smooth family of sell adjoint operators
defined on the same separable Hilbert space H. It is assumed that for any ¢ ¢ IR, the
spectrum of H{t), a(t), is composed of a bounded part o1(t) separated from another part
o3(t) by a finite gap ¢ > 0. The corresponding spectral projectors ((2) and (H-Q(1}), defimed
by a Riesz formula, form a smooth orthogonal decomposition of the Hilbert space H for any
te fR:

H=Q()®&WE- Q(t)HH. (1.2

In 1987, Avron Seiler and Yaffe [ASY] constructed an approximation V(,s} of the evolu-
tion U, (¢,s) under very general hypotheses oa the unbounded hamiltonian H{1) generalizing
carlier results [BF}, [Kal], [Nel]. This approximation satisfies the estimate

IVt 8) = Uelt,s)]| = Oe|t - &) (1.3)

for any ¢, s in some bounded interval [ ¢ IR and possesses the intertwining property

Vit s)Q(s) = QUOIV{L, 8). {1.4)
As a consequence, the so-called transition prebability across the gap, P{c), defined by
P(s) = |- QUa))Ue(t2,1)Q(2)? (1.3)

vanishes as £? in the adiabatic limit £ — 0. They also proved that when all derivatives of
the hamiltorian H () vanish at #; and t;, the transition probability tends to zero faster than
any power of ¢

Ple} = Q" — t2]), ¥n. (1.6}

Assume now that the hamiltonian H(¢) depends amalytically on time f and that it tends
sufficiently rapidly to limits H* when ¢ — oo, In this case we can take the limits t; — —~o0,
ty — 0o in (1.5) and the transition probability turns out to be exponentially small:

P(e) = Olexp{—7/e}) 7>0. (1.7)

This result was proven in the matrix case by Joye, Kunz and Pfister [JKP] and then extended
to the unbounded case by Joye and Pfister [JP1]. Moreover, when the hamiltonian H(2) is a
hermitian 2 x 2 analytic matrix, the leading term of the asymptotic expansion of P(z£) can
be explicitly computed [B2], [TKP], provided some supplementary condition is satisfied (see
[JKP)):

Tz} = exp{2lmé } exp{—27/¢} (1 + Oe)), 7> 0. (1.83

This result justifies and generalizes the so-called Dykhne formula (D], [PK], [DP], [HP]
for P{e) which is valid if #{) is a real symmetric 2 x 2 matrix. The Dykhne formula is
obtained from (1.8) by replacing the ¢-independent prefactor by 1. The presence of the
prefactor exp{2Im#;} in the hermitian case has been measured experimentally in [ZRC].
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Generalizations of this case were also investigated: The full asymptotic expansion of the
quantity In P(z} is computed in [JP2] and non generic situations are considered in [IMP),

Another important concept in adiabatic dynamics is the notion of superadiabatic evolu-
tion, introduced by Berry [B1} for two level-systems and generalized by Nenciu [Ne3]. Such
an evolution V.({,s) is characterized by the fact that it approximates the evolution U.(1,s)
for exponentially loug times:

IVetty sy = Lait,s}l| = Olexp{-r/fe}|t - sl), >0 (1.9}

for any ¢,s € I C IR, and by the existence of projectors }.{¢), ! € I for which V.(¢, s}
possesses the interiwining property

Valt, 8)Q.(8) = Qu(D)Va(t, 5). (1.10}
In general, V. and Q. depend on £ and it can be shown that if

;;%H(H!:to:f) ¥n < m, (i.15)
then

Q.(to) = Q(to) + Of™). (1.12)

The origin of this notion is to be found in [G}, [Sa), [Ne2] and [NR] where evolutions Volt,s)
approximating U/,(¢,3) up to corrections of order £% are construcied by means of different
iterative schemes. However, the existence of a superadiabatic evolution satisfying the esti-
mate (1.9}, which bears some resemblance with the estimates proven in [Nek] in a classical
context, was proven rigorously by Nencin [Ned] using a method inspired from [Le] when Hit}
is analytic. Similar results hold if H(t) belongs to some class of 0% operators. Another
construction of superadiabatic evolution based on another iterative scheme was proposed
later in [JP3]. This construction allows to improve the estimates on the superadiabatic ap-
proximation as a function of the gap g between o, and os. Consequently, Joye and Pfister
could solve the following problem. Assume

ot} = {e1(1),ea{t)} (1.13}

where €;(1), j = 1,2, are non degenerate eigenvalues and let P;(f) be the associated one
dimensional projectors such that

Pl(t)+P2(t):Q(t). (1.14})
The quantity of interest here is the transition prabability between the two levels embedded
in the spectrum

Pa(e) = . lim lim ”Pz(lz)Ueflz,tl}P1(11)“2. (1.15)

100 By =

The question is to compute explicitly the leading term of this transition probability in the
limit & — 0, as for two dimensional systems. The idea is to first use a superadiabatic evolution
to reduce the initial problem to an effective two dimensional problem, modulo corrections of
order Oexp{-r/e}). Then, the effective problem is analyzed by the methods developed in
[JKP}. The end result has the same structure as for genuine two dimensional systems [JP3]:

Paile) = exp{2lmé }exp{-2v/2} (1 + Ofs)) + O(exp{-r/c}). (1.16)

Here 4 coincides with the decay rate of two dimensional systems and Tm#) contains in addition
to the expression valid for two dimensional systems an explicit contribution coming from the
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global time dependence of the spectral subspace Q(£)H in H. Of course, in order to have
a definite formula, the remainder O(exp{—7/c}) has to be negligeable with respect to the
leading term. The estimate of T asa function of the gap g given in [JP3],

Tg) g, >0 (1.17)

shows that this is the case provided the two levels e, and e; are sufficiently isolated in the
spectrum. Again, in addition to the natural hypotheses quoted above, we need a supplemen-
tary technical condition for this result to hold.

1n this paper we consider the same general situation under the supplementary assumption
that the two levels of interest e) and ez become nearly degenerate at some time during the
evolution. This condition is often referred to as an avoided crossing condition in the physics
literature and it occurs in many applications where the adiabatic limit is involved (see (JP4]
and [J] for references). If the avoided crossing takes place al t = ¢ and if the minimum gap
between the levels is of order &,

eg(t) — er(2) = Va2 4 0262, 1,6 <0, {1.18)

an approximate formula known as the Landau-Zener formula {La]. [Z], states that the tran-
sition probability P, (¢) between the two levels e; and ey depends on the local features of
the difference ex(t) — e3(t) around t =0 only and that it is given by

232
Pglts)'_vexp{—n;ag } as € — 0. (1.19)
Although this formula is believed to koid under quite general conditions. no rigorous proof of
it is available in the literature, An important step in that direction was however performed
recently by Hagedorn in [H]. By an asymptotics matching procedure, he proved that if
the minimum gap & between e2{0) and €;(0) is e-dependent and closes in the limit ¢ — 0
according to the scaling law § = VE, the leading order of the transition probability Pz (¢)
is givea by (1.19) with 82 replaced by £. It is the aim of this work to provide a rigorous
mathematical status to the Landau-Zener formula for small but finite minimum gap &. under
very general and natural hypotheses. These results have been announced in [JP4] and [JP5]
where further details and references about the physics behind the Landau-Zener formula can
be found.

We also believe that our detailed proof provides a fairly general account of the main meth-
ods developed recently in the theory of the exponential suppression of transition probabilities
in the adiabatic limit. Indeed, the general idea of the proof is quite simple: We want to ap-
ply formula (1.16) and expand the result to the lowest order in &, where § = e;(0) — e, (D).
However, we have to go through the whole proof of {1.16) in order to control the dependence
in 6 of the quantities and remainders encountered. The structure of the proof is as follows:
After formulating our main result precisely in section 2 we give in section 3 a set of basic
estimates used throughout this paper which are generalizations of those in [JP1]. In section 4
we review the iterative construction of [JP2], [JP3} and we give its main properties. Then we
show in section 5 how it yields a superadiabatic evolution ¥, and the corresponding projector
Q., whose dependence in & is controlled. Following [JP3] we use this resuli to reduce the
initial problem to a two dimensional effective problem in section 6, which we study with the
methods of [JKP) exposed in section 7. We exploit in particular the presence of the small
parameter ¢ in the problem to show that the above mentioned technical hypothesis needed
for (1.16) to hold true is satisfied for § small enough, We also check that the remainders
in the asymptotic formula (1.18) are uniform in 4. We eventually obtain the Landau-Zener

formula by inserting a local expression for eq(t) — ei(t) given below in condition [V in the
result and by expanding the formula to the lowest order in 6.
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2 Formalisation of the Problem

2.1 Hypotheses

We consider a family of hamiltonians H{t,é), t € IR and 8 = 0 a small parameter, defined
on the same separable Hilbert space H. We suppose that the hamiltonians Jf(t.8) satisfy
the following regularity conditions.

The first one is that the hamiltonian is analytic in time and sufficiently smooth in 2 and
é:
I. Self-adjointness, analyticity and smoothness
There erist a strip S, = {t + is: |s| < a}, an interval [a = [0, 8] and a dense domain D in
H such that for each 2 € 3, and 6 € [
i) H(z,6) is a closed operator defined on D
i} H(z,8)p is holomorphic on S,, for each p € D and for each fized & € Ia
i) H*(2,8) = H(z,8); H(t.§) is bounded from below if t € R
iv) H{z,8)p 1s C! as a function of (2,6) € 8, x Ip for each g € D.
The next condition states that H (¢, §) tends sufficiently rapidly to two limiting hamiltonians
as { — +oo. These limiting hamiltonians also have to be smooth in é.
I1. Behaviour at infinity
There exist two families of self adjoint operators HY(8), defined on D, strongly Cliné and
bounded from below and a pesitive function b1} tending {o sero as |t| — oo in an intcgrable
wey. independent of 8, such tha!

sup It + is.8) = HY (BNl < o0eoll + [HT(6)N) L 10

[s] <ex

and

IS;JP NH(E +is.8) = H-(E)ell < (Il + ILH ™ (83pll) . £ <0
s| <

for all ¢ € D and é € Ia. Moreover, for each ¢ € D,
a ;
5 H (=810 € N\ ¥(z.8) € Sa x La.

We shali call such a function b{t) an integrable decay funciion.
When & = 0, the derivatives with respect to & are to be considered as right derivatives.
Finally, the last condition expresses the fact that when the parameter § = 0, the levels e;
and e; disptay a real crossing at ¢ = 0 and when & > 0. this crossing becomes an avoided
Crossing.



II1. Separation of the spectrum and avoided crossing
There ezists a constant g independent of ¢ and & such that the spectrum o{t,d) of H(L,0),
te IR, § € la, is given by

a(t,8) = ay(1,6) Uaa(t,8) , o1, 8) = {e1(t, 6}, e2it. 8)},
and sotisfies

dist[oy (8,8 02(1,8)) 2 g >0 Vi€ R, § € Ia.
Moreouver,

egt,6) —el(L,8) >0, Vi€ Rand6>0
and if § = 0,

ex(t,0) —&(2,0) >0, ¥Vt <0
ex(t,0) —1(2,0) <0, ¥i>0
e2(0,0} = e1(0,0)

where t = 0 is a simple zero of the function e{t,0) — ey(t,0) (see figure ).

Figure 1: The levels ¢;(2,8) and ¢;(£,0).

The corresponding one-dimensional projectors are denoted by Fi(t,8) and Py(t,8). By
condition 1, the functions e;{z,8) and operators P;(z,é) are analytic and maultivalued in 5o
with branch points at the complex eigenvalue crossing points. If the eigenvalue crossing point
is real, e;(z,8 = 0) and P;(z,6 = 0) are analytic at this point as 2 consequence of a theorem
by Rellich [R], so that the last condition makes sense. It aiso implies, see lemma 7.2, that
there is a complex eigenvalue crossing point zp(8) together with its complex conjugate in a
neighbourhood of z = 0 if § is small enough and that 25(4) is a square root type branch point
for the eigenvalues. We also define Q(1,6) = Pi(t,6) + Py(t,6) which is analytic everywhere
in 8,.

To investigate the local structure of the hamiltonian close to the avoided crossing, we
need only consider the restriction of H(2,é) to the two dimensional subspace Q(7,8)H. We
specify in a fourth condition the generic form of avoided crossings to which the Landau-
Zener formula applies. The assumption is that the quadratic form giving the square of the
gap between the levels close to (£,8) = (0,0) must be positive definite.

IV. Behaviour at the avoided crossing
i) There erist constants & > 0, b > 0 and ¢ with e? < a?h?, such that

eqft, 8} — e1(1,6) = fa?t? + 2cté + b28% + Ra(t, 6}

where B3(2,8) is a rest of order 3 in (1,8).
ii) Let vy and py form a basis of Q(0,0)M. The matriz elements {;]Q(t, é3ox} and
(| H{E,8)Q(2, )i}, k,j = 1,2, are C? as functions of the two real variables (4,8).
Remark:
The point ii) of this condition is automatically satisfied if the hamiltonian H{t,8) is strongly
€? as an operator-valued function depending on the two real variables (t,6).

The avoided crossing considered can be rewritten as

ea(t.8) — €1(£,8) = Va2 + 2ctd + b6 (1 + Ra(t,6)) (2.1)

if t = ({§}. The minimum gap between the eigenvalues is given at fg(8) = —%fr + O {6%) by

2
ealtal§).6) — erllo(8),8) = by b3 - % (L+0O(6)). (2.2)

2.2 Main Result

We are interested in the normalized solutions in the limit t — +oco of the Schrédinger equation

0

i€ elt) = H{EL 8w (D), () =woe D ' (2.3)
subject to the boundary condition

Jim [Pz el = 1. (24)

More precisely we wait to compute the transition probability to the level e at time £ = oo
given by

Pule.8) = t_ljg}mIIPz(t,ﬁ)'!lz(lf)li2 (2.5)

in the limit of small ¢ and . Let § be fixed and let 5 be a closed loop based at the origin
which encloses the complex eigenvatue (8} (Imzp(8) > 0} as in fignre 2. We fix the phases

20(8) n
0 R

Figure 2: The loop 7 and the eigenvalue crossing zo{d}.

of the normalized eigenvectars (1, 6) and z(t,8) of H{(1,8) associated with e1{t,8) and
£2(1,48) by the condition

(%(f.,a)%t,a,u,ﬁ)) =0, YtelR, j=1,2 (2.6}
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Consider ¢;{0,8) and (0,8} and their analytic continnations along 7. I we denote by
¢1(0,6) and F1(0.8) the results of these analytic continuations at the end of the joop 5. we
have

{0, 4) €2(0,6)

#1(0,4) exp {—if1(5)} 2(0,4) (2.7)
because 26} is a square root branch point for the eigenvalues. Note that the term 8, is
§-dependent.

Theorem 2.1 (L.andau-Zener Formula) Let H(1,6) be a self-adjoint aperator analytic in
t satisfying conditions [ to Il Let 4.(1) be a normalized solution of the Schrédinger equation
ie%wr) = H{t 8)de(t) s 9e(0) = o€ D
such that
Jim_ 1Pt = 1.
if e and & are small enough,

Puled) = him ([Pt ) (0]
2
= exp{2lmé;(8)}exp {;Im/eﬂz.é}d:} L+ )
P
where Oz} s uniformly bounded in  and
lim ]mfslts,é)d: =0
= Uy
lim Imé& (&) = 0.
§—0

Moreover, if condition IV is salisfied, we have

2 2 2
Puf.6) = exp {—M (b— - ;—3) (1+ own} (1+000)+ Oe))

£2 \a
where Ofe), respectively (), are uniformly bounded in 8, respectively <.

Here [, e:(z.6)dz is the integral along # of the analytic continuation of e,(t,6}. We can
recover the results obtained by Hagedorn [H] specialized to our setting as a direct corollary:

Proposition 2.1 If the width & of the avoided crossing is rescaled wccording lo & = /¢, then

e

b'Z CZ
Prale V) :e”"{‘f ('a' - ,,—3)} (14020

Remark:
As the estimates are uniform in 4, we can set § = 0 in the above results and we obtain
Paale,0) = (14 Ofe)), in apparent contradiction with the adiabatic theorem of quantum
mechanics. This behaviour is explaired by figure (1), whick shows that the eigenvectors
p;(t,0) undergo a change of labels in the limit & — 0, for ¢ > 0. Hence ;(,6) tends to
an eigenvector associated with €2{2,0) as & tends to 0 so that P;(e,0) is the probability to
siay on the eigenstate associated with e;{¢,0), which must be close to I, according to the
adiabatic theorem. The transition probability is therefore of order ¢, instead of £2, as should
be the case in presence of a real crossing {BF].

The rest of the paper is devoted to the proof of the Landau-Zener formula. as stated in
theorem 2.1.

3 Basic Estimates

This paragraph contains the generalization of the preliminaries of [JP1] when the hamiltonian
H depends on the supplementary parameter §. The techniques being similar to the ones of
fTP1], we state the main results and give their proofs in the technical appendix A.

We use the notation

Riz. 6 X) = (H(z,8) = A)! (3.1

for A € T'(z,4), the resolvent set of H(z,§).
For t € IR and é = 0, we define the two-dimensional projector ¢{¢,0) by

Qu0y = —L} R(1.0, M)d> (3.2)
2mt fr
where |" encircles (1. 0).

Lemma 3.1 Let 1 € It and T be as above, We can choose the width a of the strip 85, and
the length A of the interval [ sufficiently small so that the spectrum of H(z,8) is separaled
in two parts ¢1{z,6) end o3(2.8) forany z € 5,, 6 € Ia. Moreover, if |z —t| and & are smafl
enough, the spectral projector Q{z,8) corresponding lo o,(z.8) is given by

1 a
O(z.6) = -ﬁﬁmz,a‘m,\ (33)
where U encircles o,{z,8).

We assume from now on that & and A are so small that the above lemma holds. Let us
define limiting projectors hy

1
Q(i.é]:—%é‘ Rit.0.A)dA. (3.1

The smoothness and regularity conditions on the hamiltonian imply the following behaviours
for the resoivent and projector.

Lemma 3.2 Forany 2 € S,, 6 € Ja and A € T(z,8). B(z,8,)) and (Q(z,8) are strongly
C* as functions of (:.8) € S, % Ia. and R(+.8,)) and Q(£,8) are strongly C' ind € Ia.
Moreover, for a fized 8, Riz,6,X) and (X z,8) are holomorphic bounded operators and there
erist integrable decay functions by 5(1) and b(t) independent of & such that if A € T(+.8}

il +is,6,0) = R{£, 6,0 £ bysit)
o ,
”@R“_{_H‘&_,\}”g|iR("’{t+is,6,z\)|l £ by st}
Qe +is.8) - QU6 < bt
IO+ sl < s 120, K

Jor any |8] < r < a and for any inleger n.

The proofs of these lemmas are given in appendix.



4 Tterative Scheme

Consider the iterative scheme defined for any z € 5,,0 € 5 as follows:

Holz,8) = H(z, 8} {4.1)
with associated spectral projector Qp{z,6) = Q(z,8). Let

Rol2,6) = i[Qy(z,6),Q(z,8)] 14.2)
where / denotes 56; We set

Hy(z,8,2} = H(z,8) — c Koz, 8). (4.3)

By perturbation theory, for € small enough, the spectrum of H, is separated into two distinct
pieces, one of which js bounded. We denote by (3)(2,4,¢) the spectral projector associated
to the bounded part of spectrum. Defining

Ki(z,8,¢) = i[Q){2.8,€),Q1{z,6,¢)] (4.4)
we set

Hy(z,6,6) = H(2,6) —eKy(z,6,¢). (4.5)
Again, by perturbation theory, we can define a spectral projector associated with the bounded

part of the spectrum of Hy if ¢ is small enough and we can go on with the construction. At
the g'M step we have (dropping the ¢ dependence in the arguments)

Hylz,8) = H(2,6) - eKq1(2,6)
1
Qufiz,6) = —ﬁf}Rq[z.ﬁ.,\)d,\
Ky(2,8) i[Qe(2,8),Qq(2,8)} Vg2 1 {4.6)

with fy(2,8,A) = (Hy(2,8)=A)"! for A € Ty(z,8), Ty(2,8) being the resolvent set of Hylz,8)
Remark that since Ay_,(z,4) is bounded for any ¢, H,(z,8) is closed and densely defined
oa the domain D of H{z,6) (see theorem L.1, chapter IV in {Ka2]}. We quote from [JP3]
the main proposition regarding this iterative scheme, when the parameter & is ahsent. Let
D(z,n) be the disc

Diz,m)={ €| - 2| < n} C S, (4.7}

and assume that there exists a simple closed path I' in the complex plane, counterclockwise
oriented, such that for all 2’ € D(z,7) the spectrum a(z) of H{z') can be divided into two
disjoint parts o1(2') and o2(2’), with &1(2") in the interior of I'. We have the

Proposition 4.1 Let D{z,1) and T as above and let a, b and ¢ be constanis such that for
all inlegers p, all 2' € D(z,n)}

; [pl ’ -4

D IR = I Rl M < e E aer
. ;P p!

i) [Figs P {zl)“ < bcP(__._l sk reT

Then there exists £*, depending on a and b, and there erisis a constant d depending on a, b
and |T'| such that for e < ¢~

1
HJ'\'gp)(z'] _ J’\',?i)l(zl)” < be?d?ePTe (r+q)

and

!
KN < ebe?
I[45 )| < ebe T+p

for all ' € D(z,n), all integers p and q such that

1
< =N
pres [ecdf]

Here [z] is the inieger part of x and e is the basis of the neperian logurithm.

We prove in our technical appendix A a lemma showing that the hypotheses of this propo-
sition are satisfied uniformly in & under our assumptions I to [1:

Lemma 4.1 There erists a constant N suchk that

sup sup sup [[R{z.8,A)] < N. (4.8)
et zeDrr 1 Ael
We define
Kz, 8) = i[Q(z.8).Q(z8)] (4.9)
By lemma 3.2, there exists an integrable decay function 4(t) such that
sup |[A(z.8)] < 04} (4.10)
rED{t")
TN

Heuce, using Canchy formula in discs D(,n) with 7 < r, we have the estimates

1
BRWzaxyy < N B
IRV € Ve o7

(AP 8) < bOeP—t—

Yz€ Dii,n), AeT,, (4.11
0 -I- )-2 (4.7} t )
for any t € [, uniformly in & € fa, with ¢ = 8/r, provided 7 is small enough. We can
again diminish the width of the strip S,, so that the above estimates hold uniformly in
2 € 54, 6 € In. As a consequence proposition 4.1 holds uniformly in & for ¢ < €* where ¢*
is independent of 8.

5 Superadiabatic Evolution

In that section we show how the iterative scheme (4.6} yields a superadiabatic approximation
V. of the actual evolution I/, and consider in particular its dependence in §. As a consequence
of our hypothesis  on H{t,8), the operator U,(¢,s) (in which we omit omit the dependence in
) Is a two-parameter family of unitary operators, strongly continuous in £ and s and which
leave the domain D invariant. For all 1, {2 ,t3

Uelfufz)us[fz,ls) - Ue“lsta)1 Ug(t},f]) =1 (5.1)

and U, is strongly differentiabie in ¢ and s on the domain D,

isa—an,(i.s) = H{1.8 {1, 8) (52}



and

ig%U,(z,sJ = —U.(t,5)H{s,8) {5.3)
(see e.g. {Kz], Chap. 2). From now on we set s = { and we omit this variable in the notation,
We define two aperators Wi+, x5+ by

iWh-(t,8} Kye(t,)Wpn(t, 8}, Wye(0,8) =1, {(5.4)

ie Dy, (1.8} Wl ) Hy {8, 8)Whre (2, 610N (1,8), ®ne(0,6) =14 (5.5)

where V*{¢} is §-independent and is defined in proposition (4.1). The operaters A {1,8) and
H,(1,8) are defined by the iterative scheme (4.6}, The operator Wy+(z.4) is unitary for real
t and it is given by a convergent series since K y+(¢,6) is bounded. From proposition 4.1 we
know that Ays(2,8) is analytic for any z € S,, § € [ so that the sare is true for Wiy (z. 8).
Moreover, there exist a constant w, independent of £, and = € 5, such that

HWae (2,8 S w, (IWRIz 8] € w, (5.6)

as is easily seen from the series representing Wy.. For any z € 5,. Wn-(z,8) satisfies the
same differential equation (5.4} where ’ means ’c% and as a consequence, it has the intertwining
property [Ka2], [Kr]

Wi (2,6}Qne(0,8) = Que(z,8)Wn+(2,6). (5.7)

Another important property of Wy« is that it leaves the domain [? invariant so that the
generator W&]HN-WN- of $pn+ is well defined on D. Moreover, it can be shown that
Wﬁ}(z‘é)HN.(z,é)WN-(z,é] is analytic in ¢ {lemmma 5.1 in [JP1]). Hence the unitary op-
erators P (t.6) shares the properties of an evolution operator for real values of 1 and 1t

satisfies

[ne(£,8).Qn(0,8) =0 Y€ IR (5.8
We define our superadiabatic evolution by

Valt,6) = Wi (1. 0) P a8, 6). (3.9

To measure the difference between U, and V. we introduce another unitary operator A, by
the identity

U () = Wi (1,6)0n-(1, 81402, 8). (5.10)
In consequence, A. satisfies the integral equation
t
At 8) =T+ e'f Vs, 83 (Kne(8,8) = Kneoi (5,86 Vals, 8)A, (s, 6)ds. {3.11)
o
Now proposition 4.1 and the definition of N* imply

(1K pe(t8) = Kyeoa(t,83] < b{ENede)N N

< b{tYede NN
< b{tyexp{~N"}
< eb(tyexp{—r/c} (5.12}
where
e s (5.13)
ecd
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is independent of 6. Hence

fu  bs)ds

which together with (5.8) and (5.7) yield the

|4, 80 M| < e exp{—r/e} (5.14)

Proposition 5.1 {f conditions I to I hold, there exist c* > 0 and v > 0 defined by (5.13).
both independent of 6, such that Ve < &=
[Tty — Vi(t, Y] = Olexp{-r/c}) Vie R
where the correction ferm is uniformly bounded in 6 and V.(1.8) has the intertwining
properly
Vol 81Qx-(0.6) = Qu-(t. 6)Vidt,8) V€ R,
Remarks:
1) In the decomposition V.(1,6) = Wne{t,8)By+(1.6), the operator Wa(£,§) describes the
transitions between the subspaces Qy+(0,8YH and (F— Que(1.0))H and $y-(¢.6) describes
the evolution inside tire time-independent subspace Qpn+(0,8}H.
2) The superadiabatic evolution V, satisfies the equation
V(1A = (Hpne (L8 + e B pe{2, 00Vt 8)
= (LAY 4 e Rt 8) — Ry-_i (8 6NVl 8) Va(0,8) =1 {5.15)

3} By perturbation theory and proposition 4.1 we have

Hya(t.8) = H(1.8) ~ sKne_1(i,6)
H{td)+ Osh(1)) (5.16)

so that, for £ stall enough, there exist spectral projectors Pj‘”(i,h} defined by Riesz formula
such that:

L
-1

P8+ PY 8 = Qi) o
and
Jm (B8 = Pe )] =0
i IQx-(1.6) - QU )] = 0, e

uniformly in £ and 8.

6 Reduction to an Effective Problem
Let us write the generator of ®y-(1,6) as

HL(0.8) = WEl(e o) Hps (1L EW N (1, 6. (6.1)
Its spectral projectors Pr((,8) given by

Prira) = W m PN (LW (1. 8) (6.2)
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where PJN'(t,é) are the spectral projectors of Hn+{f,48) are such that

Qne(0.8) = Pi(4,8)+ P}(1,6). (6.3)

It is therefore possible to decompose the evolution &+ (2} as we did for U,(1). We introduce
the evolution Vi(¢} by

T B T L S S

zeav_(c) = (H.(t}+ zsf\:_‘; E‘Dj ()P (t)) i, Vuoy =7 (6.4)
and we set

B (1) := Vi(1)AL(s). (6.5)
By construction V.(¢) has the intertwining praperty [Ka2],[Kr]

ProyWiqny = Vi Pi(0), j=1.2. (6.6)
The operator A‘:(t) is the solution of the equation

'E/T(f) = | wi iﬁ}?-(t)ﬁ"u} Vil A, Ado) =E 6.7

30! i) = - j=lat i i * n')| = )._ . (u‘)

Since || 2?:1 %E‘(t)?}(t)” is integrable as ¢ — *oo the operator X,(t] has well-defined
limits wher ¢ — oo, The reduction to an effective two dimensional problem is provided by
the foilowing proposition.

Proposition 6.1 Let (1) be @ normalized solution of
i€ Dlt) = s lt)
salisfying the boundary condition
Lim || Py(£,8)(2)]f = L.
[Ruur VY
If € is small enough, then
Pnie,d) = [_iiﬂol!f’?(hé)tp(l)ﬂz
= Pale,8) + Oexp{~1/e})

where i’;(e,é) is the transition probability of the following (wo dimensional problem in
Qe (0,8)H:
Let (1) be & normelized solution of

ie 2 pit) = age.6)000
such that
Jim B 6] = 1.
Then
Pule,8) = tim |56 O#(OI.

The correction term (exp{—7/e}) is uniformiy bounded in &,
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Proof:
Let wft} with ¢(0) = ¢ be given. We have {using {5.18), (6.2), (6.5}, and (6.6)}
L= lim {[P(5,8)e(t)]] =

Jim R W (8, 88w (1, ) Aot 6107l | =
Jim (| W (1, 6) B (1, 6)n (8,6 Au (2, )| =
Jim P8V )ALt 8)Au(, )| =
Jim Va2, ) PHOVAL(L )AL (1,8l =
| P7(0) Au(~ 00, 8} Au( 00, 8)"]. (6.8)
Therefore we can write
o= AT e, 6L (00, ) {6.9)
with p & E‘(O,é)?‘(. By a computation similar to (6.8) we have
Jim [iPa{t.8)p()]| =
—o
lim [P (1. 6)p(t)] =
| P30, 8) Aut o0, 6)Au(00, 8)"| =

1530, 6) A, (00, 8)Au(00,8) AT (=00, 6) AL (—00.8)F7(0,6)]. (6.10)
Using the equation (5.11) for the unitary operator A. and the estimate (5.12) we get
Pole.d) = B30,6)A.(00,8) A, (~00. 6)PF(0,8) + Olexp{—1/e I
= 1P, 86)A.(c0,6)A. " (— 00, 8)B7(0,8)]1* + Oexpf—/¢}) (6.11)

where the correction term is uniformly bounded ir 4. Then one checks by the same type of
computation that

Pite.8) = || BH0.6)AL(c0,86)A. (=00, 6) PF(0,8))]%. (6.12)
a

7 Study of the Effective Problem

From now on we cggsider IT.(E,&) restricted to the two dimensional subspace @@n+(0,6)YH
and we recall that H.(2,4) is analyticin z € S, for any § € f5 and £ < £*. As

Ha2,8) = Wil(2,6)H e (2,6)Wiye(2,6) (7.1)

its eigenvalues coincide with the ones of Hy(z,8) which we denote by e(z.8), j = 1.2. We
define

£
Attt} = [ asteiis.t) - ei(s,8)) te M, (72)

and Aj,(z,8) by analytic continuation for z € §,. Note that Af,(z,8) is multivalned in Sa-
Let us consider a set of carresponding eigenvectors of H.(1,6), ©}(¢,8) such that

- & -~ -
(G038 = 0. (73)



Assume that there exists an eigenvalue crossing point r7(6} in the complex plane with
Imz*(§} > 0 which is a square root type singularity for €}(£,6). As explainred in section

2, if we perform the analytic continuation of c:;_f((),é) along a loop # based at the origin
encircling z*(8), we will obtain at the end of the loop a vector ‘:;T(U‘ﬁ) such that
73(0,8) = exp {_5§§(a)} 3(0,8). (7.4)

As z*(8) is an eigenvalue crossing point for Hy+(z,8} as well, we can perform the same type
of analysis for its eigenvectors:

Lemma 7.1
i} Let g;(t‘ﬁj be normalized eigenvectors of of Hu(t,8) satisfying

£ 8 - P
Then
F(1 8 = Wi (1. 8232, 6).
i) Let 87(8} be defined by
#100,8) = exp {—i8}(8)} #5(0,8).
Then
oxp {-if5(6)} = exp {~i8;(8}}
Proof: .
For t € IR, @(1.é} € Que(0,8)H
. a2 .,
(Wj{f-é)la?j(ﬂé)} =
= 9 -
(WAL A g (We (1, 8155(,6))) =
- 1 —_
(&9}(1-éHW,Go](f|5)§1\’N'(l,¢5)WN-(1»6)%'(1\é)) +
— L F .
{99}(!.5)|WN3U-5)WN-(1.5}5799}(*?»5}) =
HF I 8)Qne (4,6 K (1. 511, )W (1. )L, )
-, 8~ - N
+<‘?j($‘f5)la‘?°j“\6)) =0 (7.5}
since Qu«(t, )@ n-"(1.6)@n+ (1,4} = 0.
ii) is a consequence of i) and of the analyticity of WN-(z,é),/!z € 5,. O
The asymptotic computation of the transition probability Pyic,8) as ¢ — 0 for two-levels
systems has been studied in details in [JKP} under the same general hypotheses I to III

adapted to two dimensional systems. The method consists in expanding the solution of the
Schrodinger equation #{t} along the eigenvectors ¢7(2,8) as

2 ; gt —
d:(!):Zc;(t.ﬁ)exp{*Ej; ej(s.é)ds}zp;(r‘ﬁ}. {7.6)

=1
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where ¢j{t,8) are unknown coefficients to be determined. Then we study the system of
equations they satisfy

T8 = aitsen { Lanna) g

And) = n;,(t.ﬁ]exp{—g:’_\.h(t,&)}c;(t.é) (1.7)
where
a{t8) = — {2 (L 8)| @ (¢, 6)) (7.8)

which is equivalent to the Schrédinger equation. The boundary conditions are

{0, 8) = 1

e3(~2.8) = 0 (7.9}
and

Par(e.0) = fe3( =20, 8)(% {1.10)

The idea is to make use of the generic multivaluedness of the eigenvalues and eigenvectors at
the eigenvalue crossing point described above by integrating this system of equations along a
carefully chosen path in the complex plane going above the crossing point. There are however
two supplementary conditions. The first is the genericity condition:

A. There exists an eigenvalue crossing point z*(8) which is a square ruot type singularity for
the eigenvalues IHEN )

Second, we need a technical condition (although crucial, see [JKP] for examples) expressed
through the function Aj{z, ¢}

B. There exists a path in the complex plane

t— 5slf) € 5, N {zllmz > 0} = § (7.11)
such that

i) rl}in»,(. Revs(1) = +oc

it} 45it) passes above ()

1

i) sup Sup exp {—Im(AT?(T,;(s)‘é) - d{z(‘m(r].ﬁ))} < k< . (7.12)
>0 !S!EIR £

{See [JKP]. condition [V and eq. (2.56)). We quote from [JKP] the

Proposition 7.1 Unii_e_r conditions LILIILA and B, there exisis ¢*(8) > O such thal lhe
transition probability Pay(c.6) for fized positive b is given by

Por(e.6) = exp {2Imb7{8)} exp {gfmf e{(z.é)ds}(] + () (7.13)
]

provided ¢ < £7(8).

Remarks: At that stage. ¢*{6} and the bound on the remainder Og{e) are é-dependent.
We prove in the sequel that both the supplementary conditions A and B are satisfied under
our assumptions I to Il for § small encugh. & < &*, with 6* independent of ¢. Moreaver we
show that actually the expressions ¢*{#} is independent of 6 and that the remainder Os{c) is
uniformly bounded in & {proposition 7.4},



We first show that conditions A and B are satisfied for €)(2,4)H(z,8) and then, by
perturbation, that they are satisfied for Qn.(0, 6}H {z,8) as well, Let us deal with the
eigenvalues e;(t,6) of H(t,8). Let ¢; and p; belong to the range of Q(0,0). We define for
teR

w6 = —Lhle
@112, 0)¢
1§ éwl Qstﬁgwg
in(t,8) = o )(% A1 ‘m) (7.1

\/(9921‘-’2(!,6)(992 - fa bt o)) |

These vectors form an orthonormal basis of Q(t, 8YH for (¢, 6} close to (0,0), Moreover, they
are continuousiy differentiable in (¢,48) and they are analytic in f for 6 fixed, by assumptions

I to [II. Without loss of generality we suppose that e(t,8) + ez(2,8) = 0, so that we can
write

H{L 8} g s = BUt,0) - 5 (7.15}
in the basis {y(1,8), y(1,8)} with s;, j = 1,2,3, the spin-1/2 matrices and with the defini-
tions

Bi{t.¢) 2Re{g (¢, 8)|H(£,6)%a(t,6))

Baft.6) —2Im{w (8, 8)| H (2,8 )bal2. 6))

a(t,8) = 20 it ) H{t, dn(t, 8)). (7.16)
The expressions

{1 | H(1,6)Q(8, 891} (7.17)
{#|Qt.6)p1) '

and

(1 [ H (2, 8)Q(2.8) (L, 6)}
V{eQ(4.6)e1]

have analytic extensions in the complex plane, so that the same is true for their real or
imaginary parts considered as real analytic functions on the real axis. Thus the vector field
B(z,4) is analytic in z € 5, for all § € I5 and it is continuously differentiable in 2z and
§. Mareover, as a consequence of condition IT there exist real limits B;(+00,68), j = 1,2.3.
which are C* in & and an integrable decay function b(1) independent of & such that

(&) Ht,8)a(L,8)) = (7.13)

sup |Bj(t +1s,8) — Bj(£oo,8)| € (1) {7.19)

lsi<a

This is easily seen from the identity

1 -
H(z,ﬁ)Q(z,&):—%ﬁz\}i(z,ﬁ,}\)d,\ {7.20)
and lemma 3.2, for exampie. Hence the eigenvalues of H({,8)Q(!,8) are given by the relation
1
E,‘(f,ﬁ):(—l)"a p(t,8) (7.21)
where
3
=3 Bl (1.22)
18

is analytic in 2 € %, for any é € Ja and is ' in (2,6} € S, % Ia. Let us define the function
Ajqft, &) by

Apa(t,é) = j ds(e {s,8} — e3(s,8)) j W plu, & Hdu. (7.23)

Lemma 7.2 For any positive § small enough there ezists a unique eigenvalue crossing point
z0(8) such that Imzp(8) > 0 and z9(8) is a simple zero of p(z,8). As a funciion of b, zo(8)
is confinuous and

}I_I’H] zg(é) = 0.

Proof:
By assumption, p{z,0) has a double zero at z = 0, since ¢;(z,0) is an analytic function. Let
D{0,r) be a circle of radius r > 0 centered at z = 0 and let us consider

plz.8) = p(2,00 + (plz,8) = pl2,0)). (7.24)
For any r sufficiently small,
lotz,0)| > £ >0, VzedD{0,r) (7.23)

and there exists é small enough such that
R
[p(z,8) = p(z,0)] < 5 V2 €0D(0r), (7.26)

by continuity of p(z,4) in z and § and compactness of #D(0, 7). Applying Rouché’ s theorem
we see that p{z,8) has as many zeros as p(z,0) in D{0,7}, counted with their multiplicity,
As p(t,8) > 09t € IR 8 > 0 and p(Z,6) = B(z,8) by Schwarz's principle, we conclude that
there exists in D{0,r} a unique simple zero z5(8) of p{z, ) with Tmze{6) > 0. The continuity
in 6 of 29(8) is proven in a similar way, a
It follows from this lemma that Aj,(f,4) admits an analytic continuation Aja(z,8) for any
7 € 8:\D(0,7). We come to the main proposition of this section.

Proposition 7.2 There exists a path 45(t), t € IR pussing above zp(8),suck that
ImAg{z, 8}, i5 a non-decreasing function of t for a branch of Ayg(2,8) and

lim Reys(t} = ¢
t—too

inf Imvs(i)> h>0
b, vs(t) =

sup [ys(t)] < &
el

where h and b are tndependent of &, Such a path wili be called o dissipative path.

We postpone the proof of this proposition to the end of the section and we use it to compute
the transition probability ’}_3‘;‘1(5,6) of the effective problem. Consider now the hamiltonian
H.(z,8) given by (7.1) restricted to @n+(0,8)H. Tts eigenvalues coincide with the eigenval-
ues €5(z,8) of Hy+(z,8) which can be expressed by means of an analytic function p,(z,4),
depending on ¢ as

ez )= (-1) \/p.(z 8y j=1.2 (7.27)



The function p.(2,6) is constructed in the same way as p(z,8), by replacicg Q(¢,6) and
H(t,8) by Qu-(t,8) and Hy-(t,8)in (7.16). By perturbation theory and proposition 4.1, we
can write

pel2,8) = plz.8}+ Ru(z,6,€) (7.28)
where R.{z,6,¢) is a remainder satisflying

|Ro(2,8,6)f < cblt) Va=t+is€ Sq, (7.29)
and #{¢) is an integrable decay function independent of 4.

Proposition 7.3 There exists ¢* and 87, independent of & and ¢ respectively. such thal for
alle <™, § < §*

i} if & > 0, there exists a unique complez eigenvelue crossing poinl z5(8) of €5{2.8), of square
root type, with Imz3{8) > 0 in §,,

i1} if 6 = 0, there exists a unique real eigensvalue crossing puint :5{0) of e;2,0)

In any case |:3(8)} < .

This lemma shows that condition A is satisfied and that z*(é) € D{0.r} ¥é small encugh
where D{0,r}is the circle of radius r > 0 centered at the origin.

Proof:
We assume that ¢ > 0 and we choose €, independently of &, in such a way that

R
lpa(z.8) = p(z.8)] € F Yz e S,\D(0,r), Véels. {7.30)

As
eli_z'rg)e;—'(i.b] = ¢;(2,8), (7.31)

the real eigenvalue crossing points, if any, must appear by pairs in order to to have ej{—2¢,6) <
0 and ej(+o<,6) < 0. Remember that Hyo(2,8) and H{t,#) coincide at infinity, To show
that actually there is no real eigenvalue crossing point we use

2R
iz 8) = p(2.0) £ =~ < lp(2,0)] {7.32)
if z € 8D{0.7), see {7.26), (7.30), and we apply Rouché's theorem to

pu(2,8) = plz,8)+ (pu(2.8) - pl2,0)). (7.33)

As there is one double zero of p{z,0) in D(0,7), at z = 0, there are either two simple conju-
gate zeros 75(4) and 2;{8) or only one real double zero of p.(2.8) in D{0, 7). But the latter
case must be excluded because this corresponds to one crossing only. Recall that a real
crossing corresponds to a double zero of p*(z,8) because of the analyticity of the eigenvalues
at that point. If § = 0, the same type of argument shows that there is one real double zero
23(0) of pu(2,0), in order to insure ej{—oc,0) < 0 and €7(+70,0} > 0, which corresponds to
one real crossing of eigenvalue. o

With our definitions, we have

Afy(z,8) = 4]02 3 pa(u, 0)du (7.34)

which yields an analytic function in SI\D(0,r). The path of integration is the same as
the one defining the branch of Aj2(2,8) considered in proposition 7.2 (See the proof of that
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proposition). A direct consequence of propositions 7.2 and 7.3 is that for any 0 < § < £* and
0 < ¢ < £* we can apply proposition 7.1 to our effective two-level problem. Indeed, we can
control the quantity

1
oxp { 210 (A7(3(6),8) - Alal3s(8)6) (7.35)
where s < ¢, uniformly in & and ¢ (condition B): It follows from (7.28) and (7.29) that
ImAL(z,6) = ImAp(z,8) + O(e) (7.36)

and by construction ImAjs(z,8) is non decreasing along ;. Hence (7.35) is uniformly
bounded in s < !, ¢ and §. We define a loop § based at the origin by the path going
from 0 to —r along the real axis, from —r to r along d2(0, 7} and from r back to the origin
along the real axis again, By proposition 7.3, z5(8) does not belong to 4. for any 4 > 0. To
obtain the asymptotic formula for 'ﬁ;({,é)

Pric by = oxp{glm/;e;(z,ﬁ]dz}exp {20m8 ()} + D)) (7.37)

with a correction term @) uniformly bounded in &, it remains to check that along the path
75(£}, we can bound the corresponding coefficients af;(z.¢) defined in (7.2} uniformly in &
and ¢ (see [JKP]).

Lemma 7.3 There caists an integrable decay funetion b{t} independent of & and ¢ such that
fap, (2.0 < b1} Vz=t4ise SADO.T).

This lemma shows that formula (7.37) is indeed true for our effective two-level problem with
a correction term uniformiy bounded in 4. Its proof is given in appendix. Let us express
Pyy{c.8) as a lunction of H{z, &) only:

Lemma 7.4

Imf [HENIE
i
Tmfl] (&)

]nzLe;(z,é)dz + O
Imé@[8) + Ofc)

where 8,(8) is defined by (2.7).

Proof:

Let us denote the intersection of @0(0,r) with the upper half plane by C}. We can replace
3 in the integral of (7.37) by €7 without altering the formula, so that we have to evaluate
e7(z.8), on ('F. far from the eigenvatue crossing point zp{#). Moreover. as #7(#) is given by

21(0,6) = exp {-i67(8)} 23(0,8) (7.38)

and as the vectors (0,8} are normalized on the real axis. exp {imf;{8)} represents the
change of norm of the analytic continuation of 5}(2.8) from —r to r along C}. For any
z € CF we can use perturbation theory to prove the lemma. ludeed, we have by proposition
4.1

Hyelt. 8] It 8) — s Rp(t,8) + e Nolt, 6) — K (1.8))

Ht8Y — e Nol(t, ) + O (7.19)



where Q(c?) is uniformly bounded in é. Let y;(t,8) be the eigenvector of H{2,8) for e {£.6).
Then

ef(t,8) = e1(4,6) — elen{t, §)|Kolt, ) (1,6} + Oy, {(7.40)
But the term of first order in ¢ vanishes identically since
Pt 8)Q(4,6),Q(1,8)] P8, 6) =

Pt 8YQU 8[Q'(4.8), Q1 6)1Q(1,§) Pr{1, )
=0 {(7.41)

By perturbation theory again, we can write the eigenvector (2, 8) associated with ¢{z,§)
as

2i(2.8) = pil2,8) + xa(z,8) (7.42)

with |ix1(z,6}]| = @) uniformly in & if z € $,\D(0,7). Denoting by ;:’-(r.é} the vector
obtained by analytic continuation of ¢j(—r,8) along C't, we have

exp{2Imf ()} = |lo3(r.8)]
[Ig1(r, 8) + Xi(r,6)]l {7.43)

and similarly

exp{2Iméy (6)} = [l {r, 8. (7.44)
Hence

exp{2Imé7(6)} — exp{2lm# (8)} < [I¥i(7, §)] = O(e) (7.45)
and

tmAy(6) = lmé(8) + O(¢) (7.46)
where ((¢) is uniformly bounded in 4. a

Summarizing these considerations we arrive io the conclusion:

Proposition 7.4 {nder conditions [ fo [II, there exist ¢* > 0, &* > 0 independent of & and
¢ respectively, such that for all € < &%, § < §*,

Ppi(z.6) = exp {2[m0;(6}}exp{glm/ﬂel(z,é)dz}(1 + Ofe))

where the term Oic) is uniformly bounded in §.

7.1 Behaviour in §
Let us now turn to the dependence in & of these gnantities.

Proposition 7.6 Assume that conditions [ to 1If hold and consider Im [yei(2.8)dz and
Im#,(8) defined above. Then

lim E &z = 0
5%mLBI(Z’)Z

é]il’%] Imé, (&)

It
&

N
[

Remark:
This last proposition implies that for 6 small enough

< T, {7.47)

ZIm[el(:.é)dz
B

7 being the exponential decay rate of the correction term in proposition 5.1. Thus we have
2
Py{e.d) = exp{;]ml}edz,&)dz}exp {2lm#, (§)}} (1 + O(e)) (7.48)
for £ and & small enough. This proves the first assertion of theorem 2.1.

Proof:
We have

Imfel(z‘é)dz
B

As p{z,8) — p(z,0) and zg(§) — @ when § — 0 (proposition 7.2), we get

= [lm&q2(z0(8), 8)|. {7.49)

éin})llm;\lg(zg(&),ﬁ)| =0. {7.50)

Let us introduce W(z,£8), 2z # zo{é), t € IR, by
Wiz, t6) =
FP{2,8)P(2,8) + Pite, 6)Pal2,8) — Q2. 80 - QUs.0))) Wiz, 6}
= Lz, Wiz, 1;4), W6 =L {7.51)

The evolution W(z,t:8) is a generalization of Wy+(z,8) in the sense that it has the inter-
twining property with Pi(z,8), § = 1,2 and @(z,4) [Ka2], [Kr]:

Wiz, 58)P(t.8) = P{z.&)W(z,1;4)

Wiz :80Q(0,8) = Qz,6)W(z,1;6). (7.52)
We have

wilz,8) = W(2,0:8)p5(0,8), (7.53)

where ;(0,8) satisfies

H{0,6)21(0,6} = ;{0,6)p;(0,8),  [lw510,8)] = 1. (7.54)
As noted previously

W (r, =7 8)1 (=, 8)| = exp {Im#: (&)} (7.35)
where the path of integration of W(r, —r,é) from —r to 7 is along C;}. Let us show that

Wir,—ré) — Wir,—r;0) (7.96}
strongly as & — 0. Consider the identity

(W' Wi, = 0) —F) o =

; / Wl mri 8 (L(2,0) = L(#, &) W' —riD)pds’ (7.57)



where z and the path of integration are along C}. It follows from condition | (see lemma
3.2}, that L(z, &) is strongly continueus in 2 and &, ¥z € S+\D{0,7) so that, by compactness
of CF, L{z,&)p tends to K{z,0% uniformly in 2 € CF when § — 0 and

sup Wiz, —rid)| <w', sup W7z, i) < w'. (7.58)
xeC,'." xecr"
fEly L2

Now, the set of vectors
(W —ri0)e; 2" € CF) (7.59)

is a compact set in H because W{z', —7; 0} is continuous in =’ so that we apply lemma 3.4 of
the introduction of [Kr] to oblain

lim sup N(L{Z8) = L(z, 0) Wl —ri)pl] = 0. (7.60)

“Prect
As a consequence
H(W(z =0} - Wiz, —ri8)) ¢ <
1 (eo=r i (W' (2= 00 (2, —r:0) — B) | <

wlre sup [[(L(2,86) = L{Z0) W1z, = 00 (7.61)
2ect

showing that W{z,—r,8) is strongly continuous in & on C'}F. Moreover, we can construct a
normalized eigenvector ¢ (—r.8) of H{—7,8) which is continnous in § by

Pi[_rvé)vl(_ﬂ[})

pr{—r.b) = 762
P T OB =, 8 (-7, 0]} fr62)
where H{~7,00(—r0) = er(-7,0%1{-r.0). Hence the estimatc
IW(z, ~riéll(-n 8} — Wiz, ;001 (-r0)]] £
Wz —r8) - Wiz, =m0 e {-n 0} +
[(W(z,—rié){gr(-7.8) — (= 00| {7.63)
from which follows that
Wiz, =rié)pn(~r.8) = Wiz, —r:0)e{-7.0) {7.61}

as § — 0. Since for § = 0, W{z, —r;0) is analytic for any z in D{0.7), W(+r, —r;0) integrated
along C} coincides with W{+r, —7.0) integrated along the real axis. Thus this operator is
unitary and we have |[H/{+r,~r;0)e1{ -7 0} = L, which together with (7.55) imply

fm Im# (&) = 0. (7.65)
£—0

a

7.2 Expansion in é

Let us finally turn to the last assertion of theorem 2.1 which deals with the actual computation
of Im fye;(2,8)dz and Im#;(8) to the lowest order in &, when hypothesis IV is fulfilled.

Proposition 7.6 (/nder hypothesis I to IV we have

b? 2
2Imff](z,é)dz = -2l {Z_E 0+ 06
5 2Va a?
2mth{é) = {6}
Proof:
By coudition [V we have
plzd) =028 4 bz 4+ b28% + Ral 2, 8) {(7.66)
with
< at? (7.67)

where fiz(z.0) is analviic and satisfies
R3(2.8)] < h(|2%] + 8]z + 6) {7.68)

for k some constant. There will appear several other constants in the sequel, which we shall
denote generically by the same letter k. Let Cys be the circle centered at the origin of radius
28, where z is some real parameter independent of §. We can write

2 2
az(z+£) + [ Y
a? a?

\nz:2 + 2c6z + bzﬁi\

cb|? 2
e B - 180 (7.69)
a a
[l x is large encugh. ré& > ‘El’é’ and we have for any z € {',»
cd ed le| -
:+E'-f 2||:|_F 2(2:—5)6. (7.70}

Thus we can always choose & sufficiently large so that

2 2 2
—b?—c—2522(a2(m_@) _(b?,%))ﬂzkﬁ%o (7.71)
M a a

where & is independent of & and arrive at the conclusion that for any € Cpy

cb)?

24—

I’l2 3
a

faz? & debz + b2A%) > hé? 17.72)
whereas
[Ra(z.6)] < ko™ (7.733

on the same circle. By applying Rouché's theorem lor 6 small enough we have that

oh N Natht — Cgé
YT T

2

Ce = - (7.7}

[ i



the zeros of a?z? + 2edz + b%62, and zp(6}, zp{8) are in Crp. Moreover, ¥z € Cpy,
Rs[z,é)
222 4 Qcdz 4 6262 _—
\/az + 2cé2 + (1+a2z2+2c65+b262)
Va2z? + 2e8z + 82621 + h{2,6)) (7.75)
where [h{z,8)|.ec,, < kb, since

! Ra{z,6)
‘a’zz2 + 2eéz + b242

plz,8)

< kb Vz € Cus (7.76)

From these last estimates we can write

‘ZTnljﬂel(:.(‘i)d: = —Imfc‘:‘ oz, 8)dz

—Imfc+ Vaiz? + 2ebz 4+ b282dz 4 O(87). {(7.77}
xd

Finally, we compute by deforming the path of integration to a vertical segment going from

2= Re(y to z = {4 and back to z = Re(y,
;‘7\/&17&2—3& 7
—2] (b2 - c_z) 8 — ylaldy
9 i

—Im/ Va2z? 4 2z + 5262z
S
22
B ILA R 7.78
2 ( a3) (7.7%)

To bound Im#(§) by a term of order §, we need a little more work. Let us consider the
explicit formula for Im#,(§) in terms of the matrix elements of K (¢, 4) which is derived in

{IP3L:

it

Proposition 7.7 Let 9;(,8), 7 = 1,2,3 and By(t,8) be defined by (7.14) and (716} re-
spectively and assume that conditions I to IIT hold. Then

- Ba(z,6) (Ba(z,6)By(2,8) — Ba(2,6)B(2.8))
Imf,(8) = Im/a 2./p.8) (B2(2,8) + Bi(2,6))

+Re [ ( T (1 (2,8)1412280) — (a2, vz, 60)

B](E,&}-l-lBg(Z,é) 81(216}7’;82(21‘5)

NCEx] 2/n(6)

where the path o encircles zp(6) and containg no zero of B2(2,8) + B3(2,8).

dz

({28, 8)) + wz(z,én-as;(z,s»)

Cur condition IV implies that the analytic functions B;(z,8) defined by (7.16) have the form

Bj(z.é] :ajz+bj6+R2{z,5) (7.79})
where the real constants a; and b; satisfy
3 3
Yoal=a® Y b= za,b =c (7.80}
J=1 1=1

and Ry(z,6) is a rest of order two in (z,4). Again we shali replace the path o by CJ; since
on the teal axis, the integrals in proposition 7.7 do not contribute to Tmf;{(#). But here

26

some care must be taken for the first integral since the integrand has poles at the zeros of
BX(z,8) + B3{z,6). But this is not the case for the other integrals in which the replacement
of o by C}; is justified. As on CJ; we have (see (7.72))

I/ olz,8) 2 ké, |B;(2,6) < ké and |{;]h)(2.8)] <K, (7.81)
we immediately obtain

By (Bi B, — ByB!)

Iméy(8) = Imf Wz—)—duow} (7.82)
To deal with the first term, we introduce
el +ad, A=} +0) and v =a1b + asba. (7.83)

By the Cauchy-Schwartz inequality these quantities satisly |y| < a/. Actually, we can
assume without loss of generality that

G < |y} < s (7.84}
Indeed, the equality |y| = a8 implies
i = yh, 0z = yby (7.85)

for some y # 0. This cannot be the case for any couple of indices since it would imply a3 = yb3
as well, in contradiction with the condition |¢| < 4b. Thus we can always perform a change
of basis vectors, which amounts to write H(#,8}Q(2,8) in a new basis { S (t, ), Sinit, 8))
instead of {¥{1,8),yn({,8)}, where S is a constant unitary matrix, so that the components
of the new field are such that (7.84) is verified. With these definitions and (7.79} we can
rewrile

BYz2,8)+ BYz,8) = a®2% 4 2962 + 526 + Ralz,6). (7.86)

As previously we have, for 2 € C';}

7,2 252 2 14 21| 7
}az +27és+ﬂﬁ!2a Z+§‘—ﬁ—¥§ (7.87)
where
2 2 2
o z+lg‘ > ol (r——l—ﬁ%‘) FLI ,82—-7—? 82, (7.88)
o o o
provided z is large enough, so that
Inrzz“z + 2ybz + ,3262| > kél. (7.89)
Hence,
|Ra(z.6)] < k& < k6? < |a¥2® + 2982 + 5787] (7.90)

for § small enough, ¥z € €Y. Then it follows from Rouché’s theorem that B} z,8)+ Bi(z,8)
has as many zeros in CJ; as o? 2% +2752+ 267, i.e. two (o{4) and (o(#), counting multiplicities.
Indeed, the roots of a?z? + 2véz + G282 are given by &3,

2137 _ a2
¥ VA, (7.91)

ol o?

{r =~
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which belong to Cys if # is large enough. Note that due to (7.84), Iné, > 0. Now we can
replace the contour of integration o in (7.82) by C+:E' provided we take the residue at {y(é)
into account. Consider first the case where (o(8) # (o(#). Since Im{g(é} > 0, we have

B By (BB~ By B!}

Im#;(8) = 2rRe (R.es (—W T Bg) s Calé) (7.92)

+Imf {23z + bab){aaby — a;b2)6 + Ra(2,0) i
c}, 2V/aTal + 2c6z + b26%(a?2? + 296z + G262 + Rylz,6))(1 + iz, 8))

where |h(z,8)} < ké (see (7.75)) and Res({f, z5) is the residue of f{z) at the point z. In view
of {7.89) and {7.75), we can estimate the remaining integrai by
j (asz + bad)(ash — a1ba)é
m
ct 2/a2: 4 208z + 0263 (a?2? 4 278z + 3287)

+ 8 (7.93)

when § is smail. The integrand is now singular at {; and £ only, which both helong 10 €'},
when z is large. Thus we can replace the contour of integration C:’s by CE, the half circle
of radius R, which will ultimately tend to infinity, since on the real axis the integral is real.

On C} we have the estimates

206 b
ja2z? 4 2o 4 662 = |2 a® + % + —z% > k(& R (7.94)
and
lofz? 4 2y6: + 326% > k(8)R? (7.95)
which imply
j’ (@32 + bsé)(azhy — ayby)é < k&) (7.96)
ot 2v/alsT + 26z + D62 {a%a? + 2982 + AR T R

Taking the limit £ — oo we are left with

Bs(BiB, - ByBl) o
Imé{é) = 2rRe (Res (W.Qo(é))) + Q4. (7.07)

The residue is given here by the formula

B3 (B18) - ByBY)

(BB~ B, B!
/5 (Bi B} + B1B})

11(B. B + B, BY)

<al8}

) _

187 %ﬁ% ™ ii (7.0%)
where we have used ihe fact that

BY((al8).6) + BY(Go(6),6) = 0. (7.99)
so that

V(Gal8).8) = B2(G(8),6) = €1 B3{Gol6).6) 7.100)
where ¢; = +1 and

B1((o(8).4) = £2i Fa(Gal6). 6) {(7.101)

with ¢y = +1 as well. Hence

Imt (&) = o). (7.102)

Consider now the case (o(§) = (p{§). We come back to (7.82) and we use the fact that
B;(z,6) = B;(z,6) by Schwartz’s principle and that zy(8) a simple zero p{z,§) to write

B3(ByB; — B3 By)

L
méy (5) = 51m fm T,

+0(8) (7.103)

where ¢ U7 form a closed path surrounding zo(§) and zo(8) (see figure (3)). By the same

Q

z,(8)

al

Figure 3: The integration path o U#.

argument as before, we have

By (8,8 - B2 BY) .
Im#(8) = 7Re | Res | —————2—2L /(4 oé). 7.104
! (98( 2/5 (B B)) Gl8)) | + O ( ]
The residue is now given by
' i
Qdi(ﬂswlgz BzB,)) NN (7.105)
‘ VP Zx (B + B
since (o(é) is a double zero of B + B}. Moreover, as it is located an the real axis. this implies
Bi(Golé)) = B20Ge{6)) = 0. (71.106)
Thus
d + - 3
. (ﬂ33(3122 BzBl)) =0 (7.107)
Ve Cotd)
and
Im&{&) = Q&) (7.108)
This last assertion ends the proof of proposition 7.6. =]

To bring the proof of theorem 2.1 to an end, it remains to show the existence of the
dissipative path vs of proposition (7.2).
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7.3 Existence of a Dissipative Path ~;

Proof of proposition 7.2: To prove the existence of a dissipative path 4; for Ara(2,8), we
first show that there exists a dissipative path v, for Aj2(2,0). When § = 0, the function

Big(2,0) = joael(u,ﬂ) — ea(u, O)du = — jﬂ o, 0)du (7.109)

is analytic in a neighbourhood of the real axis and behaves as z? close to the origin. We
select the branch of the square root by requiring Aj2{£,0) > 0 il ¢ < 0. The Stokes lines
giver by the level lines

Im&Aq,(2,0) =0 (7.110}

are homeomorphic to the lines depicted in figure (4) in a neighbourhood of z = 0, As &

Figure 4: The level lines Imz? =cst.

consequence, there exist in this neighbourhood two points z; and z, abave the real axis such
that

Im&Aqga(z,,0) -X
ImAa(e,0) = +x (7.111)

with x > 0 small which are connected by the level line
Redyz(#,0) = ReAy3(2,0). (7.112)

Then, the idea is to take x small enough, and to complete this segment on the left by the
level line ImAy4(2,0) = —x and on the right by ImAq5(2,0) = + which connect 7 to —oo
in Sy and 22 to +o0 in S, If we can find such an x, we have at hand a path yo(t), whose
parameterization can be chosen such that vo(t;) = z, Yo(tz) = z3 which is dissipative for
A12(2,0) (see figure (5}). Indeed, we have for any path

d
710813 70(1),0) = - Redo(t)Imy/p(70(t), 0) - Imio{t)Rey/ p(7o(1),0) (7.113)
d

S ReB1a(r0(t),0) = ~Refo()Rey/p(10(2), 0) + Imin(t)lmy /p(70(t), 0). {T.114)

Thus, if we choose for ¢ € [t1, 1]

and

Refolt) = —Imy/p(70(),0)
Tmio(t) = —Rey/plro{t),0) (7.115)
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4 4
R
0

Figure 5: The dissipative path .

then equation (7.114) is identically equal to 0 and

d
27 1MA500(610) = [y p(1(2),0)1% > d > 0. {7.116)

We can continue this path on the left and on the right as described by using the following
Lemma 7.5 For any p > 0, there exists v > 0 such that on
Fy = {z|Rez z i, |Imz] < u}
the function Aj2(z,0) is bijective.

Proof:

Let > 0. By continuity of p{z,0) and condition II[, we can chose v sufficiently small to
insure Rey/p{2,0) > R > 0 for any z € F_. Let us consider the rectangle B_{L) whose
horder is defined by

GR_(Ly=3{F_\{z : Rez < -L}). (7.117)

Along its horizontal segments we have that

{1
ReApg{t £ iv) = ReAlg(—;;j:iu]+/ dzRey/p(z + iv) (7.118)
-B

Is strictly monotounic. Similarly, along its vertical segments

L]
ImAra(—p 4 is) = [mA(—p) ifo dyRey/p(—p £ i7) (7.119)

and ImAgg(— L £is) are strictly monotonic as well. Thus the image by Az(z,0) of dR_(L)is
a simple closed curve so that we can apply the argument principle which shows that Ay(z,0)
is bijective on B_(L). Since the length L of the rectangle is arbitrary, this proves the first
assertion of the lemma. We proceed similarly for the positive part of the real axis and F,.
=}

We shall assume from now on that the width & of the strip 5, is smaller than v. Now that
we have constructed a dissipative path for Ay2(2,0), we show that there exists a dissipative
path for Agz(z,6) close to it. Let L{0,r) be the disc centered at the origin whose radius r is
such that D(0,7) N ya = @ and let 54 (v) and §_(v) be tubular neighbourhoods of yo(t) for
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t >t and ¢ <ty respectively, defined by their boundarics. These boundaries are given by
the level lines
35_(v) = {z|ReAia(z,0} = ReArz(21,0), Imdiz(2,0) = —x £ v}
U {z|ReA1p(3,0) = Rediz(21,0), [mA{2,0)+ x| < v} {7.120)

and 85, (v) is defined similarly {see figure (6)). We choose v sufficiently small so that

Se(v)n D0, 1) =0 (7.121)

0
5.(¥) 5,

r D@

F 2

Figure 6: The disc £{0,7) and the tubular neighbourhoods S_ (v} and Sy(v) of 4.

Consider the muitivalued function

Aulz.8) = 7/0 Jolu,8)du. (7.122)
When restricted to

SEAD(0,r) = (5:\D(0, 7)) N {z|lmz 2 0}, {7.123)
Aqg(z,8) is an analytic univalued fonction provided & is so small that

{z0{6)} < 7. (7.424)

We fix a branch of Aqz(z, &) by requiring that the path of integration in (7.122) foliows the
real axis from 0 to —r and that A(8,8) > 0for £ < —r.

Lemma 7.8 Let App{z,0) and Ay2(2,8) be defined as above, and iet 2 € SH\D{0,r).
élm lmAlg(Z‘ (5) = ImAm(Z,O)
—0
uniformily in z € SI\D(0,r).

Proof:
We first show that p(z, 6) tends to p(2.0) uniformly in z. Let £ > 0 and consider

tp(z,8) - plz,0)] < |p(2.6) — p{Foo,8)| +
[p(£00,8) — pi£oo, 0} + [p(Fo0,001 = p{z, 0}, (7.125)

>
It follows from (7.19) that there exists T{(¢) > 0 such that for any £ 2 +7(¢}

le(t + is,8) — pMEood) <
17126}

wrltcngalm

ip(£oc.0) = pli +i2.0)] <

Sluce p{1oo,d) is coutinuous iu &, there exists §y(5) such @ < 8y} implies

9(2,8) - plz.0)] < %+§+§ (7.127)
for any [t} > T(e). Now the set

Sa\{(D{r, 0) U Da(T(e)1 {7.128)
where

D(T(e)) = {elRez 2 T(e)} (7.129)

is a compact set, so that p(z, 4} is uniformly continuous in (2,4) for z in this set and § € /5.
Thus there exists 820, T(£}) such that if |Rez| € T(e),

lplz,8) — plz.0) < ¢ (7.130)

if & < &3(e,T{e}). Since SF\D(0,r) is simply connected and contains no zero of p(z,8)
for any small § (see (7.124)}, the analytic function +/p(2,§) tends to /p(z,0) uniformly in
z € SI\D(0,7), provided we select the suitable branches for the square roots. Our choice is

Vel 8) and /p(1.0) positive if t < —r. Consider now

Imfgzdp(u‘é) - /plz,0)du

Let 2 = t+is € SI\D(0,r). [ t € —7 we can choose a path of integration going from 0 to
t < —r along the real axis and then vertically to ¢ 4+ is. [f ¢ > —r we take a path from —r to
t following the boundary of D(0,r) and the real axis, if necessary, and then a vertical path
to t + is, see figure (7). Along the second path for f > r, for example. we have

I ImAg[2.8) — ImA2,0)] = (7.131)

z =t+is
Z =t+is

D,

|

Figure 7: Particular integration paths.

| ImAig(2,8) — InA{z,0) < =zr sup h/p(rexp{iﬁ}‘é}- \/p(rexp{iﬂ}.[])i
#elo,x)

+ o sup [pll +is.6) = \/fplt +i5.0)] (7.132)
lai< o

where the second member tends to zero uniformly in z = t +1is as & tends to zero. The result
is the same when ¢t < r. =i
As a consequence of this lemma we can assume that § is small enough so that we have

oz, 8) — plz,0)] € L. € S5A\D(0,r) (7.133)

3

13



where 0 < R = inf,gs,\D(o,r) P(2,0) and

[ ImAg(z,6) — ImAg(z,0)l < % Yz € SH\D(0.7). (7.134)
Hence the level line

ImAg(z,6) = ImAyz(z,6) {7.135)
cannot cross the level lines

ImAg(z,0) = ~x £ v {7.136)
since this would imply

[ ImAw(2,8) — ImArg(z1,0)] = » > % (7.137)
Moreover, the line

ImAg(2,4) = ImAa(z1,6) (7.138)
cannot cross the segment

{z|Red 2(2,0) = Redz{21,0), | ImAiz(z,0)+ x| < 2} (7.139)

if & is small, except at z = z1. Indeed, for § small enough Aj,(z1,4) # 0, so that Ayg(z.8) is

bijective in a 8-independent neighbourhood V of z). Moreover Ayp{z,6) tends to A (=, 0]

whick has the same property in ¥ so that we can conclude. Note that a level line
lmAgalz,8) = cst (7.140)

is given by the solution ¥(t) of the following differential equation

4 Imdat(4).8) =0 (7.141)

il
i.e.

Res(t; = Rey/p(2(1),8)

Im4(t} = —Imy/p(y(t}, ). (7142}
Thus

d

‘E Remm(t),é)| = |plr(1),8)} > R > 0 (7.143)

which implies that | ReAqg(7(¢),8)}] is strictly increasing along 7(Z}. Hence the level line

ImA {2, 8) = ImA (21, 6) leads from 2 to —co in §_(v). Moreover, [4(t)] = |\/p{+{1),6)|
is uniformly bounded in §. Finally, we have along yo(t} for ¢ € (£, 15

d
T ImAsa(yo{t), ) =

- (Reo(t)tmy/p(ro().0) + Imo(1)Rey/A0(0), 1) (7.144)

which is strictly greater than zero if & is sufficiently small, since Vp(z,8) — /p(2,0) and by
construction jt? ImAgz{10(2),0) > d > 0 {see (7.116). Hence, the path 75 defined by

I 2,8) = TmA2(2.6) from - to 2
v = Yo from zy to =z {7.143)
ImAz(z,8) = ImAya(22,6) from z; to +

is dissipative for Ap{2,#) and has all the properties announced in the proposition. O

Tihis completes the proof of theorem 2.1 as well. ]

A  Technicalities

Let us introduce different norms. Let ¢ D, We define for z € S, and 8 € Iy
llell + 1 (2, 8)elh
llell + 12 *(8)ell.- (A1)

The domain D equipped with any of these norms is a Banach space we shall denote by X,
respectively X1 5. By the closed graph theorem we have for any 2,3’ € 5, and 6,8" € Ia

H{z.8) € B{X. 5, M), (A2}

el s
fhellx.s

the set of bounded linear operators from X,: 4 to ‘H. Similarly

H(z,6) € B(Xy 4. H)

HE(8) € B{X 50, H)

HE(6) e B{Xy g, M) (A3)
We denote the norms in these spaces of bounded operators by

M-l and - [ll.60 (A1)
The norms in X, g are related by

flies < (U+ 1H (2,6} 1e60) llollerse (A5}

4

where z or 2’ can also be replaced by + or —.

Lemma A.l1 Under the assumptions I and [l, there exists a constant M, independent of
1,2 € 8, and 6,8 € [ such that

max (1| #2611 H (2o )il HLH 2@ s HEAE (O ) < M

and there exists an inlegrable decay function b(1) and a positive constant B, both uniform
in b, such that for all p€ D

3
g7 7tz 8xel [(H'(z. 8 )il < blEMplr o

a
9 sl < ‘g
|2l < Bl
2
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forany z =t 445,z € §, and 8,8 € Ia.

H=d)el < Bllels

The proof of this lemma is given at the end of the appendix.
It follows from the lemma A.l that

lCH (2,85 — H{E, 000
[(H(z.8) — (L))

IA

I(H (1. 8) — H{1,0) )]l
([z — BB} + EB) [lellio (A6}

[Fa e

so that, for A € T{¢,0)

I(H 2,8y — H{t, 00 R{¢t,0,A)|
(J= = Hb(t} + 6 BY(|IR(2.0, N)j

+ A

152, 05R(£,0, M)
(12 — 1) + 6Byt A). (A7)

1
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Now, if (|z ~ 1]b(£) + 6B)d(,A) < 1 we have the identity

R(z,é, A) - R(t![}?’\) = AR(Z,a,A)(H(Z,ﬁ) - H(LU))RU.U,,\) (AS]
hence A € T(z,8) as weil and
| &(2, 0, Al
VR8N T + 6By du (4.9)
[iR(z,8,4) ~ RILOAN £ |[R{,0, M) (lz = fe) + E5) it 2) (A.10)

L—(lz—tp{t)+ 6B)d{t, M)’
Similarly, if [Rez] 3> 1, we use condition II, lemma A.l and (A.5) to write
W(H(2,8) - HEOD < [[(H(z,8) - HE(8))pll +

NHE(E) = HE0))e] b{lvllis + 6 Bllelloa
(L+ M)+ 8Bl .0 (AL}

where 2 = 1 + {s. Thus if A € T(£,0) and (1 + MYb(1)+ 6B)d{£, X} < | where

[FAR 74N

d(+,3) = ||R(£,0, M) + | H*{Q)R(£,0, A)]|, (A.12)
then A € T{z,6) as well and
JIR{x,0, M)

1Rz A S T T MY (300 6B 2 ) (A.13)
(14 M)(B{t)+ 6B)d(£, )
| R(z.8.0) - R(£.0.M)] < uR(j:,o.MII1 AT MG T e AE ) (A.14)
Proof of lemma 3.1:
From (A.14), there exist T > 0 and 'y, T'_ € S, such that
1
Q(t.0) = —gfr R(£,0, )4\ (A.15)

it t < +7. Then from {(A.10), if t € [-T,T], the path used in (3.2) can be chosen locally
independently of t. Thus by compacity of [T, T], we can define Q(,0) for any { € [R by
choosing | among a finite set {T;,j = 1,.-+,n} with Ty = [_ and ['; = ['y. The length of
these paths is bounded by || and they satisfy disti;,0(8)] > n > 0. As a consequence, if
A €T, € T(¢,0) for some time 2,

A
r!(t\z\)51+l%ush’<oo Yie R. {A.16)
Then by choosing o and A so small that
(a sup (1) + AB) FOa {A.17)
telR
and
1+ M)T)+ABYK <} (A.18}

for T large, we have that T, C T{t + is, 8), respectively Uy C T{1 + i5,§), as weil 50 that the
spectrum is still separated in two pieces. &
It is now possible to give the
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Proof of lemma 4.1:

Lette IR and jet Ty € {T';; 7 =1,---,n} such that Ty € T(¢,0). By the choice (A.17) of a
and A, we have that Ty € T{z,8) ¥8 € I and ¥z € D(t,r}, provided r < . Thus it foliows
from (A.9) and (A.13) that there exist a N such that

sup sup sup ||R(z,& X)) <N, {A.19)
el :edg.(,r,rl Aely
&
a

For later purposes we define

d(t,6,4) = IlR(t!é*A)” + HH(trE)R(tvévA)H (A.20)
It follows from the foregoing that for any A & T, C Tt )

die, 8.0 < T < o, (A.21)

where T\ is independent of &, A and t. We assume that o and A are so small that the
preceding lemimas lold.

Proof of Lemma 3.2:

For a fixed z € 5, and A € T(z,8) we have the strong derivative (see e.g. [Kr| paragraph
{1}, chapter I1.)

E%R(z.é.z\) = —R(z.6./\}%1{(2,6)1‘2(0.0.i}(H(O‘U) - iRz, 8, X) (A.22)

where the bounded operators B{z,6, A), 3%1{(2.6]1{(0.{],1') and (H(0,0) — ¢)R(2.6,)) are
strongly continuous in z and §. Indeed, this is easily seen for R(z,6,A) by considering
identities analogous to [A.10) and this is true by hypothesis for & H(z,6)R(0.0,4}. Finally,
{H{0,0} — {)R(=.6, 1) is the inverse of the bounded operator {H{z,é) — AM)R(0,0,i) which is
continuous in norm, as can be seen {rom estimates of the type (A.6). Thus, by lemma 3.7
of the intreduction of [Kr], {H(0,0) - ¢}&(z,6,2) is bounded and even continuous in norm,
Heace the strong continuity of %R(z,é!r\) and of ZRl(z.8 1), by similar considerations,
These praperties are true for the projector {2, 4) as well by passing the derivatives under
the integral of the formula in lemma 3.1. We now turn to the second part of the lemma.
Cousider the identity

R(z,6,0) = R(+.8,0) = — B(z,8 A\ H{z.8) — HE(E)R(£,6.7). (A.23)

With condition [ and lemma A.1 we obtain

b{t)d(+,8, )

(8. A) = R(+.5. A= 0, ) A2
1Rz, 02) = R+ 820 < |R(E, 8] BTy ey (A2d4)
for 2 =1+ is, |t] large with the definition
d(£,6,3) = [|RELEA) + | HE(S)R(£, 6, M. (A.25)

This defines the integrable decay function by s{¢). The estimate on the derivatives are con-
sequences of the Cauchy formula. We define the projector ({z,8) by using the finite set of
paths I',, introduced in the proof of lemma 3.1. If A e T; we obtain from (A.24) and (A .21)

o1 )
2 6.0~ RiZ.0. =2 <K A26
BG83 = REEDAN € T—rnee < Kb (A.26)



if |¢| is large enough. This estimate and Cauchy formula finish the proof of the lemma. O
Proof of Lemma A.1:
By definition

1 (2,83l ]
Hi{z, 8|z = e A2
1 H{(z. 8l s :gg Tellor s ( 7}
We first show that
H(z,8)]llr g < M(2,8). (A.28)

where M(z',8) is independent of z and §. As H(z,8) is strongly ¢! in B(X. e H].
{|H(z,8)y| is continuous in {z,8) € S4 X Ia, 50 that

H{z, 80 < Mi{p) V(z,8)€wxia {A.29)

where w = {z € 5, : |Rez| € T} is compact, By applying the uniform boundedness principie
[Kr] we abtain the estimate

[ H(z 8)pl < ML 8 )lellor s V(z.8) € wx Ty, (A.30)

Suppose z does not belong to w. Then by condition 11 and by the uniform bonndedness
principle again we have
Izl < o0 (il + IHE@E)ell) + 1)l
Ss%WMMHMﬁm+Mﬂwsmw) {A31)
€

for some My{s»). Here we have used the compactness of [x. As a cousequence, there exists
Ma{z',8') such that

1H (2. 8)¢ll < Maf2', 6l p]]r 50 (A.32)

and it remains to take M(2',8") = max(M(2',.§"), M;»(z’.,é‘}) to obtain {A.28), Note that =
can be replaced by + or — in {A.28). Using Cauchy formula, we immediately get

Wz b)) < N2 8l o (A.33)
so that
(H (21, 8) = Hiz2, 80l & |21 = 22l ¥ (2, &gl {A.34)

for any 2y, 27 in a convex subset of §,. We need a similar estimate for the variations
of 6. By assumption, mvH(z §) is continuous in (z,4) € S, x fa and we show that
& H(z,6)R(2',6,)) is bounded as an operator from ¥ to ¥, il A € T(z,8"). Indeed, by
the closed graph theorem H(z, 8)R{Z',§ A) is bounded and strongly continuousty differ-
entiable in &, so that Banach Steinhaus theorem [Kr] implies that SH(z R8N is
bounded as well. Thus we have

a +oet n' ]
12 mis el = I HGRCF A8~ 2
S I HEORE SN WAl + Aol
< 12 R OR S NI+ DIl (A35)
38

so that

il
%H(z,é) € B X, 5, H). {A.36)
Then, by condition IF and the uniform boundedness priunciple again, there exists N{z' &)
such that

a -
]IEH(:,A) 2| < N6 INeelier.se {A.37)
which implies
B (260) = H(z,52)00 < 181 — 8l M (2,8 Vol g (A.38)
From (A.34) and {A.38) follows the estimate
I(H (2, 8:) = H(Z? &l € (|21 = 22t + 162 = 62)) CLE L 8 wllor (A.39)
where (2. 68) = max( N(2', &), N(z’ &)). Putting (2',8) = (21, 81) we get
ol 8, < \!vilzm + (]2~ 2| + [& = &) Clar, 0 el
H?“:ml < H‘;“:).ﬁg +(|zl _Z2| + i'ﬁl —62“(?{21‘15[)“59”:“51 (A40)
hence
H‘F”zz.&z
+ {21 = 22| + |y = &} Ol 6y )
otz 52
< . Ad1)
”‘?”11,51 = 1-(lz1722i+|61—62|)0(21.61] (
These relations show that the application ||| - ||].s is continuous in {2,4). Let A belong to
B{X.s.H).
flAell < ANz 515l 20 62
< WAl (1 + {21 = 2| + 181 = BN Clzi ) il 6 [A.42)
s0 that
WAl 60 S MAllzz (1 + (21 — z2) + 11 = 8af) Clancbi )i - (A43)
Sirnilarly
1
Alfss < 1A (A.44)
Py Y A CEN
so that

— 8 — &V C(21, 6
A s~ WAl 1Al ot =2 B2 B

which tends to zero as {zq,8,) — (z1,8;). Finally, from {A.45), (A.28) and {A.39) follows
the estimate

£z @0l g = W1 2,820l 1] <

|11 (2, 201117 — 1 H o 82 i+

[l1E (21, 603k 1 = 1 (22,823l | <

(125 = A1 + 1% = 81 C(+4, )

(A.45)

H &2}
m (22! ?.l“z llw(|z2—z1i+|6’—b’I)C(z'l,é’ +
1 Hz1,60) = Hiz b2)ll]s <
(=3 = A1 + 193 = 8] C(Zné'
Mz, 87
et
(lz2 = =] + |62 — &N C(,8). {A.46)
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The last term in this inequality tends to zero as {2;,8:) — (z;,61) and (23,.85) — (z],8))
which shows that the application |||#(z,8)|l|.: s in continnous as a function of (z,2'.4,4).
Thus, on the compact set w?® x J3 we have

sip H( s < M A

V] 2
(7.2’ 68" €w? =13

It remains to control this application when iz, [2’| -+ oo in §,. 1 |Re] > T, T large, we have
by condition IT

ikelleg < (1 +0(ETH elles < Killelles (AR

for A some constant, and simifarly

lls2l] s .
[lelle.s £ (= bidT) < Aol {A.18)

Moreover, from {A.38)
follzrs < (1 + L\i’:’(iT.[}}) lelleTo € Kallollero

—elsTo ¢ pjigar (4.50)
(1 - AN(2T,0))

7

flolleras

provided A is small enough. Thus if jRez| > T, [Rez’| € T we can write with {A.47}
|z e)ell < (L+{2D)ileles <

(L4 0T leliers £ L+ TR+ M) kol g (AS])
showing that

WA= 00l s < (1 +BETHRAT + M), (A32)
Now if [Rez’} > T and |Rez] €T

Iz dell < Mellirs £

MElellee € MR Kol s {A.53]
from which follows

HH Gzl o € MR RS {A.54)

Finally if both |Rez] and [Res'} are > T, we use (A.50) as well to get

[|H (2. 6)lf {E+ 60T R llellers
(1 + 62T K2 Ka Kyl elieT 5
(1 + (TR K K o)l sl s {A.55)

[FaSR YA VAN

Gathering these estimates, we eventually obtain

sup NH (205 € M < 0o {A56)
(2.2 8.8€58 =12

The result is true if z, or 2’ or both are replaced either by + or —nc.
The last assertions of the lemma. are proven as follows. By condition Il and (A.56) we
have for z = ¢ + 15 and any {z'.#')

NOH (20— HEB] € BOolles € BN+ Ml or (A57)
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and we conclude by Cauchy formula that
Iz, 8)]] < B(1)]lp][or o0 (A.58)

for any z = t+is with |s| < ¥ < @, where b(t} is another integrable decay furction. Similarly,
{A37) implies

i}

555z, 000 < N (0,0}l o (A59)
5o that by (A.56) again
a - .
e iz, 83l < F(0,0)M g g1 (A.60)
This finishes the proofl of the lemma. : o

B Proof of Lemma 7.3

We consider Lere the coefficients aj;(z,6) defined by {7.8). In order to deal with this term

we introduce inside Q y-(0,8)H the evolution ﬁ;:'[:,é} by

V1200 = R (26, T200,6) = Que(0,8) = iy . sy (B.1}
with
Rz.8) = Qu10.8)i[PF'(2,8), Pr{z. 6)|Q n-(0.8). (B.2)

As above we can write

Pz b) = V(28057 (0.6) (B.3)
where c;j((].é]. J = L. 2is a pair of normalized eigenvectors of ﬁ.(O,ﬁ)QA.'-(D,ﬁ) so that the
coefficients az (2. €) take the form

0L, (2.8) = (0 T (2 O (2. O (2. 6)2(0.63). (B.A)
As

Pj(:.a) = Wil )P (2. W (2.8) {B.5)
we lave

Prlio) = WRl(2 )P (2,6)Wye(2.6)

1 .
+ ?—_1-1"\73(3.6)[1")” (2080, Kve (2. 8)]Wan (2. 6). (B.6)
The operators are restricted to @+ (0, 8YH, so that the last terin vanishes,
Q0.6 ) PN (2,6), Kol 2, 8)]Ware (2.8)Q ne (0.6) =
Wiz PN (28), Qe (26K ne (2. 8)Q ne (3,60 (2. 8) = 0, (B.7)

and we obtain using {5.6)

IR (G63 < 0PN G BN 8] = # (4] (B.8)

IPrise < w1 PN (28]
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where w is independent of z, §, and £. It remains to show that P]'(z,6) is uniformly
bounded in £ and § along the dissipative path 7;{t). By construction {propesition 7.2),
v5 € $F\D(0,7) if = is small enough, where there is no eigenvalue crossing point of LHEN
and e;(z,6). Hence for any z € SF\D(0,) the projections PJN'(zﬁ) are given by means of
a Riesz formula

P (2,6) = - § Ruye(2,8,A)dA (B.9)

2mi Ly,

where 7;, encircies both ej(z,4) and ej(z,§), 2 finite distance away from the spectra of
Hy-(z,6) and H{z,6). By an argument similar to the one given in lemma 3.1, we see that
we can pick «;, for any z € S3\D(0,7), among a finite set of paths which are all of finite
length and bounded away from the spectra of Hy+(z,8) and H(2,8). Then in view of

Rye(2,6,A) = R{2,8,A) = —Rye(2,6, A Hne(2,6) — H(z,8))8(2,8,1) {B.10}
and proposition 4.1 we obtain the estimate
1
[Rn-(z 8000 < !IR(Z‘&/\)HE% {B.11)

provided ¢ is small enough, and A € T'(2,4). By the continuity in norm of R{2,6,4) in &, there
exists 7 such that || B(z, & A} is uniformly bounded in § < " if A € 4, and = € SF\D(0. 7).
When 2 = { + is, with |{| large, we use (A 24},

WE)d(£,6,2)

I|R{z,8.4) — R(%,8,4)) < ||R(i.5.9\)i|1_—m&m

(B.12)

and the fact that if A € 4; € T(4,0), there exists a constant & independent of & such that

d+,6,10)<E. (B.13)
Hence the estimate
— Bk ,
— < k————— < &'5(t). ar:
| B{z.8,A) ﬁ!{i.é.z\)ll_Iml_b(t)kw () (B.14}

As a consequence of (T1.10), (B.11), (B.14) and R(+,8,A) = By+({+.6, 1) we have
[[Ryelz,6,0) — R{+,8 M) <
|Bwelz. 8,2} = R(2,8, )] + [{R(z.86,X)~ R(£,8,0)| <

b
”R(Z'év)‘)”zl Eewl {t)

Toefb | Ko(e)

I~

kb(1) {B.15)

where k" is independent of ¢ and é. Thus we eventually obtain

Bz, 8)]) < kb(1) Vz=1t+is€ SH\D(0,r) (B.16)
and

Wiz, 8)| i V8 <6 (B.17)
so that

laf,(z.6) < wkb(¢) {B.18)
where b(t) is an integrable decay function, O
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