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Abstrat. We present a new algorithm to ompute the watershed transform on a massively

parallel mahine. Logi minimization, together with a novel approah to the notion of dynam-

is, allow the implementation of the watershed algorithm on a ellular automata grid, suh

as the programmable retina. We then investigate the pro�t aquired from omputing some

parts of the algorithm in an asynhronous way, in terms of time and energy onsumption.

Key words: watershed, programmable retina, dynamis, Bu�on's method, synhronous/asyn-

hronous parallelism, SIMD, FIFO

1. Introdution

Implementation of morphologial algorithms on massively parallel mahines is

not a hallenging issue in itself, sine the translation invariane and loal knowl-

edge had already been set as priniples of the morphologial operators by its

reators [10℄. But on the one hand, the deeiving suess of large size array

SIMD mahines, due to oneption diÆulties, ost of the I/O ow, and lak of

eÆieny of ertain operations, and on the other hand, the great prodution of

the algorithmiists [9℄ to optimize the implementation on sequential arhite-

tures, have pushed the aÆnities between mathematial morphology and SIMD

into the bakground.

Today, the onstant improvement of CMOS tehnologies allows to introdue

a rough intelligene within every pixel of an eletroni amera, thus leading to

the integration of more and more powerful programmable retinas (Setion 2).

But unfortunately (resp. fortunately), the algorithmi problems remain dif-

�ult (resp. interesting), as we wish to illustrate in this paper through the

example of the watershed (Setion 3). First, beause of the harsh onstraints

due to the limited apability of the proessors, that fore to a onstant e�ort of

logi minimization (Setion 4). And seond, beause of the inherent limitation

of the SIMD programming, that inite to investigate the possibilities o�ered

by arhitetural sophistiations of the SIMD mesh (Setion 5).

�

This work has been partially realized at CTA/GIP and INT/ARTEMIS, with the �nan-

ial support of EADS.



2 ANTOINE MANZANERA

ANALOG

PROCESSING

PHOTO−

TRANSDUCTION

DIGITAL

PROCESSING

A / D

CODING

Vs

V

t

(1) (2)

Fig. 1. (1) The four funtional layers of the programmable retina. (2) The NSIP digitizing

proess: time-amplitude oding for level-sets proessing and anamorphoses omputation.

2. The programmable retina

An arti�ial retina is a iruit ombining image aquisition and proessing

funtions. The interest of suh devie is to redue dramatially the ow of

information within a vision system, by performing the image proessing om-

putations in the foal plane. The programmable retina [5℄, [2℄, [8℄ is a CMOS

sensor and a ellular SIMD mahine at the same time, with a very small digital

proessor integrated into every pixel. Suh a iruit is adapted to real-time

onstrained image proessing system, thanks to its high degree of parallelism,

as well as embarkable or autonomous systems, thanks to its performanes in

terms of ompatness and low-power.

Figure 1(1) shows (in 1D) the organization of the aquisition and proessing

funtions in the programmable retina. The analog proessing layer is onsidered

here as the simplest possible and dediated to very early image proessing, suh

as spatio-temporal �ltering. In fat, we will suppose that the signal proessed

by the digital part an be the luminane image itself, but also a temporal

di�ereniation, or a spatial gradient intensity, both funtions being omputable

with small analog iruitry [7℄.

Our algorithmi interest atually begins with the third layer: analog/digital

onversion (ADC). Through the NSIP (near sensor image proessing) priniple

[4℄, a very ompat ADC an be performed under the form of a apaity whih

unloading time is inversely proportional to the value to measure. The analog

value obtained from phototransdution and analog proessing an then be dig-

itized through a multiple thresholding (Figure 1(2)) that will produe a set of

binary images. From a morphologial point of view, these images represent the

level sets of the signal to proess, that an be oded in the digital memory, or if

possible, proessed during the ADC. Furthermore, modifying the number and

position of the thresholds along the time axis orrespond to the appliation of
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TABLE I

Retinal ode of the basi operators in 4- and 8-onnetivity. On the right, the notations

used for the translations. The erosions are obtained by turning the _ (or) into ^ (and).

a morphologial anamorphose.

The digital layer, whih is the main matter in this paper, is made of a mesh

of digital proessors. It is an SIMD mahine, with an important originality

related to a limited omputation apability, due to a tiny memory (only a few

bits per pixel). The data we operate on are a few binary images, alled Boolean

planes (whih an represent the grey levels of the same image). The only hard-

wired operations on these data are: (1) One-pixel translation of one image.

(2) Boolean operation between two images (or, and, xor, . . . ).

With its Boolean language, the programmable retina is naturally �tted for

the non linear proessing. Table I shows the omputation of the elementary

morphologial operations, whih are omputed in a few elementary operations

and use 2 bits of memory: 1 bit of data, and 1 bit for the omputation.

More generally, the time omplexity of a retinal operator is the number of

elementary operations that ompose it, and the spae omplexity the number

of bits needed to perform it. In our very onstrained ontext of memory, the

spae omplexity is a ritial fator for the implementation of algorithms. The

onsequene is a onstant e�ort to redue the amount of data memory oded

in the digital proessors, in order to maximize the omputation power.

The omputation of the watershed [3℄ is a signi�ant example of this e�ort.

Indeed, the watershed produes a binary image, whih an intrinsially repre-

sent a wide-dynamis signal, and thanks to time-to-amplitude oding, it an

be proessed \on the y" on the inident signal of the digital layer.

3. Computation of the watershed transform

From now on, we will suppose that the omputation is made on a digital bidi-

mensional signal I of range value [0; n℄, known by its n binary thresholds, or

level sets, fI

i

g

i2[1;n℄

, with I

i

= fx 2 Z

2

; I(x) < ig, whih are either read on the

y from the ADC, or produed from an inner digital oding, thus oupying

log

2

(n+ 1) bits of memory.

In the retinal algorithms presented below, the operations are performed

within a fully parallel framework over the pixels. The instrutions are either

elementary operations, or proedures presented earlier. The operators used are

^, _ and :, respetively and, or and not. The spae omplexity of eah
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Retinal ode of the geodesi reonstrution (left), and opening by reonstrution (right).
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TABLE III

Retinal ode of the homotopi dilation (left, the other diretions are dedued by rotation),

and of the geodesi SKIZ (right).

proedure will be measured, as the sum of the data bits (the parameters) and

the omputation bits (the \loal" variables of the proedure, inluding the

hidden variables used by sub-proedures).

The proedures in this setion an be presented briey, as it is a lassial

implementation of the watershed by immersion simulation. It is based on two

binary funtions: the geodesi reonstrution and the geodesi SKIZ.

The geodesi reonstrution is omputed by the left proedure of Table II.

It uses 3 bits of memory. The right proedure of Table II shows a diret

appliation in morphologial �ltering: the opening by reonstrution by a ball

of radius r. This proedure, that needs 3 bits of memory too, will be used in

the next setion.

The lassial approximation of the SKIZ by the dual homotopi kernel is

omputed thanks to the relaxation of the homotopi dilation operator, shown

on Table III (left), that uses 3 bits of memory. The geodesi SKIZ is simply

obtained by omputing a logial and with the image of referene, so it uses 4

bits of memory.

Finally, the watershed of the digital signal I of range value [0; n℄ is omputed

thanks to the proedure of Table IV (left), where p is the binary output. This

proedure uses 4 bits of memory. To overome the well-known problem of over-

segmentation (Figure 2 (2)), a lassial solution onsists in using an image of

markers (Figure 2 (3)) to onstrain the topology of the �nal watershed (Figure 2

(4)). The onstrained proedure is shown on Table IV (right), where m is the

image of markers. Its spae omplexity is: 5 bits of memory.
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TABLE IV

Retinal ode of the watershed transform (left), and of the watershed with mark-

ers (right).

( 2 ) ( 3 ) ( 4 )( 1 )

Fig. 2. Results of the watershed transform. The omputed signal in this example is the

gradient intensity of Image (1). The raw watershed transform is shown on image (2). The

markers are the (white) onneted omponents of image (3): one disk marks the white taxi at

the enter, another disk marks the dark ar on the left, the retangle marks the bakground.

The watershed omputed with these markers is shown on Image (4) (a post-proess is used

to eliminate the urve between the two athment basins).

It an be seen that the omputation of the watershed lends itself naturally

to a ompat implementation, well adapted to our arhiteture. Nevertheless,

the markers need to be omputed before, and in most ases of segmentation,

they are not easy to �nd. Another way to avoid over-segmentation is to disard

non-signi�ant minima. This is done thanks to �ltering and dynamis setting.

4. Filtering and dynamis setting

Indeed, non-signi�ant minima an appear for two reasons: (1) noise on the

signal, and (2) poor-dynamis athment basins. The noise problem is ad-

dressed through morphologial �ltering (see Figure 3): let � be the minimal

thikness of a basin admissible, the �ltering onsists in performing an opening

by reonstrution by a ball of size � on every level set of I . This an be done

without extra-memory.

The dynamis problem is more ritial. The lassial solution [6℄ to remove

minima of dynamis inferior to h (basins of depth inferior to h) onsists in

reonstruting I over I + h. This an be done in the retina by performing the



6 ANTOINE MANZANERA

1 2

ρ ρ

Fig. 3. The �rst ause of over-segmentation in the watershed: noise on the signal. Basins

of thikness inferior to � (1) are suppressed thanks to morphologial �ltering (2).

binary reonstrution of :I

i

in :I

i�h

, for every level set suh that i > h. But

this method implies that two level sets distant of h must be available in the

memory at the same time. If the signal is not already oded in the digital

memory, this osts h� 1 bits of memory. The solution proposed in this paper

addresses di�erently the dynamis issue, and uses only 1 extra bit of memory.

2 3 41

h

h

Fig. 4. The seond ause of over-segmentation in the watershed: poor dynamis minima.

Basins of depth inferior to h (1) are disarded thanks to the Bu�on's method (2), (3), (4).

The priniple of our solution (see Figure 4) is to ompute two watersheds

of the same signal. The level sets of the signal are sub-sampled with a regular

step of h, and two onseutive level sets are used for omputing two distint

watersheds. So the two watersheds are omputed over a sub-sample of the

level sets, with a regular step of 2h, in suh a way that the two sub-samples

are in phase quadrature (see Figure 4 (2) and (3)). We then postulate that

the only signi�ant urves of the segmentation are those that appear in both

watersheds, and then the results is omputed by performing a logial \and"

between the two watersheds(see Figure 4 (4)) .

This \Bu�on's" method is indeed based on the monodimensional version of

the needle experiene of the frenh naturalist. Throwing randomly a segment

of length l (the needle) over a line marked by samples regularly spaed of h,

what is the probability that the segment hits two samples ? It is easy to see

that it is the ontinuous piee-wise aÆne funtion of l that is equal to 0 if l < h,

and 1 if l > 2h. For the watershed omputed by the proedure of Table V, it
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TABLE V

Retinal ode of the watershed with parameters (�; h; �).

means that:

� No minimum of dynamis Æ < h an appear in the watershed.

� All minima of dynamis Æ > 2h will appear in the watershed.

� A mimimum of dynamis h < Æ < 2h will appear in the watershed with a

probability

Æ�h

h

.

In fat, the atual ombination of the two watersheds is a bit more diÆult

than a simple and. Indeed, the quantization of the level sets disriminates

minima of poor dynamis, but also indues a shift on the frontiers of the other

minima, i.e. their positions an vary in the two watersheds. If � is the maxi-

mal shift admitted, W

1

and W

2

the two \semi-watersheds", the intersetion is

omputed as: W

1

^ (W

2

� B

�

), where � is the dilation and B

�

a digital ball

of radius �. The value of the shift depends on (1) the quantization step h,

(2) the loal sharpness of the peak in the signal. So the parameter � will be

hoosen aording to the minimal sharpness of a ontour desired, and propor-

tionnally to h. Furthermore, the right ombination is not the ommon points,

but the ommon losed urves of the two watersheds, so the �nal watershed

is W = HK(W

1

^ (W

2

� B

�

)), where HK is the homotopi kernel. See end

of proedure of Table V: as we are working on omplementary watersheds, we

ompute in fat W = SKIZ(W

1

_ (W

2

	B

�

)).

A result of omputation is shown on Figure 5. The important ahievement

of this method is that omputing the watershed with �ltering and dynamis

setting an be performed at a onstant memory ost, independant of the pa-

rameters: 5 bits.

5. Bene�ts of asynhronism

We have shown that the watershed transform, with its re�nements used in mor-

phologial segmentation, an be implemented at a very low material ost (and,

or, not, translation, 5 bits of memory), on a ellular automata grid. This

means that, today, it an be omputed within the pixels of a digital amera, at

the output of the ADC. But what about the eÆieny of this omputation ?
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( 4b ) ( 5 )( 4a )

( 0 ) ( 1 ) ( 2 ) ( 3 )

Fig. 5. Results of the watershed with parameters. (0) Original image (200 x 200 x 8 bits).

(1) Raw watershed (� = 0; h = 0). (2) Filtering with no dynamis setting (� = 2; h = 0).

(3) Dynamis setting with no �ltering (� = 0; h = 8). (4a) and (4b) Dynamis setting

by Bu�on's method: two �ltered watersheds (� = 2) are omputed by sub-sampling the

greylevels with a step � = 16, suh that the two sub-samples are in phase-quadrature.

(5) The result is obtained by ombination of the two watersheds (� = 2; h = 8; � = 2).

Indeed, by performing the segmentation diretly in the sensor, we aim at

saving time and energy, thanks to the in-site massively parallel omputation.

However, if we examine the eÆieny of the SIMD parallelism used in the

previous proedure, it turns out that the omputation of relaxation operators

like the geodesi reonstrution an be very ineÆient. In the typial ase of

the reonstrution of a urve from one of its points, only a few pixels hange

their value at every iteration, then the SIMD omputation speed is not better

than the sequential one, and the energy waste is muh greater !

This drawbak of the SIMD parallelism an be minimized within the digital

layer of the programmable retina, thanks to asynhronous propagation. The

use of semi-stati shift registers as digital memories [1℄ makes possible the fol-

lowing asynhronous phenomenon: a set of \ative" pixels opy their value on

their neighbors, that beome ative too, and so on until stability. This sim-

ple asynhronous funtion beome very interesting if the onnetions are pro-

grammable. Indeed, it allows the omputation of the geodesi reonstrution in

one relaxed asynhronous propagation (see Figure 6(1)). This omputation is

faster, beause the propagation takes muh less time than the synhronous (di-

lation+intersetion): the asynhronous propagation time has been estimated

[1℄ to 1.5 ns per pixel, whih orrespond to the (unrealisti) ontrol frequene

of 12 GHz in synhronous. And it is muh more eÆient, beause during the

propagation, only the ative pixels/proessors onsume energy.

What are the algorithmi impliations of this asynhronous parallelism ? In

fat, it is more than a simple eonomial way to get the reonstrution, beause,

thanks to the synhronous parallelism, the topology of the programmable mesh
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( 1b ) ( 2a ) ( 2b )( 1a )

Fig. 6. Use of an asynhronous parallelism on a programmable topology. (1a) The geodesi

reonstrution on a stati mesh is obtained through iterated dilation/intersetion. (1b) On

a programmable mesh, after disabling the onnetions to bakground (blak) pixels, the

reonstrution is obtained through one asynhronous propagation from the marker pixels.

(2a) When omputing the SKIZ on a stati mesh, the synhronous algorithm beome very

ineÆient as soon as the bakground (blak) beome one pixel thik. (2b) On a programmable

mesh, after disabling the onnetions to foreground (white) pixels, and to multiple points of

the bakground, the reonstrution from the extremities of the bakground allows to remove

the open urves in one asynhronous propagation.

an be onstrained not only by the image itself, but by the result of an SIMD

operator over the image. Figure 6(2) shows an example for the SKIZ, whih

is the other relaxation operator used in the watershed omputation. In our

system, the SKIZ is then omputed in two phases: one synhronous, and one

asynhronous.

More generally, the asynhronous operations an be algorithmially seen as

an implementation of a limited lass of FIFOs. The FIFO data struture and

algorithmis [11℄ is of speial interest for us, beause its omputing apabilities

are, in some measure, diametrally opposed to the apabilities of the SIMD

mahine, and then the oexistene of the two systems on the same iruit is

very promising.

6. Conlusions

On the base of the two last iruits design [2℄, [8℄, the next generation of

programmable retina will have between 15 and 20 bits of digital memory per

pixel, a ontrol frequene adjustable between 1 and 100 MHz, and a resolution

of 200x200 pixels. The expeted omputation time has been estimated (see Ta-

ble VI) on the image of Figure 5(0), whih is an 8 bits image of size 200x200, for

a ontrol frequene of 10 MHz, and for the two modes: synhronous, and mixed

synhronous/asynhronous. Obviously, the mixed mode is more eÆient, and

in addition, unlike the synhronous mode, whose omputation time is strongly

dependent of the data, the time of the mixed mode is not muh di�erent in

the worst ase, beause the asynhronous propagation time is almost negligible

with respet to the synhronous period.

These results show the interest of a mixed synhronous/asynhronous paral-

lelism in order to enhane the eÆieny of ellular SIMD mahines, by extend-
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watershed(I; p) watershed ter

(2;8;2)

(I; p)

Synhronous 1.4 ms 1.9 ms

Mixed Syn/Asyn 0.3 ms 0.5 ms

TABLE VI

Estimation of the omputation time.

ing their omputation apabilities, from the loal to the regional. Suh mixity

is already possible at a low material ost and will probably exist in the next

generation of programmable retinas, in whih the algorithms presented here

will be easily implemented. Now, other ways to exploit the asynhronous prop-

agations should be explored. In partiular, how to onstrain the propagations

by something \smarter" than the simple topology, typially loal on�gura-

tions that appear during the propagation, thus obtaining the implementations

of more lasses of FIFOs ? Future works will address this issue.
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