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Abstract

This paper presents an ultra-fast detection algorithm for
locating faces in grey scale videos. We first use motion
detection to reduce the working area and find the approx-
imate position of the head. Then a morphology-based tech-
nique is applied in this area to detect eye-analogue and
lips-analogue regions. Next, the resulting components are
used to search for potential facial features. Finally we se-
lect from the candidate triplets, the one that best represents
a real face, calculating a fitness which takes into account
things such as the symmetry and the proximity with the ex-
trapolated position of the face. In order to achieve the maxi-
mal speed-up, we use the vector parallelism provided by the
SIMD (Simple Instruction Multiple Data) extensions, avail-
able on most mainstream processors. The final program
runs 65 times faster than the real-time. Experiments demon-
strate that the success rate for single face videos reaches
85% in good conditions and can go down to 60% in harder
cases. This approach can be useful in many applications,
where the detection rate is not as important as the com-
putation time, such as video face identification, or human-
computer visual interfaces.

1. Introduction

In recent years, detecting human faces or facial features
has become an important task in computer vision with nu-
merous potential applications including human computer
interaction, video surveillance and face recognition. The
objective is to determine whether or not there is any face
in the image and, if any, return its location. The difficulty
of face and facial features detection can be attributed to the
following factors [1]:� Pose: Face images vary due to the relative camera-face

pose and some facial features may become partially or
wholly occluded.

� Structural components: Facial features such as beards,
moustaches and glasses may be present or not.� Facial expression: The appearance of faces depends on
a personal facial expression.� Occlusion: Faces may be partially occluded by other
objects such as hand, scarf, etc.� Illumination: Face images vary due to the position of
the light source (shadows).

Despite these problems, the recent literature on face detec-
tion presents a wide variety of approaches with some suc-
cessful results. There are five categories of face and facial
feature detection:

1. Geometry-based methods. These methods utilise ge-
ometrical information [2]. Each feature is considered
as a geometrical shape. These methods are generally
accurate, but also sensitive to distortions such as oc-
clusions or noise.

2. Colour-based approaches. These approaches have dif-
ficulties in robustly detecting skin colours in the pres-
ence of a complex background and different illumina-
tions [3], [4].

3. Appearance-based methods. These methods use the
models learnt from a set of training images [5], [6].
Gray value is the most important parameter for the
detection. They are not able to perfectly detect face
images with poor quality in intensity and some occlu-
sions.

4. Motion-based methods. Face and facial features are
detected from the image sequence [7], exploiting the
motion information.

5. Edge-based methods. Faces are detected from the edge
information [8], [9]. The goal is to handle larger vari-
ations of the face appearance by being less dependent
on illumination and motion.



Our detector uses both geometry-based and motion-
based methods. The philosophy of our approach is the fol-
lowing: In many applications, such as face recognition or
human-machine interfaces, the input is a video sequence.
In this case, reaching a very high detection rate for every
image is not compulsory. On the other hand, achieving the
minimal computation time (or power, or surface) is very im-
portant in order to allow further processing. Our goal here
is to minimise the computation time. We will present the
algorithms in detail, the different optimisations and their
effects. We will also use vector parallelism thanks to the
SIMD (Simple Instruction Multiple Data) Within a Regis-
ter (SWAR) paradigm [10]. The instruction set used in our
experiments is Altivec [11], available on Power PC proces-
sors, but equivalent results can be obtained using SSE2 in-
structions on Intel and AMD processors. The principle is to
use 128-bit vector registers that can represent sixteen 8-bit
signed or unsigned characters, eight 16-bit signed or un-
signed short integers, four 32-bit integer or floating point
variables. As image processing often involve regular opera-
tions, we can expect an acceleration equivalent to the num-
ber of variables loaded in the vector register.

The first stage of our detector is an approximate localisa-
tion of the head based on motion detection. It is presented in
Section 2. The output of the first stage is a region of interest,
support of computation of the second stage: the facial fea-
ture detection is performed by morphology-based method,
which provides a segmentation of eye-analogue and lips-
analogue components. The potential triplets eyes-mouth are
then sorted and selected from their geometrical properties.
The second stage is detailed in Section 3. The experimental
results and performances are discussed in Section 4. Finally
Section 5 concludes the paper.

2. Motion-based head localisation

In applications using a video sequence as input, the faces
(at least for living people) are always mobile, even a little:
blinking, lips moving, that can be captured by motion detec-
tion using a stationary camera. We then exploit this motion
information, both to reduce the computation time by reduc-
ing the “working area”, and to improve the face detection by
removing lots of potential false alarms in the background.

A simple motion detection is performed by updating a
background imageBt, then computing the “moving pixels”
by thresholding the absolute difference between the current
imageIt and the background. More precisely, the opera-
tions performed are the following. InitialisingB0 = I0,
then, for every time indext, we update the background im-
age byBt = �It + (1 � �)Bt�1. � 2℄0; 1[ is an oblivion
rate, whose dimension is inverse of the number of frames.
So taking� small increases the sensitivity but decreases
the precision of localisation and vice versa. We choose

15 18161207 0 0255255

15 214207 206206 217 161 18

214206217206

191 10 45 196
47 2 11 49

62 209 195 165

Bt = vec_sel(B−,B+,Sg)

7 224

It Bt−1

Dt = vec_sub(M,m)
aDt = vec_sr(Dt,2)

M = vec_max(It,Bt−1) m = vec_min(It,Bt−1) Sg = vec_cmpgt(It,Bt−1)

Dt = |It − Bt−1|

aDt = Dt>>2

62 209 217 205 195 165

B+ = vec_add(Bt−1,aDt) B− = vec_sub(Bt−1,aDt)

Bt = Bt−1 + (It − Bt−1)>>2

Figure 1. Vector computation of the back-
ground subtraction� = 2�k so that we can use bit-shifting to perform the mul-

tiplication. The detection is finally performed by thresh-
olding the absolute difference:Lt = (Dt > K), whereDt = jIt � Bt�1j, andK a threshold parameter.Lt then
provides the binary image of the motion labels.

This all part of the algorithm can be sped up using vec-
tor SIMD programming. To get the maximal speedup, i.e.
(�16) by operating 8-bit images on a 128-bit register, all the
operators must preserve the 8-bit dynamics of the operands.
Another constraint of the SWAR is to transform conditional
instructions into a set of comparisons and selections (equiv-
alent to traditional AND masks). Such transformations in-
crease the number of instructions and then moderate the
speed-up. Figure 1 shows an example of vector computa-
tion ofBt andDt using Altivec instructions.

The next step of the algorithm consists in finding the out-
line of the movement. This is to say, from the binary im-
age of motion labelsLt, we compute, for each columnx
of the image, the positiony of the highest pixel such thatLt(x; y) = 1. To be less sensitive to noise, we actually
compute, for each column, the position of the highest block
of P consecutive pixels such thatLt = 1, where P is a de-
fined constant. The result is a vector which size equals the
image width representing the outline of movement (see ex-
ample on Figure 2, withP = 4). As all the column are
processed independently, this part of the algorithm can be
easily vectorised.

The outline vectorOutline[i] is then used to esti-
mate the approximate location of the head, i.e. the coordi-
natesf(x1; y1); (x2; y2)g of a rectangular region of interest
(ROI) within which the facial features will be searched. To
do this, we perform the following operations:
Outline[i] is first transformed into one increas-

ing vector OutINC[i] and one decreasing vector
OutDEC[i]. Those new vectors are computed by using
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Figure 2. Computation of the outline and re-
sulting vector

two “max” filter: one causal, operating from left to right,
and one anti-causal, operating from right to left. More pre-
cisely:

OutINC[0] = Outline[0];
for (i=1;i<W;i++)
OutINC[i] = max(Outline[i],OutINC[i-1]);

OutDEC[W-1] = Outline[W-1];
for (i=W-2;i>0;i--)
OutDEC[i] = max(Outline[i],OutDEC[i+1]);

WhereW is the size of the vector (i.e. the width of
the image). The left (resp. right) border of the ROIx1
(resp. x2) is then defined as the last significant increasing
step while scanningOutINC[i] from left to right (resp.
OutDEC[i] from right to left):x1 = arg max0<i<W OutINC[i℄� OutINC[i� 1℄ > STEPx2 = arg min0<i<W OutDEC[i� 1℄� OutDEC[i℄ > STEP

WhereSTEP is a threshold parameter.

The top border of the ROIy1 is simply the highest value
of the outline vector, i.e.:y1 = OutINC[W� 1℄ = OutDEC[0℄

The last coordinatey2 is finally deduced from morpho-
logical proportion of human face:y2 = y1 � �(x2 � x1)

with � = 1:4 in our experiments.
This last part of the function are computed by scanning

a 1D vector. Then it is not adapted to a vector parallelism.
Nevertheless, the computation ofx1 andx2 are independent
and can be performed by 2 concurrent threads. Figure 3
summarises the approximate face localisation method.

Figure 3. Principle of the approximate face
localisation method



3. Facial features detection

As shown by various studies, some facial elements such
as eyebrows, eyes, nostrils and mouth are always darker
than the rest of the face [12], [13]. Among these facial com-
ponents, the eyes and the mouth have proved the most stable
in appearance with respect to illumination, posture or facial
expression.

Therefore, in this section we use a morphology-based
method to locate in the ROI the eye-analogue and lips-
analogue components as the first step of the facial feature
detection. The connected components are first localised,
then go through a selection process whose purpose is to
find, amongst the candidate features, the three components
which best fits a mouth-eyes triplet.

3.1. Morphological processing

Following Han et al [14], we use the morphological top-
hat operator to detect the narrow dark regions, which will
form the potential eye-analogue and mouth-analogue com-
ponents. It is computed as the difference between the mor-
phological closing and the original image:�B(X) = 'B(X)�X = ÆB("B(X))�X

From a computational point of view, this function makes
extensive use of dilationÆB (resp. erosion"B) operator,
which consists in computing for every pixel the max (resp.
min) over a neighbourhood defined by the structuring ele-
mentB. Then the optimisation of this primitives is really
important.

In our algorithm, we use a combination of recursive
scan-based computation of the min=max, which allows to
compute erosion=dilation on 1D segment with a constant
complexity (i.e. independent on the segment length), and
data parallelism, which permits simultaneous computations
of erosion=dilation on the direction orthogonal to the struc-
turing element.

The constant time computation of 1D erosion=dilation
was proposed independently by van Herk [15] and Gil and
Werman [16]. It is mentioned as HGW algorithm from now
on. This algorithm allows to reduce the number of opera-
tions per pixel to 3 min (or 3 max), whatever the length of
the structuring element.

HGW is a 3 steps algorithm. Suppose we want to com-
pute an erosion using a vertical (and symmetric) structuring
element of size L. Imagine that every column of the im-
age is partitioned in contiguous blocks of size L. For each
block, the minimum is propagated recursively, first from top
to bottom:

for (j = 0;j < H;j++)
if (j%L == 0)

A[x,j] = I[x,j];

i n p u t b u f f e r A b u f f e r B r e s u l t

Figure 4. HGW algorithm for constant time
erosion =dilation

else
A[x,j] = min(A[x,j-1],I[x,j]);

Second, from bottom to top:

for (j = H-1;j > 0;j--)
if (j%L == 0)
B[x,j] = I[x,j];

else
B[x,j] = min(B[x,j+1],I[x,j]);

Note that the computation of vectors A and B are in-
dependent and then can be computed simultaneously. The
erosion is finally achieved by computing a last minimum
operator:

for (j = 0;j < H;j++)
E[x,j] = min(A[x,j+L/2],B[x,j-L/2]);

Figure 4 shows the principle for an erosion of size 7.
Using a vertical structuring element, it is clear that each

column can be processed independently. Then using vector
parallelism allows to process 16 columns at the same time,
accelerating dramatically this part of our algorithm.

The output of the top-hat operators are thresholded to
form a binary image (the threshold is chosen as the average
value of the output), representing the facial features can-
didates. When the background is complex, however, lots
of false candidates may appear, as mentioned by [14]. A
higher level selection process is then necessary.
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Figure 5. Test of symmetry for the compo-
nents

3.2. Components inventory and selection

The first step is to list and localise the different com-
ponents from the previous binary image, made up of some
groups of white pixels over a black background. We then
perform a connected components inventory, which output
is the list of connected components, with their areas (num-
ber of pixels), and bounding boxes (determining their rough
localisation). For this, we use an adaptation of the classical
algorithm of Rosenfeld [17], based on 2 image scans, and
using an equivalence table to resolve the ambiguities due
to the scan order. This algorithm is well-adapted to real-
time constraints, as its complexity is less data-dependent
than the other algorithms, and it is mostly regular, i.e. oper-
ates on contiguous memory, thus optimising cache manage-
ment. Furthermore, we do not need a true labelling (i.e. an
image associating to every pixel a different label for each
connected component), but only the number of pixels and
the bounding boxes. All this information is available after
the graph transitive closure, at the end of the first scan, then
we do not need a second scan, unlike the original Rosenfeld
algorithm.

After the connected components inventory, we first sort
the components using their area (number of pixels). We re-
move those whose area is smaller than a defined percentage
(0.1%) of the area selected by the head position detector.

As the facial features we want to detect present a high
degree of vertical symmetry, we also perform the following
symmetry test on the components: Starting from the calcu-
lated centre of the component, we take 3 pixels on each side,
horizontally. Then we calculate the sum of the absolute dif-
ferences between the opposite pixels (See Figure 5). The
components whose valueS1 is beneath a certain threshold
are considered asymmetric and discarded.

At this stage, we have got a set ofn components cor-
responding to the potential features. The rest of the selec-
tion is performed by a set of morphometric rules inspired by

[18]. We first check all the

� n2 � possible pairs of com-

ponents, and compute the list of thep pairs matching the
conditions shown on Figure 6. Note that some conditions
use a parameterWhead corresponding to the estimation of
the head’s width, and which is deduced from the head local-
isation output.

The next set of morphometric rules is checked for then � p potential triplets of features, deduced from the two
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(a) (b)0:5 � WgWd � 2 0:1 � WgD � 0:4 0:1 � WdD � 0:4Lx � 0:8�Whead Ly � 0:4� 1:4�Whead
Figure 6. Set of tests for eyes pairs
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Figure 7. Set of tests for faces

last steps. First we check that the component supposed to
represent the mouth is located under and between the eyes.
Then the conditions represented on Figure 7 are computed.

At this point we have a few triangles representing the po-
tential triplets eyes-mouth. In order to select the best one,
we compute for each triangle a fitness which takes into ac-
count (1) the symmetry and (2) the proximity with the ex-
trapolated position of the face. The symmetry is calculated
between the left and the right sides of the triangle, as shown
on Figure 8 (Computing the symmetry on this two sides
only works better than in the whole triangle, specially in
the case of profiled faces).

On the other hand, using the last 3 positions of the de-
tected face, we extrapolate the position of the new triangle.
Then for each triangle, we calculate its distance from the
extrapolated triangle. Finally the fitness is a weighted sum
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Figure 8. Test of symmetry for the face



Time(ms) Motion Outline Total
Scalar 4.9 1.95 6.85
Altivec 0.380 0.234 0.614
Speedup �12:9 �8:3 �11:2

Table 1. Comparison between optimised
scalar and vector versions.

of this distance and the previous symmetry factor. Then the
triangle that best represents a real face is the one with the
smallest fitness.

4. Results and benchmarking

Figures 9 and 10 show some detection results (the trian-
gle is actually drawn on the video stream using the Bresen-
ham’s line algorithm [19]). These first results are promis-
ing, since our algorithm is able to detect one face with or
without glasses, even with slight rotations. Experiments
demonstrate that the success rate reaches 85% in good con-
ditions and can go down to 60% in harder conditions (quick
motion or strong rotations).

We now discuss the performance obtained for the real-
time implementation of the detector. In order to estimate
the impact of vectorisation, two versions of the algorithms
have been benchmarked: one optimised scalar C code, and
one with Altivec intrinsics. The computation of the pro-
posed algorithm can be split into two parts: the operators on
the whole image (for motion detection and outline extrac-
tion steps) and those on the extracted ROI (morphological
processing, connected component inventory, selection and
drawing). The second part of the algorithm has a very low
execution time, since the ROI usually represents less than
10% of the image. Then we will only distinguish 2 steps
in the following analysis: (1) Motion detection, (2) Outline
extraction together with the operators working on the ROI.

The benchmark has been done on a Macintosh G5 run-
ning at 2.5 GHz connected to a Fire-Wire camera at 25 Hz
and using C+FOX API [20] by Joel Falcou. Table 1 pro-
vides the execution time in ms and the speedup for the two
steps.

Motion detection step has a speedup smaller than the the-
oretical one (�16) because the computational ratio (number
of instructions divided by the number of memory accesses)
is low. We are faced to a memory wall problem, where
the memory bandwidth is the bottleneck of the algorithm.
For outline extraction, the vectorisation is better and even
greater than the max (�8 here, because of 16 bit data ma-
nipulation) because of cache effects and a better computa-
tional ratio (only one memory access per column instead of
one per pixel). The global speedup due to Altivec vectorisa-

Figure 9. Some correct detection results



Figure 10. Some false detections

tion is�11:2, that is�65 faster than the video constraint of
40 ms. The saved time allows two possibilities: making the
algorithm more robust and=or developing other algorithms
for face tracking or recognition, still in real-time.

5. Conclusion

We have presented an ultra-fast implementation of a face
detection algorithm working on video sequences acquired
by stationary camera. For single face scenarios, the per-
image detection rate measured is between 60 and 85%,
whereas the average computation time is approximately 0.6
ms, hence65� faster than the real-time. Such implementa-
tion can then be useful as a preliminary function in various
applications, such as facial identification or human-machine
interface systems.

Many improvements remain to be done, however. The
balance between the computational loads of the different
parts of the algorithm can be changed, by relaxing some
constraint or reinforcing other. The effects of this changes
on the detection rate must be studied more rigorously. One
of the main limitations of our system is that it is practically
limited to single face detection, so the extension to multi-
ple face detection will be the first improvement we plan to
address in the future.
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