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A new motion detection algorithm based on
>-A background estimation

Antoine Manzanera, Julien C. Richefeu
ENSTA/LEI 32 Bd Victor, F-75739, PARIS CEDEX 15, France

Abstract

Motion detection using a stationary camera can be done by estimating the static scene (background). In that
purpose, we propose a new method based on a simple recursive non linear operator, the ¥-A filter. Used along
with a spatiotemporal regularization algorithm, it allows robust, computationally efficient and accurate motion
detection. To deal with complex scenes containing a wide range of motion models with very different time constants,
we propose a generalization of the basic model to multiple ¥-A estimation.
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1. Introduction

The detection of moving objects in an image se-
quence is a very important low-level task for many
computer vision applications, such as video surveil-
lance, traffic monitoring or sign language recog-
nition. When the camera is stationary, a class of
methods usually employed is background subtrac-
tion. The principle of these methods is to build a
model of the static scene (i.e. without moving ob-
jects) called background, and then to compare ev-
ery frame of the sequence to this background in or-
der to discriminate the regions of unusual motion,
called foreground (the moving objects).

Many algorithms have been developed for back-
ground subtraction: recent reviews and evaluations
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can be found in (Lee and Hedley, 2002) (Chalidab-

hongse et al., 2003) (Cheung and Kamath, 2004)

(Piccardi, 2004). In this paper, we are more specif-

ically interested in video surveillance systems with

long autonomy. The difficulty in devising back-
ground subtraction algorithms in such context lies
in the respect of several constraints:

— The system must keep working without human
interaction for a long time, and then take into
account gradual or sudden changes such as illu-
mination variation or new static objects settling
in the scene. This means that the background
must be temporally adaptive.

— The system must be able to discard irrelevant
motion such as waving bushes or flowing water.
It should also be robust to slight oscillations of
the camera. This means that there must be a
local estimation for the confidence in the back-
ground value.

— The system must be real-time, compact and low-
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power, so the algorithms must not use much re-

source, in terms of computing power and mem-

ory.

The two first conditions imply that statistical
measures on the temporal activity must be locally
available in every pixel, and constantly updated.
This excludes any basic approach like using a sin-
gle model such as the previous frame or a temporal
average for the background, and global threshold-
ing for decision.

Some background estimation methods are based
on the analysis of the histogram of the values
taken by each pixel within a fixed number K of
past frames. The mean, the median or the mode
of the histogram can be chosen to set the back-
ground value, and the foreground can be discrim-
inated by comparing the difference between the
current frame and the background with the his-
togram variance. More sophisticated techniques
are also based on the K past frames history: linear
prediction (Toyoma et al., 1999), kernel density
estimation (Elgammal et al., 2000) (Mittal and
Paragios, 2004), or principal component analy-
sis (Oliver et al., 2000). These methods require a
great amount of memory, since K needs to be large
(usually more than 50) for robustness purposes. So
they are not compatible with our third condition.

Much more attractive for our requirements are
the recursive methods, that do not keep in memory
a histogram for each pixel, but rather a fixed num-
ber of estimates computed recursively. These esti-
mates can be the mean and variance of a Gaussian
distribution (Wren et al., 1997), different states
of the background (e.g. its values and temporal
derivatives) estimated by predictive filter (Kar-
mann and von Brandt, 1990), or recursive estima-
tion of the extremal values (Richefeu and Manzan-
era, 2004). But it is difficult to get robust estimates
of the background with linear recursive framework,
unless a multi-modal distribution (e.g. multiple
Gaussian (Stauffer and Grimson, 2000) (Power and
Schoonees, 2002)) is explicitly used, which is done
at the price of an increasing complexity and mem-
ory requirement. Furthermore, these methods rely
on parameters such as the learning rates used in the
recursive linear filters, setting the relative weights
of the background states and the new observations,
whose tuning can be tricky, which makes difficult

the fulfillment of the first condition stated above.

A recursive approximation of the temporal me-
dian was proposed in (McFarlane and Schofield,
1995) to compute the background. The interest of
this method lies in the robustness provided by the
non linearity compared to the linear recursive av-
erage, and in the very low computational cost. In
this article, we investigate some nice properties of
this operator, introducing the notion of ¥-A esti-
mation, and using it to obtain a locally adaptive
motion detection.

In Section 2, we present the basic X-A estima-
tion method. The X-A filter is presented and used
to compute two orders of temporal statistics for
each pixel of the sequence providing a pixel-level
decision framework. Then, in Section 3, we ex-
ploit the spatial correlation in these data using
new hybrid linear/morphological operators, and
use higher level processing to enhance and regu-
larize the detection solution. Some results are pre-
sented, illustrating the robustness and accuracy of
the method in the case of simple background (i.e.
one single time-varying mode). For more complex
scenes, we propose in Section 4 a generalization of
the algorithm to multiple background estimation.
Finally, conclusions and future works are presented
in Section 5.

2. ¥-A estimation

Our first background estimate, whose computa-
tion is shown on Table 1(1), is the same as (Mc-
Farlane and Schofield, 1995), where I; is the input
sequence, and M; the estimated background value.
The sign function sgn is defined as sgn(a) = —1 if
a<0,sgn(a) =1ifa > 0, and sgn(a) =0if a =
0. So, at every frame, the estimate is simply incre-
mented by one if it is smaller than the sample, or
decremented by one if it is greater than the sample.
If I; is a discrete random signal, the ratio between
the number of indexes 7 < t such that I, < M;,
and the number of indexes 7 < ¢ such that I, > M,
converges in mean to 1. So M, is an approximation
of the median of I;. But this filter has other inter-
esting properties, relative to the change detection
in time-varying signals. Indeed, we interpret this



background estimation as the simulation of a dig-
ital conversion of a time-varying analog signal us-
ing ¥-A modulation (A/D conversion using only
comparison and elementary increment /decrement,
hence the name X-A filter).

As the precision of the ¥-A modulation is lim-
ited to signals with absolute time-derivative less
than unity, the modulation error is proportional to
the variation rate of the signal, corresponding here
to a motion likelihood measure of the pixels. We
then use the absolute difference between I; and M;
as our first differential estimate: the difference A,
(Table 1(2)).

Unlike (McFarlane and Schofield, 1995), we also
use this filter to compute the time-variance of the
pixels, representing their motion activity measure,
used to decide whether the pixel is more likely
“moving” or “stationary”. Then, V; (Table 1(3))
used in our method has the dimension of a tem-
poral standard deviation. It is computed as a X-A
filter of the difference sequence A;. This provides
a measure of temporal activity of the pixels. As we
are interested in pixels whose variation rate is sig-
nificantly over its temporal activity, we apply the
3-A filter to the sequence of N times the non-zero
differences.

Finally, the pixel-level detection is simply per-
formed by comparing A; and V; (Table 1(4)).

Figure 1 displays an example of the evolution
over time of the different values computed as above,
for three particular pixels extracted from a coun-
try scene for a 500 frames sequence. The solid line
represents the input image I;. The dashed line cor-
responds to the X-A mean M;. The impulses rep-
resents the difference A;. Finally, the dotted line
is the ¥-A variance V; (using N = 4). The detec-
tion label D; is not represented explicitly, but cor-
responds to the Boolean indicator of the condition
“an impulse is over the dotted line”.

The pixel used in Figure 1(1) is a pixel in a still
zone, with flat temporal activity, such as a remote
area of the static background (in our example, a
sky lightly covered with slowly moving clouds).
For such pixels, the high frequency variation cor-
responds to temporal noise due to the acquisition
and digitization processes. The low frequency vari-
ations are due to illumination changes or slow mo-
tion of low contrast objects.

Initialization
for each pixel z:
Mo(z) = Io(x)
For each frame t
for each pixel z:

My(z) = My—1(z) + sgn(It(z) — My 1(z))

(1)

For each frame t
for each pixel x:

At(x) = [Mi(x) — It(z)|

(2)

Initialization
for each pixel z:
Vo(z) = Ao(z)
For each frame t
for each pixel = such that As(z) # 0:
Vi(z) = Vi—1(2) + sgn(N x Ay(z) — Vi-1(2))

3)

For each frame t
for each pixel z:
if Ay(z) < Va(z)
then Dy(z) =0
else Dy(z) =1

@

Table 1

The X-A background estimation: (1) Computation of the
¥-A mean. (2) Computation of the difference between the
image and the ¥-A mean (motion likelihood measure).
(3) Computation of the X-A variance defined as the ¥-A
mean of N times the non-zero differences. (4) Computation
of the motion label by comparison between the difference
and the variance.

The pixel used in Figure 1(2) is a pixel in a mo-
tion area, such as tracks or corridors (in our exam-
ple, a country road with 2 vehicles passing away).
In that case, the moving objects give rise to sharp
changes that are not taken into account by the X-
A mean, and then the difference signal shows a
peak. Such peaks are discriminated thanks to the



comparison with the ¥-A variance.

The pixel used in Figure 1(3) is a pixel in a
clutter area, i.e. a zone of physical changes due to
intrinsic nature of the scene rather than moving
objects. Examples of such areas are: trees moving
with the wind or river (in our example, high grass
in the foreground of the scene). In that case, the
difference signal shows a repetition of peaks, and if
these peaks are close enough from each other with
respect to the delay induced by ¥-A modulation,
then they will be taken into account in the %-A
variance, in such a way that the difference will re-
main less that the variance.

The fundamental features of the ¥-A estima-
tion, i.e. its non linearity and median convergence
property come from the fact that the statistics M,
is always updated with a constant increment +1,
not depending upon the difference between the cur-
rent sample and the current mean (I; — M;_1).
If the increment depended linearly on the differ-
ence, we would get My = My_1 + a(ly — My—1) =
al; + (1 — a)M;_1, that is, the classical recursive
exponential filter (or moving average) used, typ-
ically, in the recursive Gaussian Fitting methods
(Wren et al., 1997) (Stauffer and Grimson, 2000)
(Power and Schoonees, 2002). In its simplest form,
« is a real constant in the interval ]0, 1[. Figure 2
(1)-(2) displays comparison between the X-A mean
and the moving average, on a temporal sequence
corresponding to the passage of a moving object.
Note the difference between the unity slope of the
¥-A mean (Figure 2(1)) and the exponential de-
crease of the moving average (Figure 2(2)). In the
more robust form of the Gaussian fitting estima-
tion, a is no more a constant but is calculated from
the probability of the current sample, i.e. a(t) =
N ‘1}:[ *(I;), where N, (2) is the normal density func-
tion of mean p and variance o2. The variance V;
is estimated by the moving average of the squared
differences (I; — M;)?. Computation of the square
and of the Gaussian probability of the sample make
these methods sensitive to the numerical approx-
imations, whereas the ¥-A estimation only uses
exact integer computations. However, a nice fea-
ture of the Gaussian fitting methods is their ex-
tension to the estimation of multimodal Gaussian
distributions (Stauffer and Grimson, 2000) (Power

and Schoonees, 2002), that allows to deal with very
complex scenes. In the same spirit, we shall present,
in Section 4, an extension of the X-A estimation
adapted to complex backgrounds.

Figure 2(3) also show the behavior another
simple recursive estimation method, based on
the forgetting morphological operators (Richefeu
and Manzanera, 2004), because they will be used
later in our algorithm, under the form of their
spatial counterparts (See Section 3). The forget-
ting temporal dilation (resp. erosion) is defined
by My = al; + (1 — o) max(I;, M;_1) (resp. m; =
al; + (1 — o) min(L, ms—1)).

Figure 3 (1)-(4) displays the result of the algo-
rithm of Table 1 for one frame of an urban traffic
sequence. The four images represent respectively
I;, My, V; and D;. It can be seen that the discrim-
ination of “moving” pixels corresponds to the de-
tection of temporally salient pixels with respect to
the temporal activity. This allows to discard irrel-
evant (clutter) motion, but also to be less sensitive
to sensor oscillations, as it is shown on Figure 3
(5) and (6): A uniform random oscillation of +1
pixels has been simulated on the same sequence.
In this case, M; converges to an approximation of
the spatiotemporal median, and then V; (Fig. 3(5))
emphasizes the regions of high contrast, thus in-
creasing the local threshold in these regions, and
avoiding the detection of the whole scene contour
in D, (Fig. 3(6)).

The only visible parameter of this method is IV,
the number used in the computation of the vari-
ance V;. The range value of N is small (between 1
and 4), and usually a power of 2 is chosen for op-
timization purposes. Furthermore, it can be auto-
matically adjusted with respect to a noise estima-
tion. Such estimation can be performed by count-
ing the isolated pixels in the detection result Dy,
under the (classical) hypothesis that such detected
pixels are only due to noise.

In fact, there is another parameter which is less
obvious; it is the frequency of update of the X-A
statistics. This frequency has a dimension of num-
ber of gray levels per second. It is then clear that
it has to be adapted to (1) the dynamics of the
image (number of gray levels), (2) the acquisition
frequency (frame rate). We usually use the same
frequency as the frame rate for 25 Hz sequences of



8-bits images, but it can be lowered to adjust to
the size and velocity of the observed objects in the
application. In Section 4, we will present a sophisti-
cation of the method based on a multi-frequencies
3-A estimation, in order to better discriminate the
foreground in the case of a scene presenting a wide
range of different motions.

As suggested by Lacassagne in (Denoulet et al.,
2005), the robustness of the £-A estimation can be
further improved by updating M; only when A; <
V;. In this article, we make the choice to inhibit
locally the update only after the spatial processing
(see Section 3).

The ¥-A background estimation provides a sim-
ple and efficient method to detect the significantly
changing pixels in a static scene, with respect to
a time constant depending on the number of gray
levels, and on the frame rate. Nevertheless it is a
pure temporal processing, which can only provide
pixel-level detection. In the following section, we
present some spatial processing, to enhance and
regularize the detection result.

3. Spatiotemporal processing

Recently, we have presented a Markovian mod-
eling to perform a spatiotemporal regularization
of the pixel-level X-A detection. It was an adapta-
tion of the iterative algorithm presented in (Caplier
et al., 1996) and (Lacassagne et al., 1999), using
the pixel-level detection D; as initialization, and
the X-A difference A; and variance V;, as a cou-
ple of observation fields used in the design of the
energy. Details can be found in (Manzanera and
Richefeu, 2004).

We present here another regularization strategy.
The spatiotemporal processing that we propose in
this section has a threefold purpose:

— eliminate the non significant pixels from the de-
tection (noise, false detection), and enhance the
segmentation of the moving objects.

— reduce the ghost effect, that produces false de-
tection at the loci from where a moving object
leaves after a long stay.

— reduce the aperture effect, that causes a poor
detection for the objects whose projected motion

is weak, e.g. radially moving objects.

3.1. Common edges hybrid reconstruction

The first part of the spatial processing is com-
posed of gray level operations. The inputs are:
(1) the original image I;, and (2) the X-A dif-
ference image A;. The purpose of this module is
to eliminate the ghost objects in A; by discrim-
inating them within ;. The actual operation we
perform is the following one:

A} = HRecy" (Min(||V ()], [V (A0)]1)) 1)

Roughly speaking, this means the “reconstruction”
(we shall make this word explicit later) within Ay,
of the image of the minimum between the gradient
module of A; and the gradient module of I;. The
semantics of this formula is: “A} is made of the
components of A; that are also in I;”. Let us now
detail the actual computation.

The gradient modules of A; and I; are computed
by estimating the first derivative components with
convolutions with Sobel masks, and then comput-
ing the Euclidean norm of the vector. We then
compute the minimum image Min, defined for ev-
ery pixel z by Min(I1, [2)(z) = min(I; (z), I>(x)).
This acts like a logical conjunction, retaining only
the edges that belongs both to an object of A;, and
of I.

In order to recover the whole object in A, and
not only its edges, we perform a “reconstruction” of
the common edges Min(||V (L)|[, || V(A4)]]) within
Ag.

The first idea should be to use the classical
geodesic reconstruction RecY (X), defined by
the relaxation of the geodesic dilation 65 (X) =
Min(6p(X),Y) (0 is the morphological dilation,
B the elementary structuring element defining the
topology, Y the reference image, X the marker
image). In fact the geodesic reconstruction is not
adapted, because the sole connection criterion is
not robust enough, and in most cases, the object
and its ghost are both reconstructed.

We rather use the hybrid reconstruction opera-
tor, based on the forgetting morphological opera-
tors that we introduced in (Richefeu and Manzan-
era, 2004). First we define the hybrid dilation as



the spatial version of the forgetting dilation, com-
puted by the causal sequence:

HDilo (1) (z,y) = al(z,y)
+(1 — @) max(I(z,y), HDilo (1) (z — 1,y)) (2)

followed by the anti-causal sequence:

HDilo(I)™ (z,y) = aHDilo(I)© (z,y)
+(1 — @) max(HDil,(I)© (z,y),
HDilo ()M (z + 1,y)) (3)

then the causal sequence vertically:

HDilo(I)® (z,y) = aHDila(I)M (z,y)
+(1 — @) max(HDilo ()™M (z, ),
HDilo () (z,y — 1)) (4)

and finally:

HDily(I)(z,y) = aHDilo (1) (z,y)
+(1 — a) max(HDilo () (2,y),
HDilo(I)(z,y + 1)) (5)

Here 1/a has the dimension of a spatial radius,
and thus the parameter « replaces the structuring
element.

The hybrid reconstruction is based on the same
scheme, using the sequence:

HRec) (1) (z,y) =min(J(z,y),
al(z,y) + (1 — @) max(I(z,y),
HRec}(I)(z — 1,y))) (6)

and so on.

The behavior of the hybrid reconstruction can
be seen on Figure 4, where the objects (cars, pedes-
trian) move after leaving a halt 20 frames before.
The advantage of the hybrid reconstruction in this
application is to “forget” gradually (exponentially
to be precise) the marker, which acts like a confi-
dence function, instead of being strictly based on
the connectivity.

It can be seen that the success of this common
edges marking step depends on the contrasts of
the background itself, (see Figure 4(7)-(10)). But
we have focused here on extreme cases, the objects

being completely still and encrusted in the back-
ground at the beginning. Furthermore, as we will
see at the end of this section, the relevance feed-
back will also reduce significantly the ghost effect.

3.2. Binary spatiotemporal morphology

After computing the hybrid reconstruction, we
perform the adaptive thresholding on A} (instead
of A; in the purely temporal version):

If A} > V; then D; = 1else D; =0 (7

We then eliminate the small connected components
on D, using the opening by reconstruction:

L{” = Rec" (e, (Dy)) ®)

where ¢ is the morphological erosion, and B) the
structuring element, is a ball of radius A.

Finally, we perform a temporal confirmation by
computing another reconstruction:

(0)
Lt = Reth (Lg(i)l) (9)

L; represents the final label, the result of the de-
tection. Its semantics is: the objects “bigger than”
A that appear on 2 consecutive frames. It is illus-
trated on Figure 5, using A = 1, on a sequence
showing two people walking.

3.3. Relevance feedback

As indicated in Section 2, the whole detection is
made more robust if the background is not modi-
fied for the pixels of moving objects. We adopt this
strategy by updating ¥-A mean M (z) only where
Li(z) = 0. This implies a reordering of the algo-
rithm shown in Table 1. The complete algorithm
is then displayed in Table 2, discarding the pixel
index z.

The relevance feedback effect can be seen on Fig-
ure 6, showing a detail of a scene with 2 cars driving
after a stop at a red light. This strategy improves
the detection result by delaying the contribution
of the moving objects to the background. This re-
duces significantly both the ghost effect and the
aperture effect (radial movements).



Signed difference
St =1 — My
Variance updating
if |S¢| # 0:
Vi = Vi1 + sgn(N x |St| — Vi—1)
Common edges hybrid reconstruction
A} = HRecl"! (Min(||V (1)1, ||V (| Se)]]))
Temporal detection
if A, <V
then Dy =0
else Dy =1
Spatiotemporal binary processing
L{9 = RecPt(ep, (Dy))
Ly = RecLEO) (Lg(l)l)
Mean updating with relevance feedback
if Ly = 0:
My = My_1 + sgn(St)

Table 2
The complete 3-A detection algorithm with relevance
feedback.

Asindicated in (Denoulet et al., 2005), it is safer,
at this low level of processing, to apply the rele-
vance feedback only to the mean M; instead than
the two estimates M; and V4, to avoid false detec-
tion objects to settle in the background. Relevance
feedback can be used on both M; and V4 if a high
level of confidence is reached in the detected ob-
jects. This can be achieved by using further pro-
cessing (e.g. kinematic filtering), that is beyond the
scope of this article.

Figure 7 shows the results of the full algorithm
on an indoor sequence (the “Hall” sequence). The
results illustrate the effect of the spatial process-
ing and relevance feedback on the reduction of the
aperture effect: the two persons are well detected
although they are moving radially with respect to
the camera.

4. Multiple background X-A estimation

The spatiotemporal processing and relevance
feedback, presented in the previous section, al-
lows a visible enhancement of the robustness, in
the case of slowing down, stopping or radially
moving objects. Nevertheless, the ¥-A estimator
is characterized by a time constant: its updating
period, which has a dimension of number of gray
levels per second. This induces a limitation of the
basic approach in the adaptation capability to
certain complex scenes, typically in the case of
scenes permanently crossed by lots of objects of
very different sizes and velocities. We propose in
this section a generalization framework of the X-A
estimation to multiple backgrounds.

The principle is to compute instead of one
single background My, a set of K backgrounds
{mi}1<i< k- Each background m{ is characterized
by its updating period «; and by its phase ¢;. A
set of K variances v} is also computed as the 3-A
mean of the differences between I; and m{. The
background/foreground decision is then made by
comparing the sample to every background, which
is attached a confidence value that is (1) propor-
tional to ; and (2) inversely proportional to v?.

Table 3 shows an example of computation of
multi-frequencies background using K different pe-
riods a; < ... < ag. The phases are discarded
in this example. The $-A means m! can be com-
puted recursively: mi = mi, + sgn(m; ' —mi),
with the convention m? = I;. In this example, we
compute explicitly a “best confidence” background
M, as shown in the last line of Table 3. The princi-
ple of the confidence coefficients attached to every
background m is to give more weight to long-term
backgrounds, in order to favor the most frequent
value over long periods, and at the same time, the
weights are lowered accordingly to the variance,
in order to allow adaptation to a changing back-
ground.

Figure 8 shows an application of the multi-
periods X-A estimation on a complex scene. This
corresponds to a sequence taken in a very fre-
quented part of the Jardin du Luxembourg. The
scene is never empty, with lots of people stopping
and remaining more or less still for different pe-



Multiple mean updating
For each frame t,
for each i, 7 € [0, K],
if ¢ is a multiple of a;:
mi = mil + sgn(m't'_1 — mzl)
Multiple variance updating
For each frame t,
for each i, 7 € [0, K],
8 = Iy — mj
if 0% # 0:
vi = 1121 + sgn(vi_; — N x 6})
Mean computing

For each frame t,
i
i€[0,K] Yt
M= ——=ai
2

i€[0,K]

Table 3
The multi-periods background X-A estimation.

riods. For this sequence, we have taken K = 3,
a; = 1, ag = 8, ag = 16. This framework clearly
enhances the robustness of the detection with
respect to the range of motion models, while pre-
serving a good adaptation capability to changing
conditions. See for example on Figure 8: At frame
(a), best confidence is globally given to the long-
term mean. At frame (b), the camera has been
shifted just before, and so, in the upper part of
the image, best confidence is given to the short-
term mean, while in the lower part of the image,
the confidence remains higher for the long-term,
which prevents the two stopped people to appear
in the final background.

5. Conclusions

We have presented a new algorithm allowing a
robust and accurate detection of moving objects
for a small cost in memory consumption and com-
putational complexity. We have emphasized the
nice properties of the ¥-A filter for the detection

of salient features in time-varying signal, showing
that the interest of such filter goes well beyond its
temporal median convergence property.

We have proposed a new spatiotemporal regu-
larization strategy, using an original hybrid recon-
struction method and spatiotemporal binary mor-
phology, to exploit the spatial correlation and in-
crease the confidence of the ¥-A detection.

We have presented a generalization framework
for multiple X-A estimation allowing to deal with
complex scenes by combining ¥-A estimates with
different frequencies or phases.

Because it only relies on pixel-wise or spatially
limited interactions, the main part of this algo-
rithm (everything excepted the common edge hy-
brid reconstruction module, which is a recursive
scan algorithm) is suited to a massively parallel im-
plementation. We have realized an implementation
of the algorithm (temporal processing plus spa-
tiotemporal morphology) on a programmable arti-
ficial retina (Komuro et al., 2003), which is a fine-
grained parallel machine with optical input. The
algorithm is indeed well adapted to the architec-
ture, which consists in a mesh of tiny processors
with limited memory and computation power. For
a 200x200 retina array running at 25 Mhz, using
8 bits per pixels: the computation performance is
2.25 ms per frame, of which only 0.75 ms for the
sole computation, and the rest for the acquisition.
(Denoulet et al., 2005) have also made an imple-
mentation of the 3-A background estimation as-
sociated with Markovian relaxation on the Asso-
ciative Mesh of Orsay (Mérigot, 1997) which is a
massively parallel asynchronous machine with pro-
grammable topology.

Although we have seen how some complex scenes
can be addressed with our approach, several limi-
tations remain, for example wide amplitude peri-
odical motion (e.g sea surge), or backgrounds with
several equiprobable modes. We are investigating
the possibilities to go beyond these limits by using
estimates with different periods and phases, in or-
der to get a richer quantitative estimation of the
motion activity. Automatically adapting the differ-
ent frequencies and phases to the observed signal
should be the next challenge. We are also working
on increasing the robustness of the background es-
timation, and then of the whole detection, by using



confidence feedback provided by higher level pro-
cessing.
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Fig. 1. Temporal variation of a pixel value and the corre-
sponding - A estimation, for pixels taken in three different

areas (1) still area, (2) motion area, (3) clutter area.
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Fig. 2. Comparison between (1) 3-A estimation (2) Moving
average (o = 1/16). (3) Forgetting morphological operators

(e =1/8).




Fig. 4. Ghost busting by hybrid reconstruction of the com-
mon edges (o = 1/8). First example (1 car): (1) I (2) A
(3) [[V(A)[l (4) [IV(I)]| (5) Min(|[V(Ad)Il,[IV(I)]])
(6) AjL. Second example (5 cars, 1 pedestrian): (7) Ay
(&) V()] (9) Min(|[V (A, [IV(I)I]) (10) A

Fig. 3. Result of the X-A detection on a traffic sequence.
(1) It (2) My. (3) V; (displayed with reverse video and nor-
malized histogram). (4) Dy (N=2). (5) V; with simulated
oscillations of the camera (displayed in reverse video and
normalized histogram). (6) D; for the oscillating camera
(N=2).

(1) 2) (3)

Fig. 5. Binary spatiotemporal morphology. (1) D; (2) LEO)
(3) Lt
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(1) 2) 3)

Fig. 6. Relevance feedback. (1) Original image (2) X-A
Background (3) Background with relevance feedback

(3a)

(3b) (3c)

Fig. 7. Result of the ¥-A detection with spatial processing
on an indoor (Hall) sequence, shown at 3 frames: (a) t=60
(b) t=130 (c) t=200. (1) Original I; (2) $-A mean M;.
(3) Detection label L.
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(4a) (4b)

Fig. 8. Multi-periods background X-A estimation com-
puted on a complex scene (Luxembourg sequence), shown
at two instants (a) t = 1136 (b) t = 2896. (1) Original
I;. (2) Short-term background m} (a1 = 1) (3) Long-term
background m? (a3 = 16) (4) Best confidence background
M;.



