
HAL Id: hal-01222613
https://hal.science/hal-01222613

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization performance of vision based controllers
for mobile robots evolved with genetic programming

Renaud Barate, Antoine Manzanera

To cite this version:
Renaud Barate, Antoine Manzanera. Generalization performance of vision based controllers for mo-
bile robots evolved with genetic programming. Genetic and Evolutionary Computation Conference
(GECCO’08), Jul 2008, Atlanta, United States. pp.1331-1332, �10.1145/1389095.1389349�. �hal-
01222613�

https://hal.science/hal-01222613
https://hal.archives-ouvertes.fr

Generalization Performance of Vision Based Controllers
for Mobile Robots Evolved with Genetic Programming

Renaud Barate
ENSTA - UEI
Paris, France

renaud.barate@ensta.fr

Antoine Manzanera
ENSTA - UEI
Paris, France

antoine.manzanera@ensta.fr

ABSTRACT
We present a genetic programming system to evolve vision
based obstacle avoidance algorithms. In order to develop au-
tonomous behavior in a mobile robot, our purpose is to de-
sign automatically an obstacle avoidance controller adapted
to the current context. Using a simulation environment, sev-
eral trajectories are used to evaluate the performance of an
evolving population of controllers. Two different methods
are proposed and compared. In the first one (structure-
free controller), we discard any a priori in the structure of
the algorithm. We show that the evolved controllers behave
well in the evolution environment, but have very limited
generalization capabilities. In the second method (struc-
ture restricted controller), the compromise between the two
antagonist functions of the robot navigation, i.e. obstacle
avoidance and target reaching, is explicitely integrated in
the structure of the algorithms. We show that controllers
evolved with this second method are more generic. We give
hints in the discussion to detect overlearning earlier in the
evolution process, so as to quickly evolve controllers with
good generalization abilities.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.4.8 [Image Processing and Com-

puter Vision]: Scene Analysis—depth cues

General Terms
Algorithms

Keywords
Vision, obstacle avoidance, robotic simulation, generaliza-
tion

.

1. INTRODUCTION
Our goal is to automatically design vision based controllers

for robots. We chose obstacle avoidance as target applica-
tion as it is a necessary task for any mobile robot. One
commonly used method to perform obstacle avoidance us-
ing a single camera is based on the calculation of optical
flow. Optical flow represents the perceived movement of the
objects and can be used to compute a fairly accurate ap-
proximation of their distance. It has been used recently for
obstacle avoidance with an autonomous helicopter for in-
stance [12]. However, systems based on optical flow don’t
cope well with thin or lowly textured obstacles. On the other
hand, more simple primitives can be used to extract useful
informations in the image, generally based on texture. For
instance, Michels implemented a system to estimate depth
from texture information in outdoor scenes [11]. Other ob-
stacle avoidance systems use this kind of information to dis-
criminate the floor from the rest of the scene and calculate
obstacle distances in several directions [6, 7, 16]. Neverthe-
less those methods suppose that the floor may be clearly
discriminated and they neglect potentially useful informa-
tion from the rest of the scene.

As none of those methods is robust enough to deal with all
kind of environments, our system should be able to automat-
ically select the kind of visual features that allow obstacle
detection in a given environment. More, it should adapt and
parameterize the whole obstacle avoidance controller to use
those features efficiently. For that, we propose to use ge-
netic programming as it allows us to evolve algorithms with
little a priori on their structure and parameters. For now,
the evolution is an offline process using a simulation envi-
ronment for the evaluations where the robot must reach a
target point while avoiding obstacles.

Evolutionary techniques have already been used for robotic
navigation and the design of obstacle avoidance controllers
but in general vision is either overly simplified or not used
at all. For instance, Harvey used a 64×64 pixels camera but
simplified the input to a few average values on the image [5].
Marocco used only a 5 × 5 pixels retina as visual input [8].
A description of several other evolutionary robotics systems
can be found in [10, 17] but most of them rely only on range
sensors. On the other hand, genetic programming has been
proved to achieve human-competitive results in image pro-
cessing systems, e.g. for the detection of interest points [3,
15]. Parisian evolution has also been shown to produce very
good results for obstacle detection and 3D reconstruction
but those systems need two calibrated cameras [14, 13].

To our knowledge, only Martin tried evolutionary tech-

niques with monocular images for obstacle avoidance [9].
The structure of his algorithm is based on the floor segmen-
tation technique and the evaluation is done with a database
of hand labeled real world image. The advantage of such an
approach is that the evolved algorithms are more likely to
work well with real images than those evolved with computer
rendered images. Nevertheless, it introduces an important
bias since the algorithms are only selected on their ability
to label images in the database correctly and not on their
ability to avoid obstacles.
We first tried to evolve controllers with very little a priori

on their algorithmic structure. In this case, all the algorithm
is designed by the evolutionary process. The advantage of
this freedom is that every kind of algorithm can potentially
be evolved this way, even those that we didn’t think of while
designing the system. Nevertheless the compromise between
moving toward the target point and avoiding obstacles is
very difficult to achieve with this kind of free structure. In
general the evolution will either find controllers moving to-
ward the target point but with limited obstacle avoidance
abilities, or controllers that avoid obstacles but that won’t
move toward the target location. Therefore this kind of con-
trollers won’t generalize well to slightly different conditions.
To overcome this problem, we designed a more restricted

algorithmic structure that facilitates the compromise be-
tween avoiding obstacles and moving toward the target lo-
cation. We will show that those controllers are more generic
as they can reach the target point while avoiding obstacles
even when the environment changes.

2. STRUCTURE OF THE CONTROLLERS

2.1 The Vision Algorithms
Generally speaking, a vision algorithm can be divided in

three main parts: First, the algorithm will process the in-
put image with a number of filters to highlight some fea-
tures. Then these features are extracted, i.e. represented by
a small set of scalar values. Finally these values are used
for a domain dependent task, here to generate motor com-
mands to avoid obstacles. We designed the structure of our
algorithms according to this general scheme. First, the fil-
ter chain consists of spatial and temporal filters, optical flow
calculation and projection that will produce an image high-
lighting the desired features. Then we compute the mean of
the pixel values on several windows of this transformed im-
age (feature extraction step). Finally those means are used
to compute a single scalar value by a linear combination.
We will use this scalar value to determine the presence of an
obstacle and to generate a motor command to avoid it.
An algorithm is represented as a tree, the leaves being in-

put data, the root being output command, and the internal
nodes being primitives (transformation steps). The program
can use different types of data internally, i.e. scalar values,
images, optical flow vector fields or motor commands. For
each primitive, the input and output data types are fixed.
Some primitives can internally store information from pre-
vious states, thus allowing temporal computations like the
calculation of the optical flow. Here is the list of all the
primitives that can be used in the programs and the data
types they manipulate:

• Spatial filters (input: image, output: image): Gaus-
sian, Laplacian, threshold, Gabor, difference of Gaus-

sians, Sobel and subsampling filter.

• Temporal filters (input: image, output: image): pixel-
to-pixel min, max, sum and difference of the last two
frames, and recursive mean operator.

• Optical flow (input: image, output: vector field):
Horn and Schunck global regularization method, Lucas
and Kanade local least squares calculation and simple
block matching method [1]. The rotation movement is
first eliminated by a transformation of the two images
in order to facilitate further use of the optical flow.

• Projection (input: vector field, output: image): Pro-
jection on the horizontal or vertical axis, Euclidean
or Manhattan norm computation, and time to contact
calculation using the flow divergence.

• Windows integral computation (input: image, out-
put: scalar): The method used for this transformation
is:

1. A global coefficient α0 is defined for the primitive.

2. Several windows are defined on the left half of the
image with different positions and sizes. With
each window is paired a second window defined
by symmetry along the vertical axis. A coefficient
αi and an operator (+ or −) are defined for each
pair.

3. The resulting scalar value R is a simple linear
combination calculated with the following formula:

R = α0 +
∑

n

i=1
αiµi

µi = µLi + µRi or µi = µLi − µRi

where n is the number of windows and µLi and µRi

are the means of the pixel values over respectively
the left and right window of pair i.

The number of windows pairs, their positions, sizes,
operator and coefficient along with the global coeffi-
cient are characteristic parts of the primitive and will
be customized by the evolutionary process.

• Scalar operators (input: scalar(s), output: scalar):
Addition, subtraction, multiplication and division op-
erators and a temporal mean calculation.

• Command generation (input: two scalars, output:
command): The motor command is represented by two
scalar values: the requested linear and angular speeds.

Most of those primitives use parameters along with the in-
put data to do their calculations (for example, the standard
deviation value for the Gaussian filter). Those parameters
are specific to each algorithm; they are randomly generated
when the corresponding primitive is created by the genetic
programming system described in Sect. 3.4.

2.2 Structure-Free Controllers
For this first kind of controllers, all the algorithmic tree

will be built by the evolutionary process. We add two scalar
input variables: the target distance and the target direction,
and one scalar operator: an if-then-else test. This allows the
evolutionary process to create more complex and non-linear
combinations between those scalar input variables and the

scalars issuing from the vision part of the algorithm. Fig. 1
shows an example controller built with this structure. The
algorithm is in this case a single tree, and all the primitives
between the input data and the resulting motor command
are created and parameterized by the evolution.

Figure 1: Example of a structure-free controller for

obstacle avoidance based on optical flow. Rectangles

represent primitives and ellipses represent data.

2.3 Structure-Restricted Controllers
Here, we restrict the global structure of the controllers

to facilitate the compromise between avoiding obstacles and
going toward the target point. First, a vision algorithm is
used to detect nearby obstacles. If no obstacle is around,
the robot will just go straight to the target point. If an
obstacle is detected, another vision algorithm will be used
to generate a command to avoid this obstacle. The parts
that will be customized by the evolution are the two vision
algorithms along with a few parameters like the speed of the
robot when going straight to the goal.
The first vision algorithm (obstacle detection) is in fact

always linear, starting with the video image and computing
a Boolean as output. We obtain this Boolean value by com-
paring the scalar produced by the feature extraction step
with a scalar threshold. This result will indicate the pres-
ence or absence of a nearby obstacle.
The second vision algorithm (command generation) can

use as input either the original video image or the image
filtered by the obstacle detection algorithm. This allows the
reuse of interesting features between the two algorithms.
Here, several scalar values can be produced with different
filter chains and these values are combined using scalar op-
erators. The final step will generate a motor command using
the resulting scalar value(s). Fig. 2 illustrates this restricted
structure with an example.

3. THE EVOLUTION PROCESS

3.1 Simulation Environment
For the evaluation of the different obstacle avoidance al-

gorithms, we use a simulation environment in which the

Figure 2: Example of a structure-restricted con-

troller. Top: overview of the global fixed structure.

Bottom left: an example of obstacle detection algo-

rithm. Bottom right: an example of command gen-

eration algorithm. Rectangles represent primitives

and ellipses represent data.

robot moves freely during each experiment. The simula-
tion is based on the open-source robot simulator Gazebo.
The simulator uses ODE physics engine for the movement
of the robot and collisions detection and OpenGL for the
rendering of the camera images. The physics engine update
rate is 50 Hz while the camera update rate is 10 Hz. In
all the experiments presented in this paper, the simulated
camera produces 8-bits gray-value images of size 320 × 160
representing a field of view of approximately 100◦ × 60◦.
This large field of view reduces the dead angles and hence
facilitates obstacle detection and avoidance. The simulation
environment is a closed room of 36 m2 area (6 m × 6 m)
containing three bookshelves (Fig. 3). All the obstacles are
immovable to prevent the robot from just pushing them in-
stead of avoiding them. In each experiment, the goal of the
robot is to go from a given starting point to a goal location
without hitting obstacles.

Figure 3: Snapshot of the simulation environment,

containing three bookshelves in a 6 m × 6 m closed

room.

3.2 First Phase: Evolution of Algorithms that
Imitate a Behavior

Due to the simulation time and mainly to the complexity
of the vision algorithms, we’re limited to about 40,000 eval-
uations to keep the evolution time acceptable (a few days at
most). We therefore face a common problem with genetic
programming systems, that is the state space is immense
compared to the number of evaluations. More, the fitness
landscape is very chaotic so the evolution can easily get stuck
in a local minima of the fitness function. To overcome those
problems, we use a two-phase evolution process: the first
phase is based on imitation to quickly guide the evolution to-
ward promising solutions, while the second phase will evolve
more robust controllers by using a functional evaluation in
the simulation environment.
With this kind of problem, it is very difficult to manually

design even a mediocre controller but it is very easy to man-
ually guide the robot toward the target point while avoiding
obstacles. So we can obtain a good example of an efficient
behavior by recording the video sequence and command pa-
rameters while we guide the robot. In this first phase, we
will try to evolve algorithms that imitate this efficient ex-
ample behavior.
The population is initialized with random algorithms and

the evolution lasts for 50 generations. For the evaluation of
the algorithms, we replay the recorded sequence and com-
pare the command issued by the evaluated algorithm with
the command recorded during the manual control of the
robot. The goal is to minimize the difference between these
two commands along the recorded sequence. Formally, we

try to minimize two variables F and Y defined by the for-
mulas:

F =

√

√

√

√

n
∑

i=1

(fRi − fAi)
2 and Y =

√

√

√

√

n
∑

i=1

(yRi − yAi)
2

where fRi and yRi are the recorded forward and yaw speed
commands for frame i, fAi and yAi are the forward and yaw
speed commands from the tested algorithm for frame i and
n is the number of frames in the video sequence.

3.3 Second Phase: Evolution of Efficient So-
lutions

The goal of this second phase is to produce more robust
and generic controllers. For that, we will evaluate them on
their ability to really avoid obstacles and reach the target
location in the simulation environment. The population is
initialized with the final population of the first phase and the
evolution lasts for 50 more generations. For the evaluation,
we place the robot at the fixed starting point and let it move
in the environment during 30 s driven by the obstacle avoid-
ance algorithm. Two scores are attributed to the algorithm
depending on its performance: a goal-reaching score G re-
wards algorithms reaching or approaching the goal location,
whereas contact score C rewards the individuals that didn’t
hit obstacles on their way. Those scores are calculated with
the following formulas:

G =

{

tG if the goal is reached
tmax + dmin/V otherwise

C = tC

where tG is the time needed to reach the goal in seconds,
tmax is the maximum time in seconds (here 30 s), dmin is
the minimum distance to the goal achieved in meters, V
is a constant of 0.1 m/s and tC is the time spent near an
obstacle (i.e. less than 18 cm, which forces the robot to keep
some distance away from obstacles). The goal is hence to
minimize those two scores G and C.

For the two phases of evolution, the evaluations consist
in fact in four runs with different starting points and goal
locations. Final scores are the means of the scores obtained
for the four runs. The starting points are fixed because we
want to evaluate all algorithms on the same problem. We
chose four runs as a tradeoff between generalization behav-
ior and evaluation time but more tests would be needed to
determine the optimal number of runs and the precise con-
sequence on generalization.

3.4 The Genetic Programming System
We use genetic programming to evolve vision algorithms

with little a priori on their structure. As usual with evo-
lutionary algorithms, the population is initially filled with
randomly generated individuals. We use the grammar based
genetic programming system introduced by Whigham [18] to
overcome the data typing problem. It also allows us to bias
the search toward more promising primitives and to control
the growth of the algorithmic tree.

In the same way that a grammar can be used to generate
syntactically correct random sentences, a genetic program-
ming grammar is used to generate valid algorithms. The
grammar defines the primitives and data (the bricks of the
algorithm) and the rules that describe how to combine them.
The generation process consists in successively transforming

[1.0] start → command

[1.0] command → directMove(real,real)
[0.15] real → scalarConstant
[0.075] real → add(real,real)
[0.075] real → subtract(real,real)
[0.05] real → multiply(real,real)
[0.05] real → divide(real,real)
[0.1] real → temporalRegularization(real)
[0.5] real → windowsIntegralComputation(image)
[0.3] image → videoImage
[0.3] image → previouslyFilteredImage
[0.25] image → spatial filter(image)
[0.1] image → projection(optical flow)
[0.05] image → temporal filter(image)
[0.15] spatial filter → gaussian
[0.14] spatial filter → laplacian
[0.14] spatial filter → threshold
[0.14] spatial filter → gabor
[0.14] spatial filter → differenceOfGaussians
[0.14] spatial filter → sobel
[0.15] spatial filter → subsampling
[0.2] temporal filter → temporalMinimum
[0.2] temporal filter → temporalMaximum
[0.2] temporal filter → temporalSum
[0.2] temporal filter → temporalDifference
[0.2] temporal filter → recursiveMean
[0.33] optical flow → hornSchunck(image)
[0.33] optical flow → lucasKanade(image)
[0.34] optical flow → blockMatching(image)
[0.2] projection → horizontalProjection
[0.2] projection → verticalProjection
[0.2] projection → euclideanNorm
[0.2] projection → manhattanNorm
[0.2] projection → timeToContact

Table 1: Grammar used in the genetic program-

ming system for the creation and transformation

of the command generation algorithm for structure-

restricted controllers. The grammars used for the

obstacle detection algorithm and for the structure-

free controllers are very similar to this one.

each non-terminal node of the tree with one of the rules.
This grammar is used for the initial generation of the algo-
rithms and for the transformation operators. The crossover
consists in swapping two subtrees issuing from identical non-
terminal nodes in two different individuals. The mutation
consists in replacing a subtree by a newly generated one.
Table 1 presents the exhaustive grammar that we used in all
our experiments.
The numbers in brackets are the probability of selection

for each rule. A major advantage of this system is that
we can bias the search toward the usage of more promis-
ing primitives by setting a high probability for the rules
that generate them. We can also control the size of the
tree by setting small probabilities for the rules that are
likely to cause an exponential growth (rules like real →

add(real,real) for example).
As described previously, we wish to minimize two crite-

ria (F and Y in the first phase, G and C in the second
phase). There are different ways to use evolutionary algo-
rithms to perform optimization on several and sometimes
conflicting criteria. For the experiments described in this
paper, we chose the widely used multi-objective evolution-
ary algorithm called NSGA-II. This algorithm is based on

the Pareto dominance principle. Individuals are sorted by
non-dominance rank, so that non-dominated individuals get
a higher probability of being selected for breeding. This
algorithm is elitist and a “crowding distance” is used to pro-
mote diversity among the individuals. More details can be
found in the paper by K. Deb[2].

In order to prevent problems of premature convergence,
we separate the population of algorithms in 4 islands, each
containing 100 individuals. Those islands are connected
with a ring topology; every 15 generations, 5 individuals
selected with binary tournament will migrate to the neigh-
bor island while 5 other individuals are received from the
other neighbor island. For the parameters of the evolution,
we use a crossover rate of 0.8 and a probability of muta-
tion of 0.01 for each non-terminal node. We use a classical
binary tournament selection in all our experiments. Those
parameters were determined empirically with a few tests us-
ing different values. Due to the length of the experiments,
we didn’t proceed to a thorough statistical analysis of the
influence of those parameters.

4. EXPERIMENTS AND RESULTS

4.1 Analysis of the Evolved Controllers
In total, each experiment lasts for 100 generations, that

is 40,000 evaluations. Fig. 4 presents the final Pareto fronts
for the evolution of structure-free and structure-restricted
controllers. Those final results are comparable in perfor-
mance for the two kinds of controllers. Structure-restricted
controllers generally come closer to the target points but
structure-free controllers are better for avoiding obstacles.

 0

 0.5

 1

 1.5

 2

 2.5

 18 20 22 24 26 28 30 32 34 36 38

C
on

ta
ct

 s
co

re

Goal reaching score

A

B

Final Pareto front, structure-restricted
Final Pareto front, structure-free

Figure 4: Final Pareto fronts of the solutions ob-

tained with the two kinds of controllers. Those

fronts are created by taking the best individuals in

the final population in all the four islands and keep-

ing only non-dominated ones. Individuals A and B

are the examples used for the trajectories in the next

figures.

The real difference appear when we compare the trajecto-
ries of the controllers. For that we take an example solution
in the final population of each experiment (individuals A
and B in Fig. 4). Those individuals are not on the Pareto

front but they show good generalization abilities (see Sec.
4.2).
Fig. 5 represents the trajectories of the robot in the

simulation environment used during the evolution with the
structure-restricted controller A. We can see that it applies a
very simple back and forth strategy: it goes forward toward
the goal as long as there is no obstacle in front of it, and it
goes backward turning on itself when it faces an obstacle.
Nevertheless this simple strategy is sufficient as the robot
reaches the target point in each case and with only a small
number of contacts.

Starting point Target point Trajectory Contact points

Figure 5: Trajectories of the robot with the

structure-restricted controller A in the environment

used during the evolution. The small dots are placed

every 2 seconds and thus indicate the speed of the

robot.

Fig. 6 represents the trajectories in the same environment
with the structure-free controller B. Here the robot moves
much faster than in the previous case but it doesn’t use the
target direction information at all, so it will never find the
target point unless by chance.

4.2 Generalization Performance
The previous experiment showed the performance of the

evolved controllers in the environment that was used for the
evolution process but it does not prove that they really can
avoid obstacles in a generic way. They could just as well be
adapted only to reproduce the trajectory used during the
evolution. In this case, they would have learned a trajectory
and not a generic obstacle avoidance behavior.
In order to test the genericity of the evolved controllers,

we designed a second environment with the same appearance
but where the obstacles and the start and target points have
been moved around. We also have four different runs with
different start and target points. We evaluate all the indi-
viduals of the last generation from the previous evolution

Starting point Target point Trajectory Contact points

Figure 6: Trajectories with the structure-free con-

troller B in the evolution environment

process. Fig. 7 shows the performance of the individuals
evolved before on this new test environment. We chose indi-
viduals A and B as they show the best performance in this
test environment, but that doesn’t mean that they are on
the Pareto front with the evolution environment as shown
on Fig. 4.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 20 25 30 35 40 45 50 55 60

C
on

ta
ct

 s
co

re

Goal reaching score

A

B

Pareto front, structure-restricted
Pareto front, structure free

Figure 7: Pareto front of the evolved individuals in

the generalization environment.

In this environment, the structure-restricted controllers
generally outperform the structure-free ones. This is even
clearer when we consider the trajectories of the robot with
the two kinds of controllers (Fig. 8 and 9). The structure-
restricted controller A adapts quite well to those new con-
ditions and reaches the target point in three out of four test

cases, with only a few more contacts with the obstacles than
before. The structure-free controller B still avoids the obsta-
cles correctly but since it does not move toward the target
point, it finds it by chance only in one of the test cases.

Starting point Target point Trajectory Contact points

Figure 8: Trajectories in the generalization environ-

ment with the structure-restricted controller A

Those experiments show that using a customized structure
for the evolution of algorithms can bring significant benefits,
especially when we must find a compromise between two dif-
ferent behaviors. Indeed we can evolve very efficient obsta-
cle avoidance controllers or controllers that move toward the
goal with a free structure, but only by using a kind of rule-
based structure we can evolve controllers that move toward
a target point while avoiding obstacles.
Another interesting result is that the best individuals in

the environment used during the evolution process are gen-
erally not the best ones when we change the environment.
This can be explained by the fact that those individuals
overlearn the environment used to evaluate them and this
decreases their generalization performance. Therefore the
question is: how to evolve and select individuals with good
generalization abilities? We partially answered this question
by using four different test cases in the evaluation environ-
ment. This limits the overlearning problem as the evolved
controllers must be adapted for the four different trajecto-
ries. By evaluating the whole final population on a new
environment and selecting individuals performing well with
those new conditions, we also choose the solutions that are
more likely to generalize well.
But this does not tell us when we should stop the evolu-

tion process to avoid overlearning. Gagné [4] proposed to
use a three data sets methodology, already commonly used
in the Machine Learning community. This consists in testing
the individuals on the Pareto front after each generation on
a validation set to detect when overlearning begins to occur
and therefore to stop the evolution process. But as we have

Starting point Target point Trajectory Contact points

Figure 9: Trajectories with the structure-free con-

troller B in the generalization environment

seen before, the more generic individuals are not always on
the Pareto front. We could evaluate the whole population
on a new environment after each generation but this would
double the evolution time and we would select individuals
that are “by chance” adapted to our validation set. Never-
theless we plan to test and adapt this kind of technique in
future work in order to select more generic individuals and
to shorten the evolution time.

5. CONCLUSION
In this paper, we presented the benefits of using a specific

algorithmic structure for the evolution of vision based ob-
stacle avoidance controllers with genetic programming. This
structure allows us to facilitate the compromise between go-
ing toward a target point and avoiding obstacles. Therefore
the controllers evolved with this structure are more generic
than structure-free controllers.

Our goal is now to further improve this system to facili-
tate the detection of different kind of obstacles and to detect
overlearning earlier in the evolution process. We will then
adapt the system to create controllers for a real robot. Fi-
nally, we want to design a high-level controller able to select
its behavior depending on the context in real-time, in order
to have a fully autonomous and adaptive robot.

6. REFERENCES
[1] J. Barron, D. Fleet, and S. Beauchemin. Performance

of optical flow techniques. International Journal of
Computer Vision, 12(1):43–77, 1994.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[3] M. Ebner and A. Zell. Evolving a task specific image
operator. Evolutionary image analysis, signal
processing and telecommunications: First european
workshop, evoiasp, pages 74–89, 1999.

[4] C. Gagné, M. Schoenauer, M. Parizeau, and
M. Tomassini. Genetic Programming, Validation Sets,
and Parsimony Pressure. In Proceedings of EuroGP
2006, volume 3905 of Lecture Notes in Computer
Science, pages 109–120. Springer, 2006.

[5] I. Harvey, P. Husbands, and D. Cliff. Seeing the Light:
Artificial Evolution, Real Vision. From Animals to
Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior, pages
392–401, 1994.

[6] I. Horswill. Polly: A vision-based artificial agent.
Proceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI-93), pages 824–829, 1993.

[7] L. Lorigo, R. Brooks, and W. Grimson.
Visually-guided obstacle avoidance in unstructured
environments. Proceedings of the 1997 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 1:373–379, 1997.

[8] D. Marocco and D. Floreano. Active vision and
feature selection in evolutionary behavioral systems.
From Animals to Animats, 7:247–255, 2002.

[9] M. Martin. Evolving visual sonar: Depth from
monocular images. Pattern Recognition Letters,
27(11):1174–1180, 2006.

[10] M. Mataric and D. Cliff. Challenges in evolving
controllers for physical robots. Robotics and
Autonomous Systems, 19(1):67–83, 1996.

[11] J. Michels, A. Saxena, and A. Ng. High speed obstacle
avoidance using monocular vision and reinforcement
learning. Proceedings of the 22nd international
conference on Machine learning, pages 593–600, 2005.

[12] L. Muratet, S. Doncieux, Y. Brière, and J.-A. Meyer.
A contribution to vision-based autonomous helicopter
flight in urban environments. Robotics and
Autonomous Systems, 50(4):195–209, 2005.

[13] G. Olague and C. Puente. Parisian evolution with
honeybees for three-dimensional reconstruction.
Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 191–198, 2006.

[14] O. Pauplin, J. Louchet, E. Lutton, and
A. De La Fortelle. Evolutionary Optimisation for
Obstacle Detection and Avoidance in Mobile Robotics.
Journal of Advanced Computational Intelligence and
Intelligent Informatics, 9(6):622–629, 2005.

[15] L. Trujillo and G. Olague. Synthesis of interest point
detectors through genetic programming. Proceedings
of the 8th annual conference on Genetic and
evolutionary computation, pages 887–894, 2006.

[16] I. Ulrich and I. Nourbakhsh. Appearance-based
obstacle detection with monocular color vision.
Proceedings of AAAI Conference, pages 866–871, 2000.

[17] J. Walker, S. Garrett, and M. Wilson. Evolving
controllers for real robots: A survey of the literature.
Adaptive Behavior, 11(3):179–203, 2003.

[18] P. Whigham. Grammatically-based genetic
programming. Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World
Applications, pages 33–41, 1995.

