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Introduction

For S ⊂ R n , the (n -1)-dimensional upper and lower Minkowski contents of S are defined by

M (S) = lim sup ρ→0 + L n ({x : dist(x, S) < ρ}) 2ρ , M (S) = lim inf ρ→0 + L n ({x : dist(x, S) < ρ}) 2ρ ,
where L n is the Lebesgue measure. If M (S) = M (S), their common value, denoted by M(S), is called the (n -1)-dimensional Minkowski content. In [START_REF] Federer | Geometric Measure Theory[END_REF] (Theorem 3.2.39), the following result is given.

Theorem 0.1 (Federer). If S is a closed and (n -1)-rectifiable subset of R n , then

M(S) = H n-1 (S),
where H n-1 is the (n -1)-dimensional Hausdorff measure.

In this article, we focus on a class of anisotropic perturbation of H n-1 defined on (n -1)rectifiable surfaces S ⊂ R n by S Mν, ν 1/2 dH n-1 , (0.1)

where M : R n → S + n (R) is a continuous field of symmetric definite positive matrices, ν is an unitary vector orthogonal to the tangent plane of S. As S is rectifiable, then ν is well defined H n-1 -almost everywhere in S. In order to get an approximation of (0.1) which involves the Lebesgue measure, as in Theorem 0.1, for any (x, v) ∈ R n × R n , we consider the following Riemannian metric:

φ(x, v) = M -1 (x)v, v 1/2
and for any (x, y) ∈ (R n ) 2 its associated integrated distance: L n ({x : dist φ (x, S) < ρ}) 2ρ .

dist φ (x, y) = inf
If M M (S) = M M (S), we call their common value the (n -1)-dimensional anisotropic Minkowski content M M (S). In this paper, we prove the following Theorem 0.2. If S is a closed and (n -1)-rectifiable subset of R n and M : R n → S + n (R) is continuous, then we have

M M (S) = S Mν, ν 1/2 dH n-1 ,
where ν is an unitary vector, normal to S.

A comparable result is given in [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF] (Theorem 6.1) for S = ∂E and E is a set of finite perimeter. In [START_REF] Chambolle | A remark on the anisotropic Minkowski content[END_REF], the study focuses on anisotropic outer Minkowski content for the same class of sets. In our case, S is not necessary the boundary of a set. This generalization is of interest for the case where S is the jump set J u of a function u with bounded variation as we will see in last section.

Our result allows us to extend a regularity result for free boundary problems to a larger class of energies which involve a continuous perturbation of the Hausdorff measure. More precisely, as it has been introduced in [START_REF] Bucur | Monocity formula and regularity for general free discontinuity problems[END_REF], u ∈ SBV(Ω) is an almost quasi-minimizer of a free discontinuity problem if there exist σ ≥ 1, α > 0 and

c α > 0 such that: if v ∈ SBV(Ω), B(x, r) ⊂ Ω and [w = v] ⊂ B(x, r), then we have B(x,r) |∇w| 2 dx + H n-1 (J w ∩ B(x, r)) ≤ B(x,r) |∇v| 2 dx + σH n-1 (J v ∩ B(x, r)) + c α r n-1+α ,
where J u is the jump set of u. The difference of this definition with respect to the classical notion of quasi-minimizer consists in the coefficient σ ≥ 1 which allows bounded perturbation of H n-1 . We prove the following Theorem 0.3. Let M : R n → S + n (R) be continuous and u ∈ SBV(Ω) be an almost quasi-minimizer of a free discontinuity problem, then we have

M M (J u ) = Ju Mν u , ν u 1/2 dH n-1 .
This result is applied to the Mumford-Shah model in an anisotropic setting. Indeed, a minimizer this model is an almost quasi-minimizer of a free boundary problem and the approximation result of Theorem 3.1 is satisfied. In a joint paper [START_REF] Vicente | Anisotropic Mumford-Shah model and its approximation with Γ-convergence[END_REF], this is the key tool to perform a Γ-convergence approximation of our model.

In section 1, we recall some classical results of Geometric Measure Theory. Section 2 is devoted to the proof of Theorem 0.2. In section 3, we give the proof of Theorem 0.3 and we apply this result to give a rigorous setting for the approximation of an anisotropic Mumford-Shah model.

Geometric Measure Theory Framework

We adopt the notations:

• Ω for an open and bounded subset of

R n , • v 1 , v 2 ∈ R for the canonical scalar product of v 1 , v 2 ∈ R n , • n-1 i=1 v i ∈ R n for the canonical vectorial product of v 1 , . . . , v n-1 ∈ R n , • |v| for the euclidean norm of v ∈ R n ,
• B(x, r) for the open ball in R n with radius r and center x, The geometric measure theory framework is mainly extracted from [START_REF] Federer | Geometric Measure Theory[END_REF] and [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF]. Definition 1.1 (Federer,3.2.1). Let f maps a subset of R n-1 onto R n , the (n -1)-dimensional Jacobian is defined by

• M n (R) for the space of n × n real matrices, • M for an induced norm of M ∈ M n (R), • S + n (R) ⊂ M n (R)
J n-1 (f )(a) = n-1 i=1 ∂f ∂x i (a)
whenever f is differentiable at a.

Theorem 1.1 (Area Formula, Federer, 3.2.3). Suppose f :

R n-1 → R n is Lipshitzian. If u is an L n-1 -integrable function, then R n-1 u(x)J n-1 (f )(x)dL n-1 (x) = R n x∈f -1 {y} u(x)dH n-1 (y).
We are interested in the class of subset of R n which are (n -1)-rectifiable.

Definition 1.2 (Federer, 3.2.14). The set E ⊂ R n is (n -1)-rectifiable if there exists a Lipshitzian function f : R n-1 → R n mapping some bounded subset of R n onto E.
The following result is useful to get an univalent parametrization of a rectifiable set.

Theorem 1.2 (Federer,3.2.4). For every L n-1 measurable set A, there exists a Borel set

B ⊂ A ∩ {x : J n-1 (f )(x) > 0} such that f B is univalent and H n-1 (f (A) \ f (B)) = 0.
We say that ϕ : Ω × R n → R + is a Finsler metric if ϕ is continuous and if there exists λ, Λ > 0 such that, for any (x, v, t)

∈ Ω × R n × R, it satisfies φ(x, tv) = |t|φ(x, v), λ|v| ≤ φ(x, v) ≤ Λ|v|.
We define the integrated distance associated to ϕ as

∀(x, y) ∈ (R n ) 2 , dist ϕ (x, y) = inf 1 0 ϕ γ, dγ dt dt : γ ∈ W 1,1 ([0; 1]; R n ), γ(0) = x, γ(1) = y .
For any E ⊂ R n , we define the associated diameter as diam ϕ (E) = sup{dist ϕ (x, y) : x, y ∈ E} and the associated k-dimensional Hausdorff measure by

H k ϕ (E) = lim δ→0 + inf ω k 2 k i∈I (diam ϕ (A i )) k : E ⊂ i∈I A i , ∀i ∈ I, diam ϕ (A i ) ≤ δ
where ω k is the volume of the unit ball in R k .

Theorem 1.3 (Bellettini). Let ϕ be a Finsler metric, then, for all Borel set E ⊂ R n , we have

H n ϕ (E) = E H n (B(0, 1)) H n (B ϕ (x, 1)) dx,
where B ϕ (x, 1) is the unit ball centered at x for the metric ϕ.

2 Proof of Theorem 0.2

The proof is divided in two steps. First, we assume in section 2.1 that the metric does not depend on x. Then, in section 2.2, we remove this assumption and we prove the Theorem 0.2 in the general setting.

Homogeneous Case

In this section, we assume that the metric is homogeneous. So, we denote by M 0 its common value and, for any v ∈ R n , we set

φ 0 (v) = M -1 0 v, v 1/2 , ( 2.1) 
so that (R n , φ 0 ) is an Euclidean space. We prove the following Theorem 2.1. If S is a closed and (n -1)-rectifiable subset of R n and M 0 ∈ S + n (R). Then we have

M M0 (S) = S M 0 ν, ν 1/2 dH n-1 ,
where ν is an unitary and normal vector to S.

We decompose the proof in three Lemmas. As M -1 0 is symmetric positive definite, R n may be viewed as an euclidean space according to the scalar product M -1 0 •, • . So, Theorem 0.1 may be directly applied. The three following Lemmas consist in the change of variable from R n endowed with the scalar product M -1 0 •, • to R n endowed with the canonical scalar product. Lemma 2.1. For M 0 ∈ S + n (R), φ 0 defined by (2.1) and for any E ∈ B(R n ), we have

L n (E) = det(M 0 )H n φ0 (E).
Proof. As M 0 is a symmetric positive definite matrix, there exists P ∈ O n (R) and (λ i ) i=1...n such that λ i > 0 for any i ∈ {1, . . . , n} and

M 0 = P       λ 1 0 • • • 0 0 λ 2 . . . . . . . . . . . . . . . 0 0 • • • 0 λ n       P -1 . ( 2.2) 
We denote by (c i ) i=1...n the canonical basis of R n , then ( √ λ i P c i ) i=1...n is an orthonormal basis for the scalar product M -1 0 •, • . So, the linear application L : R n → R n characterized by L(c i ) = √ λ i P c i for any i ∈ {1, . . . , n}, is an isomorphism which satisfies L(B(0, 1)) = B φ0 (0, 1) and det(L) = det(M 0 ). It gives

L n (B φ0 (0, 1)) = B(0,1) |det(L)|dx, = det(M 0 )L n (B(0, 1))
According to isodiametric inequality (see 2.10.35 in [START_REF] Federer | Geometric Measure Theory[END_REF]), we have H n = L n and then, for any

E ∈ B(R n ), Theorem 1.3 yields H n φ0 (E) = L n (E) det(M 0 ) .
which concludes the proof of Lemma 2.1.

Setting

e i = √ λ i P c i , then (e i ) i=1,...,n is an orthonormal basis of R n for the scalar product M -1 0 •, • . In the Euclidean space R n , φ 0 ), the vectorial product of (v i ) i=1,...,n-1 , denoted by n-1 φ0,i=1 v i , is characterized by the following equality M -1 0 v 1 , e 1 . . . M -1 0 v n-1 , e 1 M -1 0 w, e 1 . . . . . . . . . . . . . . . . . . M -1 0 v 1 , e n . . . M -1 0 v n-1 , e n M -1 0 w, e n = M -1 0 n-1 φ0,i=1 v i , w , (2.3) 
which must be true for any w ∈ R n .

Lemma 2.2. If M 0 ∈ S + n (R) and φ 0 defined by (2.1), then we have

n-1 φ0,i=1 v i = M 0 (∧ n-1 i=1 v i ) det(M 0 )
.

Proof. As P ∈ O n (R), then (P c i ) n i=1 is an orthonormal basis for the usual scalar product and, for any w ∈ R n , we have

v 1 , P c 1 . . . v n-1 , P c 1 w, P c 1 . . . . . . . . . . . . . . . . . . v 1 , P c n . . . v n-1 , P c n w, P c n = ∧ n-1 i=1 v i , w .
According to (2.2), for any v ∈ R n , we have

v, P c i = λ i M -1 0 v, λ i P c i and then λ 1 . . . λ n M -1 0 v 1 , e 1 . . . M -1 0 v n-1 , e 1 M -1 0 w, e 1 . . . . . . . . . . . . . . . . . . M -1 0 v 1 , e n . . . M -1 0 v n-1 , e n M -1 0 w, e n = M -1 0 M 0 ∧ n-1 i=1 v i , w .
According to (2.3), it concludes the proof of Lemma 2.2.

As for the vectorial product, we may define an anisotropic (n -1)-dimensional Jacobian by

J φ0 n-1 (f )(a) = n-1 φ0,i=1 ∂f ∂x i (a)
whenever f is differentiable at a. The following result is a straightforward consequence of Lemma 2.2.

Lemma 2.3. Let M 0 ∈ S + n (R) be fixed and φ 0 defined by (2.1), then we have

J φ0 n-1 (f )(a) = 1 det(M 0 ) M 0 n-1 i=1 ∂f ∂x i (a) , n-1 i=1 ∂f ∂x i (a) 1/2
. Now we give the proof of Theorem 2.1.

Proof. Let S be a (n -1)-rectifiable closed set. As L, introduced in the proof of Lemma 2.1, is an automorphism, then S is also (n -1)-rectifiable and closed for R n endowed with the scalar product M -1 0 •, • . According to Lemma 2.1, we have

L n ({x : dist φ0 (x, S) < ρ}) 2ρ = det(M 0 ) H n φ0 ({x : dist φ0 (x, S) < ρ}) 2ρ . (2.4)
We may apply Theorem 0.1 in the euclidean space (R n ,

M -1 0 •, • ), it gives lim ρ→0 + H n φ0 ({x : dist φ0 (x, S) < ρ}) 2ρ = H n-1 φ0 (S). (2.5)
As S is rectifiable, there exists a Lipschitzian function f : R n-1 → R n and a bounded subset A ⊂ R n-1 such that S ⊂ f (A). According to Corollary 1.2, there exists a Borel set

B ⊂ A ∩ {x : J φ0 n-1 (f )(x) > 0} such that f B is univalent and H n-1 (f (A) \ f (B)) = 0. We denote by C = f -1 (S) ∩ B and then H n-1 φ0 (f (C)) = H n-1 φ0 (S)
. As f C is univalent, according to Area formula 1.1 with u = 1 C , we have

H n-1 φ0 (S) = C J φ0 n-1 (f )(x)dx. (2.6)
For any x ∈ C we have J φ0 n-1 (f )(x) = 0 which implies that ∂f ∂x1 (x), . . . , ∂f ∂xn-1 (x) is free and then J n-1 (f )(x) = 0. According to Lemma 2.3, we may write

J φ0 n-1 (f )(x) = J φ0 n-1 (f )(x) J n-1 (f )(x) J n-1 (f )(x), = 1 det(M 0 ) M 0   n-1 i=1 ∂f ∂xi (x) n-1 i=1 ∂f ∂xi (x)   , n-1 i=1 ∂f ∂xi (x) n-1 i=1 ∂f ∂xi (x) 1/2 J n-1 (f )(x).
We set

u(x) = M 0   n-1 i=1 ∂f ∂xi (x) n-1 i=1 ∂f ∂xi (x)   , n-1 i=1 ∂f ∂xi (x) n-1 i=1 ∂f ∂xi (x) 1/2 .
According to Lemma 3.2.25 in [START_REF] Federer | Geometric Measure Theory[END_REF], we have

u(x) = M 0 ν(f (x)), ν(f (x)) 1/2 where ν(f (x)
) is an unitary and orthogonal vector to f (C) at f (x). Applying Area formula 1.1, this time in R n endowed with its canonical euclidean structure, gives

C J φ0 n-1 (f )(x)dx = 1 det(M 0 ) C u(x)J n-1 (f )(x)dx, = 1 det(M 0 ) f (C) M 0 ν, ν 1/2 dH n-1 , = 1 det(M 0 ) S M 0 ν, ν 1/2 dH n-1 .
According to (2.4), (2.5) and (2.6) we may conclude

lim ρ→0 + L n ({x : dist φ0 (x, S) < ρ}) 2ρ = S M 0 ν, ν 1/2 dH n-1 .

Inhomogeneous setting

In this section, we remove the homogeneity assumption and, using a piecewise constant approximation of M, we prove Theorem 0.2. The proof is divided in three Propositions.

Proposition 2.1. Let M be as in Theorem 0.2. Then, for any compact neighborhood C of S, there exists λ, Λ > 0, such that the following ellipticity condition is satisfied for any

(x, v) ∈ C × R n λ|v| 2 ≤ M(x)v, v ≤ Λ|v| 2 .
Proof. As M(x) is symmetric positive definite for any x ∈ C, there exists λ(x), Λ(x) > 0 such that, for any v ∈ R n , we have

λ(x)|v| 2 ≤ M(x)v, v ≤ Λ(x)|v| 2 .
As M is continuous, the previous inequalities remain true in any compact C with (λ, Λ) only depending on C.

Proposition 2.2. Let S and M be as in Theorem 0.2. Then, we have

M M (S) ≤ S Mν, ν 1/2 dH n-1 .
Proof. We may assume that S Mν, ν 1/2 dH n-1 is finite, otherwise the result is ensured. Let C be a compact neighborhood of S. Let δ > 0 be fixed. As M is continuous, there exists

η > 0 such that |x -y| ≤ η ⇒ M(x) -M(y) ≤ δ (2.7)
for any (x, y) ∈ C 2 . According to Proposition 2.1, there exists λ > 0 such that

λ 1/2 H n-1 (S) ≤ S Mν, ν 1/2 dH n-1
and then H n-1 (S) is also finite. For t ∈ R and i ∈ {1, . . . , n}, we set

Π i t = {x ∈ C : x, e i = t}. Thus, for k ∈ N fixed, t ∈ R : H n-1 (S ∩ Π i t ) > 1 k
is finite and then, for any i ∈ {1, . . . , n}, the set t ∈ R : H n-1 (S ∩ Π i t ) > 0 is at most countable. So, if we consider the cubes with its faces orthogonal to the vectors of the orthogonal basis, there exists a partition K of C by cubes with diameter less than η, such that for any K ∈ K, we have

H n-1 (S ∩ ∂K) = 0.
(2.8)

For any K ∈ K, we fix a K ∈ K and, for any (x, v) ∈ K × R n , we set

M(x) = M(a K ), φ(x, v) = (M(a K )) -1 v, v .
(2.9)

For K ∈ K and r > 0, we set K r = {x : dist(x, ∂K) ≤ r}. We have the following decomposition

M M (S) ≤ K∈K M M (S ∩ K r ) + K∈K M M (S ∩ (K \ K r )).
(2.10)

In Claim 1 and Claim 2, we will determine an upper bound for the two previous sums.

Claim 1: We have K∈K M M (S ∩ K r ) ≤ λ -n 2 Λ 1/2 K∈K H n-1 (S ∩ K r ).
According to Proposition 2.1, there exists λ > 0 and Λ > 0 such that, for any

(x, v) ∈ C × R n , we have Λ -1 2 |v| ≤ M(x) -1 v, v 1/2 ≤ λ -1 2 |v|.
(2.11)

Let (x, y) ∈ C 2 and γ ∈ W 1,1 ([0; 1]; R n ) such that γ(0) = x and γ(1) = y, then we have

Λ -1 2 1 0 | γ|dt ≤ 1 0 φ(γ, γ)dt ≤ λ -1 2 1 0 | γ|dt.
According to (0.2) and (2.11), for any (x, y) ∈ C 2 , it gives

Λ -1 2 dist(x, y) ≤ dist φ (x, y) ≤ λ -1 2 dist(x, y) (2.12)
and then, for any x ∈ C, the following inclusions are satisfied

B(x, λ 1/2 ) ⊂ B φ (x, 1) ⊂ B(x, Λ 1/2 ).
For any x ∈ C, , as

H n (B(x, t)) = t n H n (B(0, 1)), we get Λ -n 2 ≤ H n (B(0, 1)) H n (B φ (x, 1)) ≤ λ -n 2
and with Theorem 1.3, for any E ∈ B(C), it yields

Λ -n 2 H n (E) ≤ H n φ (E) ≤ λ -n 2 H n (E).
Moreover, (2.12) implies {x : dist φ (x, S ∩ K r ) < ρ} ⊂ {x : dist(x, S ∩ K r ) < Λ 1/2 ρ} and then we have

M M (S ∩ K r ) = lim sup ρ→0 + H n φ ({x : dist φ (x, S ∩ K r ) < ρ}) 2ρ , ≤ λ -n 2 lim sup ρ→0 + H n ({x : dist(x, S ∩ K r ) < Λ 1/2 ρ}) 2ρ , ≤ λ -n 2 Λ 1/2 M (S ∩ K r ).
As S is closed and (n-1)-rectifiable, so is S ∩K r . We may apply Theorem 0.1 to get M (S ∩K r ) = H n-1 (S ∩ K r ) and Claim 1 is proved.

Claim 2: We have

K∈K M M (S ∩ (K \ K r )) ≤ (1 + θ δ) S Mν, ν 1/2 dH n-1 ,
where θ is a constant which depends only on the restriction of M in C.

Let C be a compact neighborhood of S. As M is continuous, then there exists a constant m > 0 which depends only on C such that, for any (x, y) ∈ C 2 , we have

M -1 (x) -M -1 (y) ≤ m M(x) -M(y) .
Let (x, y) ∈ C 2 and γ ∈ W 1,1 ([0; 1]; C) such that γ(0) = x and γ(1) = y, according to (2.7), we have the inequalities

1 0 M -1 (γ) γ, γ 1/2 dt - 1 0 M -1 (γ) γ, γ 1/2 dt ≤ 1 0 | (M -1 (γ) -M -1 (γ)) γ, γ | M -1 (γ) γ, γ 1/2 + M -1 (γ) γ, γ 1/2 dt, ≤ 1 0 M -1 (γ) -M -1 (γ)) γ, γ M -1 (γ) γ, γ 1/2 + M -1 (γ) γ, γ 1/2 dt, ≤ mδ 2Λ -1 1 0 γ, γ 1/2 dt, ≤ mδ 2Λ -3 2 1 0 M -1 (γ) γ, γ 1/2 dt.
We denote m 2Λ -3 2 by θ , it gives

1 0 M -1 (γ) γ, γ 1/2 dt ≤ (1 + θ δ) 1 0 M -1 (γ) γ, γ 1/2 dt, so that {x : dist φ (x, S ∩ (K \ K r )) < ρ} ⊂ x : dist φ (x, S ∩ (K \ K r )) < (1 + θ δ) ρ , (2.13)
and then

M M (S ∩ (K \ K r )) ≤ (1 + θ δ)M M (S ∩ (K \ K r )). ( 2 

.14)

As φ is an homogeneous metric in a neighborhood of K \ K r as in Section 2.1, we may apply Theorem 2.1 to obtain

M M (S ∩ (K \ K r )) = S∩(K\Kr) Mν, ν 1/2 dH n-1 and M M (S ∩ (K \ K r )) ≤ S∩K Mν, ν 1/2 dH n-1 .
According to (2.14), we get

K∈K M M (S ∩ (K \ K r )) ≤ (1 + θ δ) S Mν, ν 1/2 dH n-1 ,
so it concludes the proof of Claim 2.

Applying Claim 1 and Claim 2 to the decomposition (2.10), we have

M M (S) ≤ λ -n 2 Λ 1/2 K∈K H n-1 (S ∩ K r ) + (1 + θ δ) S Mν, ν 1/2 dH n-1
Taking the limit r → 0 + gives

M M (S) ≤ λ -n 2 Λ 1/2 K∈K H n-1 (S ∩ ∂K) + (1 + θ δ) S Mν, ν 1/2 dH n-1 .
Applying (2.8), and then taking the limit as δ → 0 + concludes the proof of Proposition 2.2

M M (S) ≤ S Mν, ν 1/2 dH n-1 .
Proposition 2.3. Let S and M as in Theorem 0.2. Then, we have

M M (S) ≥ S Mν, ν 1/2 dH n-1 .
Proof. Let δ > 0, η > 0 and K as in (2.8) and (2.9). For r > 0 and K ∈ K, we still set K r = {x : dist(x, ∂K) ≤ r}. As K is finite and

(K, L) ∈ K 2 , K = L ⇒ dist(K r , L r ) > 0, then we have M M (S) ≥ K∈K M M (S ∩ (K \ K r )) (2.15)
With the same proof as for (2.13), we have

{x : dist φ (x, S ∩ (K \ K r )) < ρ} ⊂ {x : dist φ (x, S ∩ (K \ K r )) < (1 + θ δ)ρ}
and then

L n ({x : dist φ (x, S ∩ (K \ K r )) < ρ}) 2ρ ≤ L n ({x : dist φ (x, S ∩ (K \ K r )) < (1 + θ δ)ρ}) 2ρ .
Passing to the lim inf with ρ → 0 + gives

M M (S ∩ (K \ K r )) ≤ (1 + θ δ)M M (S ∩ (K \ K r )).
As M is constant in a neighborhood of K \ K r as in Section 2.1, we may apply Theorem 2.1 to obtain

M M (S ∩ (K \ K r )) = S∩(K\Kr) Mν, ν 1/2 dH n-1 .
According to (2.15), we get

M M (S) ≥ (1 + θ δ) -1 K∈K S∩(K\Kr) Mν, ν 1/2 dH n-1 , ≥ (1 + θ δ) -1 S∩Cr Mν, ν 1/2 dH n-1 ,
where we have set C r = K∈K (K \ K r ). Remark that

r 1 < r 2 ⇒ C r2 ⊂ C r1 , r>0 C r = C \ K∈K ∂K so, we have lim r→0 + S∩Cr Mν, ν 1/2 dH n-1 = S\∪∂K Mν, ν 1/2 dH n-1 .
As H n-1 (∂K) = 0 for any K ∈ K (2.8), then lim

r→0 + S∩Cr Mν, ν 1/2 dH n-1 = S Mν, ν 1/2 dH n-1 .
We deduce that

M M (S) ≥ (1 + θ δ) -1 S Mν, ν 1/2 dH n-1
and passing to the limit for η → 0 + and then for δ → 0 + concludes the proof.

so, H n-1 (J u ) is finite too.

According to [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF], Section 5.9, the set J u is rectifiable up to a H n-1 -negligible set N . More precisely, there exists a countable family (K i ) i∈N of compact C 1 -hypersurfaces such that

J u = N ∪ i∈N K i ,
where H n-1 (N ) = 0. Let K ⊂ J u ∩ Ω be compact, we have the decomposition

K = K ∩ J u \ J u ∪ K ∩ q i=1 K i ∪   K ∩ ∞ i=q+1 K i   ∪ [K ∩ N ] . Theorem 3.2 gives H n-1 (K ∩ J u \ J u ) = 0. Let δ > 0 be fixed. As H n-1 (J u ) is finite, there exists q ∈ N such that H n-1   K ∩ ∞ i=q+1 K i   ≤ δ. (3.1)
In the sequel, we omit the dependance with δ for the sake of simplicity. We set S = K ∩ q i=1 K i and for A ⊂ R n we adopt the following notation

A ρ := {x : dist φ (x, A) < ρ}.
Let τ > 0 and ρ > 0 be fixed, we decompose

K = (K \ S τ ρ ) ∪ S τ ρ and set E = K \ S τ ρ . So, we have K ρ ⊂ E ρ ∪ S (1+τ )ρ ,
and then

L n (K ρ ) 2ρ ≤ L n (E ρ ) 2ρ + L n (S (1+τ )ρ ) 2ρ . (3.2)
The rest of the proof consists in computing an upper bound, when ρ → 0 + , for the two terms in the right hand side of (3.2). As S is a closed and rectifiable set, Theorem 0.2 gives

lim ρ→0 + L n (S (1+τ )ρ ) 2ρ = (1 + τ ) S Mν u , ν u 1/2 dH n-1
and then

lim ρ→0 + L n (S (1+τ )ρ ) 2ρ = (1 + τ ) Ju Mν u , ν u 1/2 dH n-1 . (3.3)
In the fourth following Claims, we prove that lim sup

L n (Eρ) 2ρ
converges to 0 when δ converges to 0. The main tool is the regularity result given by Theorem 3.3.

Claim 1: There exists p ∈ N and x 1 , . . . ,

x p ∈ E ∩ J u such that E ⊂ p i=1 B φ (x i , τ ρ) and (i, j) ∈ {1, . . . , p} 2 , i = j ⇒ dist φ (x i , x j ) ≥ τ ρ. ( 3.4) 
We construct (x i ) i by an iterative way and we show that the number of iterations is finite. If E = ∅, then the result is obvious. Otherwise, there exists x1 ∈ E. As E ⊂ J u , there exists (y k ) k ⊂ J u converging to x1 . As dist φ ( x1 , S) > τ ρ, there exists k 0 ∈ N such that dist φ (y k0 , S) > τ ρ and we set x 1 = y k0 .

Let us assume that there exits x 1 , . . . , x p ∈ E ∩ J u which satisfy (3.4). If E ⊂ p i=1 B φ (x i , τ ρ), then the iterative process stops. Otherwise, there exists xp+1 ∈ E \ p i=1 B φ (x i , τ ρ). As E ⊂ J u , there exists (y k ) k ⊂ J u converging to xp+1 . As dist φ (x p+1 , S) > τ ρ and dist φ (x p+1 , xi ) > τ ρ for any i ∈ {1, . . . , p}, there exists k p ∈ N such that dist φ (y kp , S) > τ ρ and dist φ (y kp , xi ) > τ ρ. We set x p = y kp .

If the iterative process does not finish, then there exists a sequence (x i ) i∈N ⊂ Ω which satisfies (3.4). According to Proposition 2.1, we have

(i, j) ∈ {1, . . . , p} 2 , i = j ⇒ |x i -x j | ≥ τ ρ √ Λ .
As Ω is bounded there exists a converging subsequence which is a contradiction. So, the iterative process is finite.

Claim 2: There exists a constant c = c(n, λ, Λ) which only depends on the dimension n and the ellipticity coefficients λ, Λ such that, for any x ∈ Ω, we have

# {i ∈ {1, . . . , p} : x ∈ B φ (x i , τ ρ)} ≤ c(n, λ, Λ). We set c(n, λ, Λ) = sup q ∈ N : ∃y 1 , . . . , y q ∈ R n , ∀i, |y i | ≤ 1 √ λ , i = j ⇒ |y i -y j | ≥ 1 √ Λ .
We consider a finite partition of B 0, 1 √ λ of parallelepipeds whose diameter is less than 1 √ Λ . Then, c(n, λ, Λ) is finite and less than the cardinality of such partition. For x ∈ Ω, we set y i = xi-x τ ρ . According to Proposition 2.1, we have

x ∈ B φ (x i , τ ρ) ⇒ y i ∈ B 0, 1 √ λ , i = j ⇒ |y i -y j | ≥ 1 √ Λ .
and then # {i ∈ {1, . . . , p} :

x ∈ B φ (x i , τ ρ)} ≤ c(n, λ, Λ).
Claim 3: We still denote by c a generic constant depending on (n, λ, Λ). We have

pβρ n-1 ≤ c τ n-1 H n-1 (J u ∩ E τ ρ ).
According to Claim 2, we have

p i=1 1 Ju∩B φ (xi,τ ρ) ≤ c1 Ju∩Eτρ . Integrating with respect to H n-1 gives p i=1 H n-1 (J u ∩ B φ (x i , τ ρ)) ≤ cH n-1 (J u ∩ E τ ρ ). Proposition 2.1 condition gives B(x i , λ 1/2 τ ρ)) ⊂ B φ (x i , τ ρ)) and then p i=1 H n-1 (J u ∩ B(x i , λ 1/2 τ ρ)) ≤ cH n-1 (J u ∩ E τ ρ ). (3.5) 
According to Theorem 3.3, there exists β > 0 such that, for any i ∈ {1, . . . , p}, we have

H n-1 (J u ∩ B(x i , λ 1/2 τ ρ)) ≥ βλ n-1 2 τ n-1 ρ n-1 . ( 3.6) 
Inequalities (3.5) and (3.6) conclude the proof of Claim 3.

Claim 4: We have

lim sup ρ→0 + L n (E ρ ) 2ρ ≤ (1 + τ ) n c τ n-1 δ
where δ is given by (3.1), β by Theorem 3.3 and ω n is the volume of the unit ball of R n .

According to Claim 1, we have E ⊂ p i=1 B φ (x i , τ ρ) and then

E ρ ⊂ p i=1 B φ (x i , (1 + τ )ρ). Proposition 2.1 gives B φ (x i , (1 + τ )ρ) ⊂ B(x i , Λ 1/2 (1 + τ )ρ), it yields L n (E ρ ) ≤ pL n (B φ (x i , (1 + τ )ρ)), ≤ pL n (B(x i , Λ 1/2 (1 + τ )ρ)), ≤ pΛ n 2 (1 + τ ) n ω n ρ n .
As E = K \ S τ ρ , then we deduce E τ ρ ⊂ K τ ρ \ S and Claim 3 gives

L n (E ρ ) ≤ Λ n 2 (1 + τ ) n ω n c βτ n-1 ρH n-1 (J u ∩ E τ ρ ), ≤ Λ n 2 (1 + τ ) n ω n c βτ n-1 ρH n-1 (J u ∩ (K τ ρ \ S)).
According to (3.1), we deduce lim sup

ρ→0 + L n (E ρ ) 2ρ ≤ Λ n 2 (1 + τ ) n ω n c 2βτ n-1 H n-1 (J u ∩ (K \ S)), ≤ Λ n 2 (1 + τ ) n ω n c 2βτ n-1 δ.

Conclusion of the proof.

According to (3.2), (3.3) and Claim 4, we have lim sup

ρ→0 + L n (K ρ ) 2ρ ≤ (1 + τ ) n c τ n-1 δ + (1 + τ ) Ju Mν u , ν u 1/2 dH n-1 .
Letting δ, τ → 0 + successively gives lim sup

ρ→0 + L n (K ρ ) 2ρ ≤ Ju Mν u , ν u 1/2 dH n-1 ,
which concludes the proof of Lemma 3.1. Now, we give the proof of Theorem 3.1.

Proof. We divide the proof in two inequalities.

Claim 1: We have M M (J u ) ≤ Ju Mν u , ν u 1/2 dH n-1 .
We assume that Ju Mν u , ν u 1/2 dH n-1 is finite, otherwise the result is ensured. We set Ω r = {x ∈ Ω : dist(x, ∂Ω) > r}. So, the following set is at most countable Π = r > 0 :

Ju∩∂Ωr Mν u , ν u 1/2 dH n-1 > 0 .
In particular, for any δ > 0, there exists a sequence (r i ) i ⊂ Π strictly decreasing to 0 + and such that Ju∩(Ω\Ωr 0 )

Mν u , ν u 1/2 dH n-1 ≤ δ.

Application to an anisotropic Mumford-Shah model

This work was initially motivated by the problem of segmentation of thin structures in an image.

Let Ω ⊂ R n be the domain of an image g ∈ L ∞ (Ω). In order to favor thin details which are elongated in one or two directions (as tubes or thin plates), we introduce a field of symmetric definite positive matrices M whose principal directions correspond to the elongation of the sets we want to detect. So, we introduce an anisotropic version of the Mumford-Shah model (see [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variationnal problems[END_REF] for the seminal paper)

E(u, M) = Ω (u -g) 2 dx + Ω |∇u| 2 dx + Ju Mν u , ν u 1/2 dH n-1 + Ω DM n+α dx,
where u ∈ SBV(Ω), J u is its jump set and ν u is an unitary and normal vector to J u . The field of matrices M belongs to W 1,n+α (Ω) and α > 0 ensures the continuity of M. Moreover, M is constrained to take its values in a compact subset G of S + n (R). If M ≡ Id n , our model corresponds to the classical Mumford-Shah energy. The novelty of our approach consists in introducing this new variable which must capture the local anisotropy of the image. For example, if we want to detect thin tubes in a 3-D image, we fix µ > 1, the elongation parameter, and we define G as the subset of symmetric matrices whose spectra is {1; 1; µ}. By this way, in order to minimize E, ν u must be orthogonal to the principal directions of M and then this energy will favor set elongated in the principal direction of M.

In order to compute the Euler-Lagrange equation associated to E, we need to perform an approximation of Ju Mν u , ν u 1/2 dH n-1 which involves the Lebesgue measure. That is the reason why we are interested by the previous results on Minkowski contents. We prove the following

Theorem 3.4. Let M : Ω → S + n (R) be continuous, h ∈ L ∞ (Ω), α > 0 and u ∈ SBV(Ω) a minimizer of E α,h,M (v) = α Ω (v -h) 2 dx + Ω |∇v| 2 dx + Jv Mν v , ν v 1/2 dH n-1 : v ∈ SBV(Ω) .
Then, u is an almost quasi-minimizer and we have

M M (J u ) = Ju Mν u , ν u 1/2 dH n-1 .
Proof. We prove in Claim 1 that, up to a scaling, a minimizer is an almost quasi-minimizer. Then, in Claim 2, we compute the re-scaled problem.

Claim 1: For β > 0 and f function defined in Ω we denote by f β the function defined for any x ∈ βΩ by

f β (x) = f x β .
Then, there exists β > 0 such that v β ∈ SBV (βΩ) is an almost quasi-minimizer of a free discontinuity problem.

Let ṽ ∈ SBV (Ω) be a minimizer of E α,h M in SBV(Ω). We introduce

ψ(t) =    -h L ∞ (Ω) if t ≤ -h L ∞ (Ω) , t if |t| ≤ h L ∞ (Ω) , h L ∞ (Ω) if t ≥ h L ∞ (Ω) .
According to the chain rule in SBV (see [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF], Theorem 3.99), for u ∈ SBV(Ω), we have

D(ψ • u) = 1 {x : |u(x)|≤ h L ∞ } ∇uL n + ((ψ • u) + -(ψ • u) -)ν u H n-1 J u and then L n ({x ∈ Ω : |u(x)| > h L ∞ }) > 0 ⇒ E α,h M (ψ • u) < E α,h M ( 
u). We deduce that |ṽ(x)| ≤ h L ∞ (Ω) for any x ∈ Ω. By an homothetic change of variable, ṽβ is a minimizer of the following rescaled problem

αβ 2 βΩ (v -h β ) 2 dx + βΩ |∇v| 2 dx + β Jv M β ν v , ν v 1/2 dH n-1 : v ∈ SBV(βΩ) . Assuming that v ∈ SBV (βΩ), x ∈ βΩ, B(x, r) ⊂ βΩ, [ṽ β = v] ⊂ B(x, r),
then, the minimality assumption on ṽβ gives

B(x,r) |∇ṽ β | 2 dx + β Jṽ β ∩B(x,r) M β ν ṽβ , ν ṽβ 1/2 dH n-1 ≤ αβ 2 B(x,r) (φ • v -h β ) 2 dx + B(x,r) |∇(φ • v)| 2 dx + β J φ•v ∩B(x,r) M β ν φ•v , ν φ•v 1/2 dH n-1 .
We deduce

B(x,r) |∇ṽ β | 2 dx + β Jṽ β ∩B(x,r) M β ν ṽβ , ν ṽβ 1/2 dH n-1 ≤ 4αβ 2 h 2 L ∞ ω n r n + B(x,r) |∇v| 2 dx + β Jv∩B(x,r) M β ν v , ν v 1/2 dH n-1 ,
where ω n = L n (B(x, 1)). Now, we set β = λ -1 where λ is the ellipticity coefficient introduced in Proposition 2.1, it gives So, we may conclude that ṽβ satisfies the definition 3.1 and then it is an Λ λ , 1,

4α h 2 L ∞ ωn λ 2
-almost quasi-minimizer of a free boundary problem.

Claim 2: We have

M M (J ṽ ) = Jṽ Mν ṽ , ν ṽ 1/2 dH n-1 .

According to Claim 1, we may apply Theorem 3.1 to ṽβ and it gives φ β (x) < ρ}) = β n L n ({x ∈ Ω : J ṽ (x) < βρ}) and then M M β (J ṽβ ) = β n-1 M M (J ṽ ).

M M β (J ṽβ ) =
(3.8)

The following application f : J ṽβ → J ṽ x → x β for any x ∈ J ṽβ satisfies

J n-1 (f )(x) = 1 β n-1 ,
where J n-1 (f ) corresponds to the (n -1)-dimensional Jacobian of f (3.2.1 in [START_REF] Federer | Geometric Measure Theory[END_REF]). According to the change of variable formula between (n -1)-rectifiable subsets (3.2.20 in [START_REF] Federer | Geometric Measure Theory[END_REF]), we deduce that 1 β n-1 Jṽ β M β ν ṽβ , ν ṽβ 1/2 dH n-1 = Jṽ Mν ṽ , ν ṽ 1/2 dH n-1 .

(3.9)

From equations (3.7), (3.8) and (3.9) we conclude that M M (J ṽ ) = Jṽ Mν ṽ , ν ṽ 1/2 dH n-1 .

Conclusion

We have proved that the approximation of Hausdorff measure by Minkowski content may be generalized to continuous and anisotropic perturbation of the Hausdorff measure. It has a natural application in free boundary problems. Classical results of regularity of the jump set may also be generalized in this anisotropic setting. Those results are the key tools to perform Γ-convergence approximation. For example, in a forthcoming work, we will prove that the following energy 
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  (u, M) = Ω (u -g) 2 dx + Ω |∇u| 2 dx + Ju Mν u , ν u 1/2 dH n-1 + Ω DM n+α dxmay be approached, in the sense of the Γ-convergence, byE ε (u, z, M) = Ω (u -g) 2 dx+ Ω |∇u| 2 (1 -z) 2 dx+ Ω M∇z, ∇z + z 2 4ε dx+ Ω DM n+α dx, when ε → 0 + .

Regularity result for almost quasi-minimizers of a free boundary problem

The standard functional framework is the theory of functions with bounded variation and in particular the special set of functions with bounded variations SBV that may be found in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF].

Definition and main result

In [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence[END_REF], it is proved that if u ∈ SBV(Ω) is a minimizer of the well known Mumford-Shah functional

where J u is the jump set of u, then we have H n-1 (J u ) = M(J u ). We want to get the same result when H n-1 is perturbed by an anisotropic and continuous function. So, for u ∈ SBV(Ω) and B(x, r) ⊂ Ω, we set

In [START_REF] Bucur | Monocity formula and regularity for general free discontinuity problems[END_REF], the following definition is introduced. Definition 3.1. For σ ≥ 1, α > 0 and c α > 0, we say that w ∈ SBV(Ω) is a (σ, α, c α )-almost quasi-minimizer of a free discontinuity problem, if there exists α > 0 and c α ≥ 0 such that for any v ∈ SBV(Ω), we have

The main result we introduce in this section is the following. 

Proof of Theorem 3.1

To prove Thorem 3.1, we need the two following regularity results for the jump set of almost quasi-minimizers which are extracted from [START_REF] Bucur | Monocity formula and regularity for general free discontinuity problems[END_REF].

Theorem 3.2. Let u be an almost quasi-minimizer of a free discontinuity problem, then

Theorem 3.3. There exist constants β, ρ 0 such that for every (σ, α, c α ) almost quasi-minimizer u, for every x ∈ J u and for every 0 < ρ < ρ 0 such that B(x, ρ) ⊂ Ω, we have

First, we prove the following Lemma 3.1. Let u be an almost quasi-minimizer of a free discontinuity problem (3.1), then for any compact set K ⊂ J u ∩ Ω, we have

Proof. We may assume that Ju Mν u , ν u 1/2 dH n-1 is finite, otherwise the result is ensured. According to Proposition 2.1, we have

We consider the following partition

We may apply Lemma 3.1, with

As r i ∈ Π for any i ≥ 1, we have

As δ > 0 is arbitrary, it proves Claim 1.

Claim 2: We have

As for the proof of Lemma 3.1, there exists a countable family (K i ) i∈N of compact C 1 -hypersurfaces such that

where H n-1 (N ) = 0. As q i=0 K i is rectifiable and closed, Theorem 0.2 gives

So, we deduce that

and then, as H n-1 (N ) = 0, we conclude that