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Moutard transform for the generalized analytic
functions ∗

P.G. Grinevich † R.G. Novikov‡

Abstract

We construct a Moutard-type transform for the generalized ana-
lytic functions. The first theorems and the first explicit examples in
this connection are given.

1 Introduction

We consider the equation

∂z̄ψ = uψ̄ in D ⊆ C, (1)

where u = u(z) is a given function in D, D is open in C. The functions
ψ = ψ(z) satisfying (1) are known as generalized analytic functions in D. In
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nique, 91128, Palaiseau, France; IEPT RAS, 117997, Moscow, Russia; e-mail:
novikov@cmap.polytechnique.fr

1



this article the notation f = f(z) does not mean that f is holomorphic. In
the literature it is usually assumed that

u ∈ Lp(D), p > 2, if D is bounded, (2)

u ∈ Lp,2(C), p > 2, if D = C, (3)

where

Lp,ν(C) denotes complex-valued functions u such that

u ∈ Lp(D1), uν ∈ Lp(D1), where uν(z) =
1

|z|ν
u

(
1

z

)
, (4)

D1 = {z ∈ C : |z| ≤ 1}.
The theory of generalized analytic functions is presented in [2], [12]. How-
ever, to the best of our knowledge, algebraic Moutrad-type transforms, going
back to [6] were not yet considered in the framework of this theory. On the
other hand, the Moutard-type transforms are successfully used in studies of
integrable models in dimension 2+1 and in the spectral theory in dimension
2; see [3], [5], [7], [8]-[11] and references therein.

The Moutard-type transforms correspond in quadratures to coefficients
and related solutions of an appropriate linear PDE (and its conjugate) on the
plane new coefficients and related solutions for this PDE (and its conjugate).
In this article we show that this approach is applicable to equation (1). In
particular, it allows to study equation (1) in some important cases when u
has strong singularities (e.g. contour poles), and, as a corollary, assumptions
(2), (3) are not valid at all. It is quite likely that the known methods of the
generalized analytic functions theory dot not admit appropriate generaliza-
tions for the aforementioned cases.

In addition, our interest to the generalized analytic functions with strong
singularities was, in particular, strongly motivated by studies going back to
[4].

Note that the present work was stimulated by recent articles [9], [10]
by I.A. Taimanov on Moutard-type transforms for two-dimensional Dirac
operators with applications to integrable systems in dimension 2+1 and to
differential geometry.

The results of the present work can be summarized as follows:

• We construct Moutard-type transforms for equation (1) considering
this equation as a particular case of the two-dimensional Dirac system

∂z̄ψ1 = uψ2, ∂zψ2 = vψ1 in D ⊆ C, (5)
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where D is the same that in (1). Related algebraic and analytic results
in this connection are presented in Section 2.

• Explicit examples of generalized analytic functions obtained by the
Moutard-type transforms from usual holomorphic functions are given
in Section 3. These examples include generalized analytic functions
with contour poles.

2 Moutard transform

We consider the two-dimensional Dirac system (5) and the conjugate system

∂z̄ψ
+
1 = −vψ+

2 , ∂zψ
+
2 = −uψ+

1 in D ⊆ C. (6)

If
v = ū, (7)

then system (5) is reduces to (1). More precisely, in this case:

if ψ satisfies (1), then

[
ψ1

ψ2

]
=

[
ψ
ψ̄

]
satisfies (5); (8)

if

[
ψ1

ψ2

]
satisfies (5), then ψ =

1

2
(ψ1 + ψ̄2) and ψ =

1

2i
(ψ1 − ψ̄2) satisfy (1).

In addition, if (7) holds, then the conjugate system (6) is reduced to the
equation

∂z̄ψ
+ = −ūψ̄+ in D ⊆ C. (9)

In the theory of generalized analytic functions equation (9) is known as
the conjugate equation to the initial equation (1); see [12].

Let

~ψ(j) =

[
ψ1(z, j)
ψ2(z, j)

]
, ~ψ+(j) =

[
ψ+
1 (z, j)
ψ+
2 (z, j)

]
, j = 1, . . . , N, (10)

denote a set of fixed solutions of systems (5) and (6), respectively.
In addition, for systems (5) and (6), we consider the potentials ωj,k =

ωj,k(z) defined as follows:

∂zωj,k = ψ1(j)ψ
+
1 (k), ∂z̄ωj,k = −ψ2(j)ψ

+
2 (k) in D ⊆ C, j, k = 1, . . . , N,

(11)
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under the assumption that D is simply connected. Note that

∂z̄∂zωj,k = (∂z̄ψ1(j)) ψ
+
1 (k)+ψ1(j) (∂z̄ψ

+
1 (k)) = uψ2(j) ψ

+
1 (k)−vψ1(j) ψ

+
2 (k),

∂z∂z̄ωj,k = −(∂zψ2(j)) ψ
+
2 (k)−ψ2(j) (∂zψ

+
2 (k)) = −vψ1(j) ψ

+
2 (k)+uψ2(j) ψ

+
1 (k),

and, thus,
∂z̄∂zωj,k = ∂z∂z̄ωj,k. (12)

Therefore, definitions (11) are self-consistent, and the integration constants
may depend on the concrete situation.

Let us introduce N ×N matrix Ω = (Ωk,j(z)) = (ωj,k(z)):

Ω =


ω1,1 ω2,1 . . . ωN,1

ω1,2 ω2,2 . . . ωN,2
...

...
. . .

...
ω1,N ω2,N . . . ωN,N

 . (13)

Theorem 1 Suppose that ~ψ(j), ~ψ+(j), j = 1, . . . , N , (see (10)) are formal
solutions of systems (5), (6), respectively, for given coefficients u = u(z),
v = v(z), and that detΩ 6= 0, where Ω is defined by (11)-(13). Let the
transform

{u, v} → {ũ, ṽ}, (14)

{~ψ(0), ~ψ+(0)} → { ~̃ψ(0), ~̃ψ+(0)} (15)

be defined as follows:

ũ = u+
[
ψ1(1) . . . ψ1(N)

]
Ω−1

 ψ
+
2 (1)
...

ψ+
2 (N)

 , (16)

ṽ = v −
[
ψ2(1) . . . ψ2(N)

]
Ω−1

 ψ
+
1 (1)
...

ψ+
1 (N)

 , (17)

[
ψ̃1(0)

ψ̃2(0)

]
=

[
ψ1(0)
ψ2(0)

]
−
[
ψ1(1) . . . ψ1(N)
ψ2(1) . . . ψ2(N)

]
Ω−1

ω0,1
...

ω0,N

 , (18)
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[
ψ̃+
1 (0)

ψ̃+
2 (0)

]
=

[
ψ+
1 (0)
ψ+
2 (0)

]
−
[
ψ+
1 (1) . . . ψ+

1 (N)
ψ+
2 (1) . . . ψ+

2 (N)

]
(Ω−1)t

ω1,0
...

ωN,0

 , (19)

where ~ψ(0), ~ψ+(0) are some formal solutions to systems (5), (6), respectively,

ω0,j and ωj,0 are defined as in (11), but in terms of ~ψ(0), ~ψ+(j) and ~ψ(j),
~ψ+(0), respectively, and the symbol t in (19) stands for the matrix transpo-

sition. Then the transformed functions ~̃ψ(0), ~̃ψ+(0) solve the transformed
Dirac equations:

∂z̄ψ̃1(0) = ũψ̃2(0), ∂zψ̃2(0) = ṽψ̃1(0) in D, (20)

∂z̄ψ̃
+
1 (0) = −ṽψ̃+

2 (0), ∂zψ̃
+
2 (0) = −ũψ̃+

1 (0) in D. (21)

Historically, transformations like (14)-(15) go back to the paper [6], and
are known in the literature as Moutard transforms or Moutard-type trans-
forms. For the two-dimensional Dirac operators the Moutard transforms were
considered many times in the literature, see, for example, [5], [9], [10] and
references therein. Nevertheless, for completeness of exposition, we present
the proof of Theorem 1 in Section 4.

The point is that the Moutard-type transform (14),(15) admits the follow-
ing reduction to the case of equations (1), (9), i.e. to the case of generalized
analytic functions.

Let
ψ(j) = ψ(z, j), ψ+(j) = ψ+(z, j), j = 1, . . . , N, (22)

denote a set of fixed solutions of (1) and (9), respectively. Then we can define
ωj,k = ωj,k(z) as imaginary-valued functions satisfying

∂zωj,k = ψ(j)ψ+(k), ∂z̄ωj,k = −ψ(j)ψ+(k) in D, j, k = 1, . . . , N, (23)

where (23) is the reduction of (11) corresponding to

ψ1(j) = ψ(j), ψ2(j) = ψ(j), ψ+
1 (j) = ψ+(j), ψ+

2 (j) = ψ+(j). (24)

Remark 1 It is interesting to note that real-valued function φ =
ωj,k

2i
, i =√

−1, for some fixed j, k, is known in the generalized analytic functions
theory as a potential for equation (1); see [12].
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Theorem 2 Suppose that ψ(j), ψ+(j), j = 1, . . . , N , (see (22)) are formal
solutions of equations (1), (9), respectively, for a given coefficient u = u(z),
and that detΩ 6= 0, where Ω is defined according to (13), (23) with imaginary-
valued ωj,k. Let the transform

u→ ũ, (25)

{ψ(0), ψ+(0)} → {ψ̃(0), ψ̃+(0)} (26)

be defined as follows:

ũ = u+
[
ψ(1) . . . ψ(N)

]
Ω−1

 ψ+(1)
...

ψ+(N)

 , (27)

ψ̃(0) = ψ(0)−
[
ψ(1) . . . ψ(N)

]
Ω−1

ω0,1
...

ω0,N

 , (28)

ψ̃+(0) = ψ+(0)−
[
ψ+(1) . . . ψ+(N)

]
(Ω−1)t

ω1,0
...

ωN,0

 , (29)

where ψ(0), ψ+(0) are some formal solutions to equations (1), (9), respec-
tively, ω0,j and ωj,0 are imaginary-valued and are defined as in (23), but in
terms of ψ(0), ψ+(j) and ψ(j), ψ+(0), respectively, and t in (29) stands for
the matrix transposition. Then the transformed functions ψ̃(0), ψ̃+(0) solve
the transformed generalized-analytic function equations:

∂z̄ψ̃(0) = ũ ψ(0) in D, (30)

∂z̄ψ̃
+(0) = −ũ ψ̃+(0) in D. (31)

To our best knowledge, Moutard-type type transforms like (25), (26) were
not yet considered in the generalized-analytic function theory.

Theorem 2 follows from Theorem 1 in the framework of reductions (7),
(24). In this case using also that Ω = −Ω one can see that the transform
(14), (15) preserves symmetries (7), (24).

The algebraic result of Theorem 2 admits, in particular, the following
analytic realization:
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Theorem 3 Let D be an open simply-connected bounded domain in C with
C1-boundary and u satisfy (2). Let ψ(j) ∈ W 1,p(D) and ψ+(j) ∈ W 1,p(D),
j = 1, . . . , N , be solutions of equations (1) and (9), respectively, and detΩ 6=
0 in D∪∂D, where Ω is defined according to (13), (23) with imaginary-valued
ωj,k. Let the Moutard transform be defined according the formulas (25)-(29)
as in Theorem 2.

Then the transformed coefficient ũ satisfied (2) as well as the initial u.

In Theorem 3, W 1,p denotes the standard Sobolev space.
Theorem 3 follows from formula (27) and from the properties that ψ(j),

ψ+(j), j = 1, . . . , N , and ωj,k, 1 ≤ j, k ≤ N , and detΩ are continuous in
D ∪ ∂D. Note that, in order to obtain the aforementioned continuity of
ψ(j), ψ+(j), we use that, under our assumptions on D, if f ∈ W 1,p(D) then
f ∈ Cα(D∪∂D), where Cα denotes the standard Hölder space, α = (p−2)/p
(see [1]). Finally, the continuity of ωj,k follows from the continuity of ψ(j),
ψ+(k) and from formula (11).

3 Explicit examples

In this section we present explicit examples illustrating the Moutard-type
transforms for generalized analytic functions, i.e. transforms (25)-(29).

Let

u ≡ 0, N = 1, ψ(1) = f(z), ψ+(1) = f+(z), (32)

ψ(0) = ψ(z, 0), ψ+(0) = ψ+(z, 0),

where f , f+ and ψ(0), ψ+(0) are holomorphic on D. Then:

1. For imaginary-valued ω1,1 and ω0,1, ω1,0 of (23) and (28), (29), we have

ω1,1(z) = F1,1(z)− F1,1(z) + c1,1, (33)

ω0,1(z) = F0,1(z)− F0,1(z) + c0,1, ω1,0(z) = F1,0(z)− F1,0(z) + c1,0,

where F1,1 and F0,1, F1,0 are holomorphic functions on D such that

∂zF1,1(z) = f(z)f+(z), (34)

∂zF0,1(z) = ψ(z, 0)f+(z), ∂zF1,0(z) = f(z)ψ+(z, 0),

and c1,1, c0,1, c1,0 are pure imaginary constants;
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2. Formulas (27)-(29) take the form:

ũ(z) =
f(z)f+(z)

ω1,1(z)
, (35)

ψ̃(z, 0) = ψ(z, 0)− f(z)
ω0,1(z)

ω1,1(z)
, (36)

ψ̃+(z, 0) = ψ+(z, 0)− f+(z)
ω1,0(z)

ω1,1(z)
. (37)

In addition, equations (30), (31) for ψ̃(0), ψ̃+(0) are nontrivial already for

f(z) = C 6= 0, f+(z) = C+ 6= 0, (38)

where C, C+ are complex constants. In particular, in this case

ũ(z) =
CC+

2i Im(CC+z) + c1,1
. (39)

One can see that this ũ satisfies (2) if (D∪∂D) ⊂ Λ+ or (D∪∂D) ⊂ Λ−,
where

Λ+ = {z ∈ C : Im
(
2CC+z + c1,1

)
> 0}, (40)

Λ− = {z ∈ C : Im
(
2CC+z + c1,1

)
< 0}.

However, this ũ does not satisfy (2) at all if D ∩ L 6= ∅, where

L = {z ∈ C : Im
(
2CC+z + c1,1

)
= 0}. (41)

The point is that already the Moutard transform (25)-(29) for the case
(32), (38) yields generalized analytic functions with contour poles: with poles
on L in this particular case.

Next, we consider the example when

u ≡ 0, N = 2, ψ(1) = f1, ψ+(1) = f+
1 , ψ(2) = f2, ψ+(2) = f+

2 , (42)

ψ(0) = ψ(z, 0), ψ+(0) = ψ+(z, 0),

where f1, f
+
1 , f2, f

+
2 are complex constants, and ψ(0), ψ+(0) are holomorphic

functions on D. In this case:
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1. For imaginary-valued ωj,k of (23), (28), (29), j, k ∈ {0, 1, 2}, we have

ωj,k(z) = fjf
+
k z − fjf

+
k z + cj,k, (43)

ω0,k(z) = Ψ(z)f+
k −Ψ(z)f+

k + c0,k, ωj,0(z) = fjΨ
+(z)− fjΨ+(z) + cj,0,

where j, k = 1, 2, Ψ, Ψ+ are holomorphic functions on D such that

∂zΨ(z) = ψ(z, 0), ∂zΨ
+(z) = ψ+(z, 0), (44)

and cj,k are pure imaginary constants, j, k = 0, 1, 2;

2. Formulas (27)-(29) take the form:

ũ(z) =
f1f

+
1 c2,2 − f2f

+
1 c1,2 − f1f

+
2 c2,1 + f2f

+
2 c1,1

detΩ
, (45)

ψ̃(z, 0) = ψ(z, 0)− (detΩ)−1× (46)

×
([(

−f1f2f+
2 + f2f1f

+
2

)
z + f1c2,2 − f2c1,2

]
ω0,1(z)+

+
[(
f1f2f

+
1 − f2f1f

+
1

)
z − f1c2,1 + f2c1,1

]
ω0,2(z)

)
,

ψ̃+(z, 0) = ψ+(z, 0)− (detΩ)−1× (47)

×
([(

−f+
1 f2f

+
2 + f+

2 f2f
+
1

)
z + f+

1 c2,2 − f+
2 c2,1

]
ω1,0(z)+

+
[(
f+
1 f1f

+
2 − f+

2 f1f
+
1

)
z − f+

1 c1,2 + f+
2 c1,1

]
ω2,0(z)

)
,

where

detΩ = 2Re
[(
f2f

+
1 f1f

+
2 − f1f

+
1 f2f

+
2

)
zz̄ + (48)

+
(
c2,2f1f

+
1 + c1,1f2f

+
2 − c1,2f2f

+
1 − c2,1f1f

+
2

)
z
]
+ c1,1c2,2 − c2,1c1,2,

Ω is the matrix defined according to (13) for N = 2.
Note that if

c2,2f1f
+
1 + c1,1f2f

+
2 − c1,2f2f

+
1 − c2,1f1f

+
2 = 0, (49)

f1f
+
1 c2,2 − f2f

+
1 c1,2 − f1f

+
2 c2,1 + f2f

+
2 c1,1 6= 0,

Re
(
f2f

+
1 f1f

+
2 − f1f

+
1 f2f

+
2

)
6= 0,
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then ũ in (45) is spherically-symmetric and non-trivial. In addition, assuming
that

σ ≥ 0, where σ = − c1,1c2,2 − c2,1c1,2

2Re
(
f2f

+
1 f1f

+
2 − f1f

+
1 f2f

+
2

) , (50)

we have that: ũ has a pole on

Sr = {z ∈ C : |z|2 = r}, where r2 = σ; (51)

ũ(z) = O(|z|−2) as |z| → ∞. (52)

For example, assumptions (49) are fulfilled if

f1 = 1, f+
1 = 1, f2 = i, f+

2 = i, c1,1 = c2,2, c1,2 = −c2,1, |c1,1|2+|c1,2|2 6= 0.
(53)

One can see that the Moutard transform (25)-(29) for the case (42), (49),
(50) yields again generalized analytic functions with contour poles: with
poles on Sr in this particular case.

Actually, our Moutard-type transforms (25)-(29) give a method for de-
veloping a proper theory of generalized analytic functions with contour and
point poles of some natural class. This issue will be developed in the subse-
quent work.

4 Proof of Theorem 1

Using (11),(13) we obtain:

∂zΩ =

 ψ
+
1 (1)
...

ψ+
1 (N)

 [
ψ1(1) . . . ψ1(N)

]
, (54)

∂z̄Ω = −

 ψ
+
2 (1)
...

ψ+
2 (N)

 [
ψ2(1) . . . ψ2(N)

]
, (55)

∂zΩ
−1 = −Ω−1

 ψ
+
1 (1)
...

ψ+
1 (N)

 [
ψ1(1) . . . ψ1(N)

]
Ω−1, (56)
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∂z̄Ω
−1 = Ω−1

 ψ
+
2 (1)
...

ψ+
2 (N)

 [
ψ2(1) . . . ψ2(N)

]
Ω−1. (57)

Using (18) and (5), (11), (56), (57), we obtain:

∂z̄ψ̃1(0) = ∂z̄ψ1(0)−
[
∂z̄ψ1(1) . . . ∂z̄ψ1(N)

]
Ω−1

ω0,1
...

ω0,N

+

+
[
ψ1(1) . . . ψ1(N)

]
Ω−1

 ψ
+
2 (1)
...

ψ+
2 (N)

ψ2(0)−

−
[
ψ1(1) . . . ψ1(N)

]
Ω−1

 ψ
+
2 (1)
...

ψ+
2 (N)

 [
ψ2(1) . . . ψ2(N)

]
Ω−1

ω0,1
...

ω0,N

 =

=

u+ [
ψ1(1) . . . ψ1(N)

]
Ω−1

 ψ
+
2 (1)
...

ψ+
2 (N)


×

×

ψ2(0)−
[
ψ2(1) . . . ψ2(N)

]
Ω−1

ω0,1
...

ω0,N


 =

=

u+ [
ψ1(1) . . . ψ1(N)

]
Ω−1

 ψ
+
2 (1)
...

ψ+
2 (N)


 ψ̃2(0); (58)

∂zψ̃2(0) = ∂zψ2(0)−
[
∂zψ2(1) . . . ∂zψ2(N)

]
Ω−1

ω0,1
...

ω0,N

−

−
[
ψ2(1) . . . ψ2(N)

]
Ω−1

 ψ
+
1 (1)
...

ψ+
1 (N)

ψ1(0)+
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+
[
ψ2(1) . . . ψ2(N)

]
Ω−1

 ψ
+
1 (1)
...

ψ+
1 (N)

 [
ψ1(1) . . . ψ1(N)

]
Ω−1

ω0,1
...

ω0,N

 =

=

v − [
ψ2(1) . . . ψ2(N)

]
Ω−1

 ψ
+
1 (1)
...

ψ+
1 (N)


×

×

ψ1(0)−
[
ψ1(1) . . . ψ1(N)

]
Ω−1

ω0,1
...

ω0,N


 =

=

v − [
ψ2(1) . . . ψ2(N)

]
Ω−1

 ψ
+
1 (1)
...

ψ+
1 (N)


 ψ̃1(0). (59)

Formulas (58), (59) and (16), (17) imply (20).
Using (19) and (5), (11), (56), (57), and the formulas

∂z(Ω
−1)t = (∂zΩ

−1)t, ∂z̄(Ω
−1)t = (∂z̄Ω

−1)t,

we obtain:

∂z̄ψ̃
+
1 (0) = ∂z̄ψ

+
1 (0)−

[
∂z̄ψ

+
1 (1) . . . ∂z̄ψ

+
1 (N)

]
(Ω−1)t

ω1,0
...

ωN,0

+

+
[
ψ+
1 (1) . . . ψ+

1 (N)
]
(Ω−1)t

 ψ2(1)
...

ψ2(N)

ψ+
2 (0)−

−
[
ψ+
1 (1) . . . ψ+

1 (N)
]
(Ω−1)t

 ψ2(1)
...

ψ2(N)

 [
ψ+
2 (1) . . . ψ+

2 (N)
]
(Ω−1)t

ω1,0
...

ωN,0

 =

=

−v +
[
ψ+
1 (1) . . . ψ+

1 (N)
]
(Ω−1)t

 ψ2(1)
...

ψ2(N)


×
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×

ψ+
2 (0)−

[
ψ+
2 (1) . . . ψ+

2 (N)
]
(Ω−1)t

ω1,0
...

ωN,0


 =

=

−v +
[
ψ+
1 (1) . . . ψ+

1 (N)
]
(Ω−1)t

 ψ2(1)
...

ψ2(N)


 ψ̃+

2 (0); (60)

and

∂zψ̃
+
2 (λ) = ∂zψ

+
2 (λ)−

[
∂zψ

+
2 (1) . . . ∂zψ

+
2 (N)

]
(Ω−1)t

ω1,0
...

ωN,0

−

−
[
ψ+
2 (1) . . . ψ+

2 (N)
]
(Ω−1)t

 ψ1(1)
...

ψ1(N)

ψ+
1 (0)+

+
[
ψ+
2 (1) . . . ψ+

2 (N)
]
(Ω−1)t

 ψ1(1)
...

ψ1(N)

 [
ψ+
1 (1) . . . ψ+

1 (N)
]
(Ω−1)t

ω1,0
...

ωN,0

 =

=

−u−
[
ψ+
2 (1) . . . ψ+

2 (N)
]
(Ω−1)t

 ψ1(1)
...

ψ1(N)


×

×

ψ+
1 (0)−

[
ψ+
1 (1) . . . ψ+

1 (N)
]
(Ω−1)t

ω1,0
...

ωN,0


 =

=

−u−
[
ψ+
2 (1) . . . ψ+

2 (N)
]
(Ω−1)t

 ψ1(1)
...

ψ1(N)


 ψ̃+

1 (0). (61)

Formulas (60), (61) and (16), (17) imply (21).
This completes the proof of Theorem 1.
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