
HAL Id: hal-01222473
https://hal.science/hal-01222473

Submitted on 30 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Genetic Algorithm to Schedule Workflow Collections
on a SOA-Grid with Communication Costs

Jean Nicod, Laurent Philippe, Lamiel Toch

To cite this version:
Jean Nicod, Laurent Philippe, Lamiel Toch. A Genetic Algorithm to Schedule Workflow Collections on
a SOA-Grid with Communication Costs . HeteroPar’2011, 9-th Int. Workshop on Algorithms, Models
and Tools for Parallel Computing on Heterogeneous Platforms, 2011, Bordeaux, France. pp.419–428.
�hal-01222473�

https://hal.science/hal-01222473
https://hal.archives-ouvertes.fr

LABORATOIRE D’INFORMATIQUE DE L’UNIVERSITE DE FRANCHE-COMTE

EA 4269

A Genetic Algorithm to Schedule Workflow Collections
on a SOA-Grid with Communication Costs

Jean-Marc Nicod and Laurent Philippe and Lamiel Toch

Rapport de Recherche no RR 2011–01
THÈME 1 – 2011

A Genetic Algorithm to Schedule Workflow Collections on a SOA-Grid
with Communication Costs

Jean-Marc Nicod and Laurent Philippe and Lamiel Toch

Thème 1

CARTOON

2011

Abstract: In this paper we study the problem of scheduling a collection of workflows, identical or
not, on a SOA grid. A workflow (job) is represented by a directed acyclic graph (DAG) with typed
tasks. All of the grid hosts are able to process a set of task types with unrelated processing costs and
are able to transmit files through communication links for which the communication times are not
negligible. The goal is to minimize the maximum completion time (makespan) of the workflows. To
solve this problem we propose a genetic approach. The contributions of this paper are both the design
of a Genetic Algorithm taking the communication costs into account and the performance analysis.

Key-words: Batch scheduling, grid computing, heterogeneous platform, genetic algorithm

Laboratoire d’Informatique de l’Université de Franche-Comté,
UFR Sciences et Techniques,

16, route de Gray, 25030 Besançon Cedex (France)
Téléphone : +33 (0)3 81 66 64 55 — Télécopie : +33 (0)3 81 66 64 50

Algorithme Génétique pour Ordonnancer un Ensemble de Workflow sur
une Grille Orient ée Service avec des Coûts de Communications

Résumé : Dans ce rapport de recherche nous considérons un probl̀eme pour ordonnancer un
ensemble de workflows, identiques ou non, sur une grille fondée sur une architecture orientée service.
Un workflow (job) est repŕesent́e par un graph acyclique orienté avec un des tâches tyṕees. Chacune
des machines de la grille savent exécuter un ensemble de type de tâches pŕed́efinies avec des coûts
indépendants les uns des autres. L’objectif est de minimiser la date de fin de la derniére t̂ache (le
makespan) de l’ensemble de workflows. Pour résoudre ce probléme nous proposons une approche
géńetique. Nous apportons une contributionsà la fois dans la conception d’un algorithme géńetique
prenant les côuts de communication en compte et dans les analyses des performances.

Mots-clés : Ordonnancement de lots, grille de calcul, plateforme hét́erog̀ene, algorithme ǵeńetique

Laboratoire d’Informatique de l’Université de Franche-Comté,
UFR Sciences et Techniques,

16, route de Gray, 25030 Besançon Cedex (France)
Téléphone : +33 (0)3 81 66 64 55 — Télécopie : +33 (0)3 81 66 64 50

A GA to Schedule Workflow Collections with Communication Costs 7

1 Introduction

Nowadays, to go further in their research, scientists often need to connect
several applications together. That is why for few years, workflow systems
have been designed to provide tools that support their multi-application sim-
ulations. In the e-Science [22] many fields use workflow applications: medical
image processing [14], geosciences [11], astronomy [20].

A workflow is a set of applications which are connected to each other by
precedence constraints. An input data set enters the workflow, it is processed
by an application which computes an output data set. This result data set is
sent to the next application as defined by the structure of the workflow. Gen-
erally a workflow has the structure of a DAG (Direct Acyclic Graph): a graph
whose nodes are the tasks and whose edges are the precedence constraints.

When the size of the data entering the workflow increases the processing
time may become very long and it becomes mandatory to use larger comput-
ing resources as grids. Because of their heterogeneity – the platforms have
hosts with different calculation and memory capacities – they are difficult
to use for non computer scientists but several research projects have already
tackled this problem. The Pegasus framework [12] proposes a convenient way
for scientists to compute their workflows onto heterogeneous platforms with-
out learning distributed programming concepts. Other tools, like DIET [5]
or NINF-G [21], provide a SOA-Grid (Service Oriented Architecture) that
facilitates user accesses to remotely accessible computing applications and
make the execution of workflows on a heterogeneous platform easier. When
the number of workflows to be executed in parallel is huge, it is however
mandatory to efficiently map them onto the resources of a heterogeneous
platform.

Minimizing the execution time of a workflow or a set of workflows onto a
heterogeneous platform is an optimization problem that is known to be NP-
Hard. We can just rely on heuristics to find a solution as good as possible.
The quality of the heuristic solution is based on the performance obtained in
the scheduling of different workflows. Genetic Algorithms (GA) are known to
give good results in several optimization domains. GA have already been used
in the scheduling of workflows [8, 15]. With these algorithms it is however
not possible to give an approximation and a static study of the algorithm
may be worth it. The performance evaluation must be done by simulating
the algorithm behavior in a large number of cases.

The general problem we deal with is to schedule a set of workflows (jobs)
onto a SOA-grid. Each task of a workflow has a type that corresponds
to a service type or to an application type in the SOA-Grid. We consider
the two cases: (1) the general case when the structure of each workflow

RR 2011–01

8 J.M. Nicod, L. Philippe, L. Toch

differs from one another; (2) the particular case when the structure of the
workflow is the same for all the jobs. In this paper we focus on researches
that we carried out on the design of a Genetic Algorithm and we assess
its performance to schedule a set of workflows. The contributions of this
paper are both the design of a Genetic Algorithm taking the communication
costs into account and the performance analysis. In the general case (1) we
compare the performance obtained by a GA approach to the performance
obtained by a list-based scheduling algorithm. In the particular case (2)
of the scheduling of a collection of identical workflows which structure is
limited to intrees, we compare our results to a lower bound and we show
that our Genetic Algorithm approach allows us to get a schedule with good
performance.

The paper is organized as follows. In section 2 we detail the framework
which defines both the grid and the workflow models. Section 3 is devoted to
an overview of the related work. We present in section 4 a Genetic Algorithm
that takes communication costs into account to deal with our problem. Sec-
tion 6 introduces the simulation setup, the results of the simulations and their
analysis for workflows of different shape. Section 7 presents the simulations
for workflows with identical structure. Finally, we conclude in section 8.

2 Framework

Scheduling a set of workflows on a SOA-grid amounts to schedule each task
of each workflow onto a grid host that provides the application corresponding
to its task type. In this section we outline the applicative framework, the
targeted platform and the communication model.

2.1 Applicative framework

In our study, the problem that we have to solve deals with the scheduling
of a collection B = {J j, 1 ≤ j ≤ N} of N workflows. Each workflow J j is
represented by the graph (DAG) J j = (T j,Dj) where T j = {T j

1 , . . . , T j
nj
} is

the set of its tasks and Dj represents the precedence constraints between the
tasks of the workflow. Let T = ∪N

j=1T j = {T j
ij , 1 ≤ ij ≤ nj and 1 ≤ j ≤ N}

be the set of tasks to schedule.
Figure 1 gives an example of a workflow J 1 that consists of three tasks

T 1
1 , T 1

2 and T 1
3 which types are respectively A, D and B. Each edge of J 1

indicates a precedence constraint and its associated value is the amount of
data that has to be exchanged. These precedence constraints actually repre-
sent file transfers between applications. These transfers, that may be costly,

LIFC

A GA to Schedule Workflow Collections with Communication Costs 9

15

6

D

A

Binput data set

T 1
1

T 1
2

T 1
3 output data set

input data set

Figure 1: Example of a workflow J 1

implies that communication costs must be taken into account in the sched-
ule. As we mention above we distinguish the two following cases: scheduling
identical workflows or scheduling different workflows.

2.2 Targeted platform

The targeted platform is a heterogeneous platform of n machines modeled
by an undirected graph PF = (P ,L) where P = {p1, . . . , pn} is the set of
vertices which represents the machines and where L is the set of bidirectional
communication links between machines (∀ 1 ≤ i, j ≤ n and i 6= j then
(pi, pj) ∈ L).

Let τ be the set of all the task types available onto the platform. Each
machine pi is able to perform a subset of τ . If the type t ∈ τ is available
on the machine pi, w(t, pi) is the time to perform a task of type t on pi.
Moreover, each link (pi, pj) has a bandwidth bw(pi, pj) which is the number
of data per time unit that can be transferred through that link.

5

10

2

20

2

4

{B, D}

{B, C}

p4

{A, D}
p3

p2p1

{A, C}

Figure 2: An example of a platform

Figure 2 gives an example of a platform where the letters A, B, C and D
represent the task types that can be performed onto the nodes. The number
above the link is the bandwidth.

Figure 3 gives an example of the capabilities of each machine to perform
each task type. The values correspond to the number of time units necessary
to carry out the corresponding task type onto a given processor. When the
value is infinity, the machine cannot perform the task type. For instance,
processor p1 can perform both the functions A and C but cannot perform
neither B nor D.

RR 2011–01

10 J.M. Nicod, L. Philippe, L. Toch

p1 p2 p3 p4

T
y
p
e

A 20 ∞ ∞ 15
B ∞ 10 5 ∞
C 10 10 ∞ ∞
D ∞ ∞ 10 10

Figure 3: Execution platform performance.

2.3 Communication model

In our study processors are interconnected by communication links in a point-
to-point fashion to model a computation grid. In the literature [1, 6], several
communication models exist such as the one-port model or the all-port model.
We choose to use the one-port model because of its ease of modeling and of
implementation while still being realistic. In this model only one data can
be transmitted at the same time over a communication link and a node can
do at most one reception and one transmission at the same time.

3 Related work

Scheduling problems have extensively been studied in the literature and min-
imizing the makespan (maximum completion time) of a DAG execution on
a distributed homogeneous platform with limited resources, i.e., a limited
number of processors, is known to be a NP-Complete problem [18]. As a
consequence, the problem considered here is also NP-Complete since the
heterogeneity of the resources makes the problem more complex. So there is
no direct method that can find an optimal solution in polynomial time and
the schedule decisions must rely on heuristic solutions.

Classical solution scheduling algorithms often rely on list-based schedul-
ing algorithms. They use heuristics such as Heterogeneous Earliest Finish
Time (HEFT) [23] or Critical Path [16]. In a homogeneous context, [17]
gives a survey on the DAG scheduling topic. Moreover the more complete
study [13] evaluates eleven heuristics, such as Min-min, Max-min or Suffer-
age, three heuristics based on the Minimum Completion Time (MCT). These
results obtained onto homogeneous platforms give hints to schedule DAGs
onto heterogeneous platforms but have not been validated for Heterogeneous
Computing.

Makespan oriented strategies to schedule workflows onto the grid are pre-
sented in [19], with the description of real life medical applications, or in [4]
for Ocean-Atmosphere modeling. In [25], the problem of scheduling a set of

LIFC

A GA to Schedule Workflow Collections with Communication Costs 11

different DAGs is studied. These approaches compute an off-line schedule
considering the whole set of tasks. But, when the number of tasks scales
up, the computation time becomes too long because of the complexity of the
algorithm.

M. Daoud and N. Kharma present in [8] a makespan oriented genetic
based algorithm (GA) for tasks scheduling. It has been designed for schedul-
ing tasks of one workflow onto a heterogeneous platform but without taking
communication costs into account. C. Goh et al. use in [15] the same genome
coding but communications are not handled too.

Other studies tackle workflow scheduling onto heterogeneous platforms
but with other objective functions than the makespan. The results pre-
sented in [2] use Timed Petri Nets and pipelines to optimize the through-
put of replicated workflows onto heterogeneous platforms. The steady-state
technique presented in [1] provides an optimal algorithm to schedule a set
of identical workflows also for the throughput objective function. Other op-
timization criteria are studied in the literature, such as the latency [24], or
even performance-related criteria together with energy consumption [3].

4 GA with communication costs

For the execution we use the same genome representation as in [8, 15], i.e.,
a chromosome is a two-dimension table with one row per node where the
tasks assigned to the node are recorded. Some improvements to take SOA-
Grids and collections into account, presented in [10], are added. As these GA
coding does not however take communication costs into account, we study
their integration in this section.

4.1 Communication integration

The main problem we faced is the step of the genetic algorithm where we
should integrate the communications.

At first we have worked on inserting communications into the chromo-
somes, as for executions. We have introduced the notion of “communication
task”, between each couple of dependent tasks in the task graph. Then we
map them onto the communication links. When integrating “communication
tasks” in the chromosomes, there are however issues regarding the crossover
procedure. Let us imagine two schedules for one application onto one plat-
form. In each schedule a task is allocated to one node, and its output (a
communication) is allocated to a route composed of connected communica-
tion links. Now, if we make a crossover with these two schedules, and if we

RR 2011–01

12 J.M. Nicod, L. Philippe, L. Toch

apply the crossover technique on communication tasks with their allocated
links, we potentially generate a lot of inconsistent communication routes and
we thus produce numerous non feasible schedules. This makes a huge waste
in term of computation time.

A more convenient way to introduce communications is at the fitness
evaluation step of the genetic algorithm. Indeed the allocations of the com-
munication tasks depend on the allocations of the computation tasks since
the possible routes between two nodes are limited. Choosing a good mapping
for the computation tasks intuitively involves finding a valid allocation for
the communication tasks. So we propose to use the chromosomes only for
mapping computation tasks onto the nodes, and in a second step to look
for a valid route to send the data according to this mapping and the prece-
dence constraints between the tasks. Then the fitness of each individual can
be evaluated by taking both the computations and the communications into
account, each individual being valid (see algorithm 1).

4.2 Impact of the communication model

Choosing the network links for each communication is complex. Always using
the shortest, or fastest, path may lead to a high contention so that we need
to take the network load into account. We assess here four communication
policies.

Figures 4a and 4b show the efficiencies of the GA different communica-
tion integrations. This notion of efficiency will be introduced in section 7.1,
however, it is necessary to know only that the higher the curve is, the higher
the performance of the algorithm is.

• “GA-without-comm” : an arbitrary static route is given for each cou-
ple of computation nodes. Chromosome fitness are evaluated without
regarding the communication cost.

• “GA 1-port-comm-static-route” : the same the previous policy but
with regarding communication costs in the fitness evaluation using the
1-port model.

• “GA 1-route-Bellman-Ford” : the static route for each couple of com-
putation nodes is the fastest one by using the Bellman-Ford algorithm.

• “GA 3-routes-Bellman-Ford” : for each couple of computation nodes,
during the evaluation fitness step, the 3 first best routes are tested.

LIFC

A GA to Schedule Workflow Collections with Communication Costs 13

Algorithm 1: Scheduling tasks according the chromosome ch

Input : B: the N DAGs to schedule
a(i, j): pa(i,j) is the machine on which T j

i is assigned
PF = (P,L): the targeted platform
R(pk, pi) = {(pj , pj′) ∈ L}: a route from pk to pi

t(i, j): the type of the task T j
i

w(t(i, j), u): the time to perform T j
i onto pu

Output: f(ch): the fitness associated to the chromosome ch
Data: T = {T j

ij
, 1 ≤ ij ≤ nj and 1 ≤ j ≤ N}: the set of tasks to schedule

TToSched: the set of remaining tasks to schedule
C(T j

i): the completion time of T j
i

σ(T j
i): the time to start T j

i onto pa(i,j)

δ(pu): the next time where pu is idle
F j

k,i: the file to send between T j
k and T j

i when (T j
k , T j

i) ∈ Dj

CF (F j
k,i): the time to send F j

k,i along the route
R(pa(k,j), pa(i,j))

TToSched ← T
while TToSched 6= ∅ do

choose a free task T j
i ∈ TToSched (EFT heuristic) Tpred ← {T j

k |(T
j
k , T j

i) ∈ Dj}
σ(T j

i)← 0
foreach task T j

k ∈ Tpred do
σ(T j

i)← max(σ(T j
i), C(T j

k) + CF (F j
k,i))

σ(T j
i)← max(δ(pa(i,j)), σ(T j

i))
C(T j

i)← σ(T j
i) + w(t(i, j), a(i, j))

δ(pa(i,j))← C(T j
i)

The task T j
i is scheduled at the time σ(T j

i) onto pa(i,j)

TToSched ← TToSched \ {T j
i }

return f(ch) = Cmax = maxT j
i
∈T (C(T k

i))

RR 2011–01

14 J.M. Nicod, L. Philippe, L. Toch

GA 3−routes Bellman−Ford

 0

 10

 20

 30

 40

 50

 10 100 1000 10000

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts
 w

it
h

 a
n

 e
ff

ic
ie

n
cy

 a
b

o
v

e
0

.9

Number of jobs

GA without comm

GA 1−port comm static route

GA 1−route Bellman−Ford

LIST

(a)

GA 1−port comm static route

GA 1−route Bellman−Ford

GA 3−routes Bellman−Ford

LIST

 0

 10

 20

 30

 40

 50

 1000 10 10000

P
er

ce
n
ta

g
e

o
f

ex
p
er

im
en

ts
 w

it
h
 a

n
 e

ff
ic

ie
n
cy

 a
b
o
v
e

0
.8

Number of jobs

GA without comm

 100

(b)

Figure 4: Communication integrations with an efficiency above 0.9 and 0.8,
CCR ≈ 10

LIFC

A GA to Schedule Workflow Collections with Communication Costs 15

Comparing this preliminary work to performance of a list-based schedul-
ing (LIST) allows us to see that taking communication into account leads to
good performance.

5 Simulation setup

To assess the performance of the scheduling algorithm we need to implement
it on a heterogeneous platform. The context is indeed too complex to be
studied with a formal approach and, to get realistic results, the platforms
used must integrate the network contention. On the other hand, the imple-
mentation on a computation grid can however not give reproducible results
as the experimental conditions, as the network load, may change. So, we use
a grid simulator to evaluate the performance of the Genetic Algorithm. The
simulator is implemented using SimGrid and its MSG API [7].

All the simulations have been made using batch sizes from 1 to 10 000.
The platforms and the applications are randomly generated with a uniform
distribution. Platforms have between 4 and 10 nodes and are strongly con-
nected. Applications have between 4 and 12 tasks. For the case where
workflows are different from each other, presented in 6, 200 platforms and
10 000 DAGs are randomly generated. For each couple (platform, batch size)
different applications are randomly chosen among the 10 000. So we generate
1 900 simulations of platform/application scenarios. In the case where work-
flows are identical, we use 10 platforms and 10 applications, so 100 scenarios
for each batch size.

We define the “computation to communication ratio” (CCR) of a simula-
tion as the average computation time divided by the average communication
time. To assess the impact of the communications on the algorithm perfor-
mance, we run simulations with different CCR, from 1/1 000, i.e., communi-
cation time is predominant, to 1 000, i.e., communication time is negligible.
The speed of the nodes are unrelated. We also assess the impact of the plat-
form heterogeneity on the performance: execution and communication times
fluctuate respectively in a range from 1 to 10 and 1 to 4.

For the GA, the population is set to 200 individuals and a generation is
set to 100 iterations.

6 Results with general DAGs

As no optimal value can be computed in a polynomial time for the global
execution time of a collection of workflows, we must compare the performance

RR 2011–01

16 J.M. Nicod, L. Philippe, L. Toch

of the GA to another algorithm. So the metric that we use is the makespan
improvement relative to a standard list-based scheduling algorithm (LIST).

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

P
er

ce
nt

ag
e

of
 G

A
 e

xp
er

im
en

ts
 w

ith
 a

 m
ak

es
pa

n
 im

pr
ov

em
en

t o
f X

 %
 r

el
at

iv
e

to
 L

IS
T

Number of jobs

0%
10%
20%
30%

Figure 5: Improvement for batches of different DAGs, fully heterogeneous
platforms, CCR ≈ 1

Figure 5 shows the improvement of the makespan when scheduling a set
of different workflows on a heterogeneous platform. Each curve shows the
percentage of GA experiences whose makespan is improved respectively by
more than 0%, 10%, 20% and 30% when compared to the use of the list-
based scheduling algorithm (LIST). We notice that more than 80% of the
GA experiments have a makespan improved by more than 10%. The 0%-
curve shows that GA gives an improvement in about 100% of cases.

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

P
er

ce
nt

ag
e

of
 G

A
 e

xp
er

im
en

ts
 w

ith
 a

 m
ak

es
pa

n
 im

pr
ov

em
en

t o
f X

 %
 r

el
at

iv
e

to
 L

IS
T

Number of jobs

0%
10%
20%
30%

Figure 6: Improvement for batches of identical general DAGs, fully hetero-
geneous platforms, CCR ≈ 1

Figure 6 shows the improvement of the makespan when scheduling a set
of identical workflows. We can notice that GA gives less important im-

LIFC

A GA to Schedule Workflow Collections with Communication Costs 17

provements relative to LIST in this case. For each 0, 10, 20 and 30 %-curve,
GA improvements decrease by about 10% compared to experiments obtained
when scheduling different workflows. We can also note that 10% to 20% of
the GA schedules are less efficient than the LIST schedules in this case. GA
improvements remain however high.

In general, more than 70% of the GA experiments give a makespan with
an improvement greater than 10% for almost any size of sets of workflows.
The diversity of the workflows promotes the GA algorithm: as GA tries
randomly a lot of combinations it can benefit from different workflows while
LIST which is directed by greedy choices, cannot.

7 Results for a set of identical intrees

Comparing two algorithms gives relative information but no absolute infor-
mation on the quality of the algorithm. For the particular case of batches of
intrees it is possible to compute an optimal throughput by using a steady-
state algorithm [1]. In this section we assess how far the GA is from the op-
timal, so its absolute efficiency, and we compare it to the list scheduling and
to the a practical makespan oriented implementation of this algorithm [9].

Note that this study is limited to the particular case where the applica-
tions are intrees.

7.1 Efficiency

Using linear programming the optimal throughput can be computed thanks
to the steady-state algorithm. This optimal throughput is used to compute
a lower bound for the optimal makespan makespano which the number N of
jobs to process divided by the steady-state throughput (ρ). To evaluate the
GA performance, we introduce the notion of efficiency as the ratio between
this lower bound makespano over the makespan of the schedule given by
GA makespanr. That is to say if a schedule gives makespanr = makespano

then efficiency = 1.0 and it means that this schedule is optimal. The nearer
efficiency is from 1.0, the more efficient the scheduling algorithm is.

efficiency =
makespano

makespanr

with makespano ≥
N

ρ

So, efficiency ≥ N

ρ×makespanr

Since we run 100 simulations, for each of the 19 sizes of job sets, we cannot
get a simple scalar efficiency value for the overall experiments. A mean value

RR 2011–01

18 J.M. Nicod, L. Philippe, L. Toch

would indeed be not meaningful as the longer simulations will weight more
than the sorter ones in this metric. So we introduce an efficiency threshold t
for the different sizes of batches SIZES and we compute the percentage of
experiments that gives an efficiency greater than t for each size of batches.

In the following we present the distribution of the results depending on
this percentage on 3D curves. Two lines are thickened on the surfaces to
highlight the efficiency curves for threshold values 0.8 and 0.9.

7.2 Fully heterogeneous platforms

In this section we compare the performance of GA, LIST and steady-state
to schedule intrees on heterogeneous platforms.

 20
 30
 40
 50
 60
 70
 80
 90

 100

GA

threshold
Number of jobs

 1
 10

 100

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts
 w

it
h

 1000
 10000

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 10

 a
n

 e
ff

ic
ie

n
cy

 a
b
o

v
e

’t
h
re

sh
o

ld
’

(a) GA algorithm

 50
 60
 70
 80
 90

 100

threshold
Number of jobs

LIST

 1
 10

 100
 1000

 10000

 0

P
er

ce
n

ta
g

e
o
f

ex
p
er

im
en

ts
 w

it
h

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 10
 20
 30
 40

 a
n

 e
ff

ic
ie

n
cy

 a
b
o

v
e

’t
h

re
sh

o
ld

’

(b) LIST algorithm

Figure 7: CCR ≈ 1000, fully heterogeneous platforms

Figures 7a and 7b show the distribution of the percentage of experiments
which give schedules greater than a threshold and for a batch size. The used
platforms are fully heterogeneous and CCR ≈ 1 000. For both the algorithms
the efficiency increases with the number of jobs. We can notice that for batch
sizes greater than 100 almost 100% of GA experiments reach an efficiency
greater than 0.8. There is an 100% horizontal line for GA experiments for
threshold 0.8 and batch sizes from 100 to 10 000, while for LIST there is a
rising curve. It means that GA efficiency increases faster than LIST when
batch sizes are large.

Figures 8a and 8c show that for batch sizes greater than 100 more than
70% of GA experiments have an efficiency greater than 0.8, while LIST
reaches hardly 60%. However for the threshold 0.9 the two experiments
have almost the same behavior. On the other hand, the steady-state algo-
rithm gives better results with almost 90% of the simulations that reach an
efficiency of 0.8. The GA is however not so far from this curve.

LIFC

A GA to Schedule Workflow Collections with Communication Costs 19

 0.2
 0.3

GA

threshold
Number of jobs

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 10
 20
 30
 40

P
er

ce
n
ta

g
e

o
f

ex
p

er
im

en
ts

 w
it

h

 50
 60
 70
 80
 90

 100

 1
 10

 100
 1000

 10000

 0
 0.1

 a
n
 e

ff
ic

ie
n
cy

 a
b

o
v
e

’t
h

re
sh

o
ld

’

(a) GA algorithm

 0.2
 0.3

threshold
Number of jobs

Steady−state

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 10
 20
 30
 40

P
er

ce
n
ta

g
e

o
f

ex
p

er
im

en
ts

 w
it

h

 50
 60
 70
 80
 90

 100

 1
 10

 100
 1000

 10000

 0
 0.1

 a
n
 e

ff
ic

ie
n
cy

 a
b

o
v
e

’t
h

re
sh

o
ld

’

(b) Steady-State algorithm

 0.2
 0.3

threshold
Number of jobs

LIST

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 10
 20
 30
 40

P
er

ce
n
ta

g
e

o
f

ex
p

er
im

en
ts

 w
it

h

 50
 60
 70
 80
 90

 100

 1
 10

 100
 1000

 10000

 0
 0.1

 a
n
 e

ff
ic

ie
n
cy

 a
b

o
v
e

’t
h

re
sh

o
ld

’

(c) LIST algorithm

Figure 8: Simulation with fully heterogeneous platforms, CCR ≈ 1

 0.3
 0.4

GA

threshold
Number of jobs

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 20

 40

 60

 80

 100

P
er

ce
n
ta

g
e

o
f

ex
p
er

im
en

ts
 w

it
h

 1
 10

 100
 1000

 10000

 0
 0.1

 0.2

 a
n
 e

ff
ic

ie
n
cy

 a
b
o

v
e

’t
h
re

sh
o
ld

’

(a) GA algorithm

 0.3
 0.4

threshold
Number of jobs

Steady−state

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 20

 40

 60

 80

 100

P
er

ce
n
ta

g
e

o
f

ex
p
er

im
en

ts
 w

it
h

 1
 10

 100
 1000

 10000

 0
 0.1

 0.2

 a
n
 e

ff
ic

ie
n
cy

 a
b
o

v
e

’t
h
re

sh
o
ld

’

(b) Steady-State algorithm

 0.3
 0.4

threshold
Number of jobs

LIST

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 20

 40

 60

 80

 100

P
er

ce
n
ta

g
e

o
f

ex
p
er

im
en

ts
 w

it
h

 1
 10

 100
 1000

 10000

 0
 0.1

 0.2

 a
n
 e

ff
ic

ie
n
cy

 a
b
o

v
e

’t
h
re

sh
o
ld

’

(c) LIST algorithm

Figure 9: Simulation with fully homogeneous platforms, CCR ≈ 1000

 0.3
 0.4

GA

threshold
Number of jobs

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 20

 40

 60

 80

 100

P
er

ce
n

ta
g
e

o
f

ex
p

er
im

en
ts

 w
it

h

 1
 10

 100
 1000

 10000

 0
 0.1

 0.2

 a
n

 e
ff

ic
ie

n
cy

 a
b

o
v
e

’t
h

re
sh

o
ld

’

(a) GA algorithm

 0.3
 0.4

threshold
Number of jobs

Steady−state

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 20

 40

 60

 80

 100

P
er

ce
n

ta
g
e

o
f

ex
p

er
im

en
ts

 w
it

h

 1
 10

 100
 1000

 10000

 0
 0.1

 0.2

 a
n

 e
ff

ic
ie

n
cy

 a
b

o
v
e

’t
h

re
sh

o
ld

’

(b) Steady-State algorithm

 0.3
 0.4

threshold
Number of jobs

LIST

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 20

 40

 60

 80

 100

P
er

ce
n

ta
g
e

o
f

ex
p

er
im

en
ts

 w
it

h

 1
 10

 100
 1000

 10000

 0
 0.1

 0.2

 a
n

 e
ff

ic
ie

n
cy

 a
b

o
v
e

’t
h

re
sh

o
ld

’

(c) LIST algorithm

Figure 10: Simulation with fully homogeneous platforms, CCR ≈ 1

RR 2011–01

20 J.M. Nicod, L. Philippe, L. Toch

7.3 Fully homogeneous platforms

In this section we assess the performance of GA for scheduling intrees on
homogeneous platforms.

7.3.1 CCR ≈ 1 000

On the figures 9a, 9b and 9c we see the percentage of experiments which
give schedules with efficiencies greater than 0.9 and 0.8 when the platforms
have heterogeneous nodes and heterogeneous communication links. For the
threshold 0.9, GA is even better than both the Steady-State and the LIST
algorithms for batch sizes less than 1 000. For batch sizes greater than 1 000,
GA is overtaken. However if threshold 0.8 is taken, GA shows the highest
curve.

7.3.2 CCR ≈ 1

With the figures 10a, 10b and 10c we see the percentage of experiments which
give schedules with efficiencies greater than 0.9 and 0.8 when the platforms
have homogeneous nodes and homogeneous communication links. For the
threshold 0.9, GA is even better than both the Steady-State and the LIST
algorithms for batch sizes less than 2 500. For batch sizes greater than 2 500,
GA is overtaken. However if threshold 0.8 is taken, GA shows the highest
curve up to 5 000 jobs. Figure 10a shows that LIST has very poor results
even for several thresholds.

7.4 Computation times

The figure 11 shows the time spent by the three algorithms to find a schedule
for platforms with heterogeneous bandwidths and whose computation costs
are 10 times greater than communication costs. The GA and LIST are very
time consuming while the computation time spent by the Steady-State algo-
rithm is very low. Nevertheless GA has the best performance in most seen
cases for batch sizes less than 1 000. For these sizes the GA computation
times is less than 20 minutes only.

The simulations have been run on a cluster with 64 nodes, each node
being a 2.8 GHz quad-core Intel Xeon bi-processor. Each simulation runs on
one core.

8 Conclusion and future work

In this paper, we propose a genetic algorithm that solves the problem of
scheduling a collection of workflows on a set of heterogeneous nodes inter-

LIFC

A GA to Schedule Workflow Collections with Communication Costs 21

C
P

U
 t

im
e

in
 s

ec
o

n
d
s

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

Steady−state
LIST

GA

Batch size

 0

Figure 11: Average Computation time

connected by heterogeneous communication links. This GA takes the com-
munication costs into account. We show that for a collection of different
workflows GA obtains better execution performance than a classical LIST
algorithm. For the case where the DAGs are identical intrees we are able
to compare the GA results to an optimal lower bound and to show that its
results tend towards the optimality for more than 1 000 jobs. The obtained
results are moreover comparable to a practical implementation of the Steady-
State algorithm. The main idea we keep in mind is that scheduling with GA
by taking communications into account is difficult, as for implementing the
practical Steady-State solution.

For future work, other communication models should be implemented in
the simulator, like the multi-port models and other genetic representations
could be explored.

Acknowledgment

The huge amount of simulations have been run on the cluster of the Mésocentre
de Calcul de Franche-Comté in Besançon, France.

References

[1] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Assessing the
impact and limits of steady-state scheduling for mixed task and data
parallelism on heterogeneous platforms. In HeteroPar’2004, pages 296–
302, 2004.

[2] A. Benoit, B. Gaujal, M. Gallet, and Y. Robert. Computing the through-
put of replicated workflows on heterogeneous platforms. In Proceedings
of ICPP’09, pages 204–211, 2009.

RR 2011–01

22 J.M. Nicod, L. Philippe, L. Toch

[3] A. Benoit, P. Renaud-Goud, and Y. Robert. Performance and energy
optimization of concurrent pipelined applications. In IPDPS’2010, the
24th IEEE International Parallel and Distributed Processing Sympo-
sium. IEEE Computer Society Press, 2010.

[4] Y. Caniou, E. Caron, G. Charrier, A. Chis, F. Desprez, and Maisonnave
E. Ocean-Atmosphere Modelization over the Grid. In ICPP’08, pages
206–213, 2008.

[5] E. Caron and F. Desprez. Diet: A scalable toolbox to build network
enabled servers on the grid. International Journal of High Performance
Computing Applications, 20(3):335–352, 2006.

[6] H. Casanova. Modeling large-scale platforms for the analysis and the
simulation of scheduling strategies. In IEEE APDCM’04. IEEE Com-
puter Society, 2004.

[7] H. Casanova, A. Legrand, and M. Quinson. Simgrid: A generic frame-
work for large-scale distributed experiments. In Proceedings of UKSIM
’08, pages 126–131, 2008.

[8] M. Daoud and N. Kharma. GATS 1.0: A Novel GA-based Scheduling
Algorithm for Task Scheduling on Heterogeneous Processor Nets. In
Genetic And Evolutionary Computation Conference, 2005.

[9] Sékou Diakité, Loris Marchal, Jean-Marc Nicod, and Laurent Philippe.
Steady-state for batches of identical task graphs. In Euro-Par’09, volume
5704 of LNCS, pages 203–215, Delft University of Technology, Delft, the
Netherlands, August 2009.

[10] Sékou Diakité, Jean-Marc Nicod, and Laurent Philippe. Comparison of
batch scheduling for identical multi-tasks jobs on heterogeneous plat-
forms. In PDP 2008, pages 374–378, Toulouse, France, 2008.

[11] E. Deelman et al. Managing Large-Scale Workflow Execution from Re-
source Provisioning to Provenance Tracking: The CyberShake Example.
In Proceedings 2nd IEEE Int. Conf. on e-Science and Grid Computing,
2006.

[12] Ewa Deelman et al. Pegasus: a framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming Journal,
13:219–237, 2005.

LIFC

A GA to Schedule Workflow Collections with Communication Costs 23

[13] T.-D. Braun et al. A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems. J. Parallel Distrib. Comput., 61:810–837, June 2001.

[14] V.-S. Kumar et al. Large image correction and warping in a cluster
environment. In Proceedings SC’06 Conference, page 79, Tampa, USA,
2006. ACM.

[15] C. K. Goh, E. J. Teoh, and K. C. Tan. A hybrid evolutionary approach
for heterogeneous multiprocessor scheduling. Soft Comput., 13:833–846,
March 2009.

[16] Y. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multi-processors. In IEEE Trans.
on Parallel and Distributed Systems, pages 506 – 521, 1996.

[17] Y.-K. Kwok and I. Ahmad. Static Scheduling Algorithms for Allocating
Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4):406–
471, jan 1999.

[18] J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of scheduling under
precedence constraints. Operations Research, 26(1):22–35, Jan-Feb 1978.

[19] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson. Scheduling strategies for mapping applica-
tion workflows onto the grid. In Proceedings: 14th IEEE International
HPDC’05, pages 125–134, NC, Triangle Park, USA, jul 2005.

[20] A. Schaaff, F.L. Petit, E. Prugniel, P.and Slezak, and C. Surace. Work-
flow in astronomy : the vo france workflow working group experience.
In Astronomical Data Analysis Software and Systems XVII, 2008.

[21] Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi. Design, imple-
mentation and performance evaluation of gridrpc programming middle-
ware for a large-scale computational grid. In Proceedings of the Fifth
IEEE/ACM Int. Workshop on Grid Computing (GRID’04), pages 298–
305, Washington DC, USA, 2004.

[22] I.-J. Taylor, E. Deelman, D.-B. Gannon, and M. Shields (Eds.). Work-
flows for e-Science. Springer Verlag, 2007.

[23] H. Topcuouglu, S. Hariri, and M. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. In IEEE
Trans. on Parallel and Distributed Systems, pages 260 – 274, 2002.

RR 2011–01

24 J.M. Nicod, L. Philippe, L. Toch

[24] N. Vydyanathan, U.-V. Catalyurek, T.-M. Kurc, P. Sadayappan, and J.-
H. Saltz. Toward optimizing latency under throughput constraints for
application workflows on clusters. In Springer, editor, Euro-Par 2007
Parallel Processing, volume 4641 of Lecture Notes in Computer Science,
pages 173–183, 2007.

[25] H. Zhao and R. Sakellariou. Scheduling multiple DAGs onto heteroge-
neous systems. In HCW06, Rhodes, Greece, 2006.

LIFC

A GA to Schedule Workflow Collections with Communication Costs 25

RR 2011–01

Laboratoire d’Informatique de l’université de Franche-Comté
UFR Sciences et Techniques, 16, route de Gray - 25030 Besançon Cedex (France)

LIFC - Antenne de Belfort : IUT Belfort-Montb́eliard, rue Engel Gros, BP 527 - 90016 Belfort Cedex (France)
LIFC - Antenne de Montb́eliard : UFR STGI, P̂ole universitaire du Pays de Montbéliard - 25200 Montb́eliard Cedex (France)

http://lifc.univ-fcomte.fr

