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This paper analyzes individual optimal vaccination strategies for a Susceptible-Infected-Recovered (SIR) model. The individuals vaccinate according to a criterion taking into account the risk of infection, the possible side effects of the vaccine and the overall epidemic course. We treat the situation when the vaccination capacity is limited and the individual discounts the future at some rate D > 0. Since the course of the epidemic is determined by the sum of individual decisions a natural question is whether an equilibrium between the individual decisions and the epidemic evolution exists. We show that the answer is positive.
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Introduction

The vaccination, if available, is often invoked in order to limit the propagation of epidemics. A "benevolent planner" approach can be used to find the vaccination program that will strike the optimal balance between vaccination costs and benefits, expressed in terms of money, medical status, QALY/ DALY (see Refs. [START_REF] Zeckhauser | Where now for saving lives?[END_REF][START_REF] Anand | Disability-adjusted life years: a critical review[END_REF][START_REF] Sassi | Calculating QALYs, comparing QALY and DALY calculations[END_REF]. Refs. 4-9 focused on describing the optimal vaccination policy as function of the vaccine cost, infection cost and epidemic dynamics. However, failures in vaccination campaigns were observed due to worries related to the cost, risk, inefficiency or side-effects of the vaccine. The individual perception and choices will therefore depart from the "benevolent planner" approach and each individual will take his own best vaccination decision according to his subjective perceived risks and costs. As such other parameters should be taken into account and included in the model such as the individual point of view. Individual decisions, whether vaccination is accepted or not may influence the propagation of an epidemic. Several works analyzed this effect, see Refs. 10-20. We refer the reader to Ref. 21 for a recent literature review.

In this context, we use a SIR model and techniques from the "Mean Field Games" theory to show that an equilibrium exists and determines completely the individual optimal vaccination strategy. This work extends the analysis in Ref. [START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-10 Influenza A(H1N1) epidemic in France[END_REF] to the situation when the discount factor D is strictly positive but the vaccination capacity u max is limited. We prove the existence (but not the uniqueness) of an equilibrium.

The work is close in spirit to Refs. 22,23 that show existence and uniqueness of the Mean Field Games equilibrium for a framework involving a finite number of possible states, but the hypothesis used there do not apply here (in particular the super-linearity of the cost with respect to the controls).

Model and nomenclature

We use a SIR model (see Refs. 8,24 for a general description and Ref. [START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-10 Influenza A(H1N1) epidemic in France[END_REF] for this particular model) described by the following equations:

       S (t) = -βS(t)I(t) -u(t), S(0) = S 0 , I (t) = βS(t) -γ I(t), I(0) = I 0 , ϕ I (t) = 1 -ϕ I (t) βI(t), ϕ I (0) = 0, (1) 
Note that S(•), I(•), ϕ I (•) depend on S 0 , I 0 and u(t); however to simplify notations this dependence will not be stated explicitly. The signification of the parameters is as follows:

(1) the parameter β > 0 is the transmission rate of the disease and the parameter γ > 0 is the recovery rate; (2) S(t) ≥ 0, I(t) ≥ 0 and t 0 γI(s)ds ≥ 0 are the proportions of individuals in the Susceptible, Infected and Recovered classes, respectively.

(3) u : [0, ∞[→ [0, u max ] is the vaccination rate; it is a measurable function;

u max < ∞ is the maximal vaccination capacity. Therefore t 0 u(s)ds is the proportion of people that vaccinated by the time t. Since S(t) cannot be negative, this imposes some constraints on the set of admissible vaccination rates u(t) (no more vaccination once S(t) = 0). The admissible vaccinations rates (at the societal level) are:

U = u : [0, ∞[→ [0, u max ] u measurable, S(t) ≥ 0 ∀t ≥ 0 . (2) 
We also introduce the projection to U. For any u : [0, ∞[→ [0, u max ] let t u be the largest value t such that u • 1 [0,t] (•) ∈ U. Then:

R(u) := u • 1 [0,tu] (•). (3) 
By convention for t u = ∞ we take R(u) := u (in this case u ∈ U). (4) ϕ I (t) is the cumulative probability of infection in [0, t] (in absence of vaccination). Its main use is to formulate the individual criterion for vaccination, see below equation [START_REF] Morton | On the optimal control of a deterministic epidemic[END_REF].

We suppose that β, γ, S 0 > 0 and I 0 > 0 (with S 0 + I 0 ≤ 1) are known and fixed from now on.

The first two equations of the system (1) represent the societal dynamics as illustrated in Figure 1; the individual dynamics is modeled by a continuous time Markov chain with individual jumping between the Susceptible, Infected, Recovered and Vaccinated classes (see Ref. [START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-10 Influenza A(H1N1) epidemic in France[END_REF] for the details of the Markov process). Moving from the Susceptible to the Vaccinated class depends only on the will of the individual. Moreover, his choice will not influence, on a global scale, the societal propagation dynamics. We suppose that each individual is aware of the propagation dynamics at the societal level [START_REF] Zeckhauser | Where now for saving lives?[END_REF]. Therefore, the individual can choose between taking the risk of being vaccinated or taking the risk of contracting the disease. He makes a choice only according to his well-being.

A coherence check of the model requires that the individual decisions sum up to give the overall vaccination dynamics (thus epidemic evolution). A natural question is whether such an equilibrium exists. We give a positive answer in a particular case that has not yet been considered in the literature.

Optimal individual strategies

The individual strategy is described by ϕ

V (t) which is the probability of the individual to vaccinate in [0, t]. By convention 1 -ϕ V (∞) is the probability to never vaccinate. Thus ϕ V is a cumulative distribution function (CDF) on [0, ∞[∪{∞}.
The requirement u(t) ≤ u max imposes some constraints on the CDF ϕ V , see Ref. [START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-10 Influenza A(H1N1) epidemic in France[END_REF] for a detailed discussion. Let

Z S(•) = min τ ≥0 {τ |S(τ ) = 0}. (4) 
By convention if S(•) is always strictly positive we set Z S(•) = ∞. Two situations arise:

• On [0, Z S(•) [ we can work, by density, with functions satisfying:

ϕ V (t) = 1 -ϕ V (t) λ(t), ϕ V (0) = 0, (5) 
where λ( 

[Z S(•) ,∞[ ≡ 0 therefore on [Z S(•) , ∞[ there are
no susceptibles left to challenge the capacity of the vaccination centers and thus an additional individual arriving into such a population can vaccinate at any instant (s)he desires; consequently the function ϕ V is only required, as any CDF function, to be increasing, right-continuous and with ϕ V (∞) ≤ 1.

In order to choose his best vaccination strategy the individual defines a cost, denoted J indi (ϕ V ; u):

J indi (ϕ V ; u) = r I Φ I (∞) + ∞ 0 r I "(Φ I (t) -Φ I (∞)) +r V e -Dt (1 -ϕ I (t)) dϕ V (t). ( 6 
)
Here D > 0 is the discount factor, and Φ I (t) is a function describing the risk of infection weighted according to the discount factor:

Φ I (t) = t 0 e -Ds ϕ I (s)ds = t 0 e -Ds (1 -ϕ I (s))βI(s)ds, Φ I (0) = 0. (7)
The parameter r V is the cost of the vaccination (measured in money or as medical side-effects) and r I the cost of being infected.

Set:

g(t) = r I "(Φ I (t) -Φ I (∞)) + r V e -Dt (1 -ϕ I (t)). (8) 
In particular g(t) ∈ [-r I , r I + r V ], ∀t ≥ 0. Thus, the individual wants to minimize

J indi (ϕ V ; u) = r I Φ I (∞) + ∞ 0 g(t)dϕ V (t)
, which, after elimination of the term r I Φ I (∞) (independent of ϕ V ), amounts to looking for a minimum of

∞ 0 g(t)dϕ V (t) = Z S(•) 0 g(t)(1 -ϕ V (t))λ(t)dt + ∞ Z S(•) g(t)dϕ V (t). (9)
As in Ref. [START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-10 Influenza A(H1N1) epidemic in France[END_REF] the minimum of the second quantity is readily seen to be

-(1 -ϕ V (Z - S(•) )) • inf t≥Z S(•) g(t)
-(for any real number x, we denote

x -= max{-x, 0}).

The HJB equation associated to the individual optimal solutions

Lemma 3.1. Let u ∈ U. Then

(1) I(t) vanishes to 0 at ∞ uniformly with respect to u ∈ U (but depending on β, γ, S 0 , I 0 ); (2) there exists T max > 0 depending only on β, γ, S 0 , I 0 such that the function g(t) is positive on [T max , ∞[. In particular the optimal dϕ V is null on [T max , ∞[.

Proof. Let us compute the derivative of g(t):

g (t) = r I e -Dt (1 -ϕ I (t))βI(t) -Dr V e -Dt (1 -ϕ I (t)) -r V e -Dt (1 -ϕ I (t))βI(t) = e -Dt (1 -ϕ I (t)) (r I -r V )βI(t) -r V D . (10) 
The second equation in [START_REF] Zeckhauser | Where now for saving lives?[END_REF] shows that I(t) can be either decreasing (if S 0 ≤ γ/β) or increasing while S(t) ≥ γ/β and then decreasing. In particular I(t) can be larger than r V D (r I -r V )β at most on some bounded interval (depending on S 0 , I 0 , u). Thus in general g(t) has the form in Figures 2 and 3: decreasing, then increasing then decreasing again. Moreover lim t→∞ g(t) = 0.

The optimal dϕ V is null on any interval [T, ∞[ such that g(t) is decreasing (thus positive) on the whole interval. Therefore it is enough to find T max such that I(t) ≤ r V D (r I -r V )β for t ≥ T max . To this end we will prove that I(t) vanishes at infinity uniformly with respect to u (but depending on S 0 , I 0 , γ and β).

Let C ≤ I 0 and T C = ln( I 0 C )+ S 0 C γ > 0, chosen such that I 0 e -γt+ S 0 C ≤ C, ∀t ≥ T C
. Suppose, by contradiction, that there exists t * ≥ T C with I(t * ) > C (note that t * may depend on u). Thus, as I is continuous and lim t→∞ I(t) = 0, we find t * * ≥ t * ≥ T C such that I(t * * ) = C. But, since C ≤ I 0 , we also have that

I(t * * ) = C ≤ I 0 implies I(t) ≥ C, ∀t ≤ t * * and thus I(t) ≥ C, ∀t ≤ T C .
On the other side, S (t) ≤ -βS(t)I(t) thus S(t) ≤ S 0 e -βtC , ∀t ≤ T C . Moreover I (t) = βS(t)I(t) -γI(t) implies : I(t) ≤ I 0 e -γt+S0β t 0 e -βCτ dτ < I 0 e -γt+ S 0 C ≤ C, which is absurd. Thus for any C small enough (C ≤ I 0 ), there exists T C > 0 independent of u such that I(t) ≤ C, ∀t ≥ T C which means that I vanishes at infinity independently of u. This gives the first point of the result.

The second point follows from the behavior of the function g(t) and the definition of the individual cost.

Remark 3.1. The point 1 of Lemma 3.1 can also be proved in the following way: for any ε < I 0 let t ε be the unique point such that I(t ε ) = ε (unique because I(t) can only decrease once it is below I 0 ). Then for any t ≤ t ε we have

I(t) ≥ I(t ε ) = ε. But since 1 ≥ ∞ 0 γI(t)dt ≥ tε 0 γI(t)dt ≥ γI(t ε )t ε , ( 11 
)
one obtains t ε ≤ 1 γε thus any t ≥ 1 γε has I(t) ≤ I(t ε ) = ε.
Note that on [Z S(•) , ∞[ the variable I(t) can only decrease. Thus, considering the arguments of Lemma 3.1 the function g(t) can be increasing and then decreasing or only decreasing. In both situations, the minimum value, if it is negative, is attained at point Z S(•) (otherwise it is null). Thus:

- inf t≥Z S(•) g(t) - = -g(Z S(•) ) - . (12) 
The individual minimization problem can therefore be rephrased as minimizing

∞ 0 g(t)dϕ V (t) = Z S(•) 0 g(t)(1-ϕ V (t))λ(t)dt-(1-ϕ V (Z - S(•) )• g(Z S(•) ) - . (13) 
For any t ≥ 0 we introduce the notation

V (t) :=inf ∞ t g(τ )dϕ V (τ ) ϕ V increasing, right continuous with left limits, ϕ V (t) = 0, ϕ V (∞) ≤ 1, ϕ V (τ ) = (1 -ϕ V (τ ))λ(τ ), ∀τ ∈ [t, Z S(•) [ with 0 ≤ λ(τ ) ≤ u max /S(τ ) . (14) Previous arguments show that for t ∈ [0, Z S(•) [ V (t) := inf Z S(•) t g(τ )(1 -ϕ V (τ ))λ(τ )dτ -(1 -ϕ V (Z - S(•) )) • g(Z S(•) ) - ϕ V (t) = 0, ϕ V (∞) ≤ 1, ϕ V (τ ) = (1 -ϕ V (τ ))λ(τ ), ∀τ ∈ [t, Z S(•) [ with 0 ≤ λ(τ ) ≤ u max /S(τ ) . ( 15 
) Standard manipulations allow to see that V is continuous on [0, Z S(•) [∪]Z S(•) , ∞[.

Moreover the limit lim t Z S(•) V (t) equalsg(Z S(•) )

and can be attained with a ϕ V that is continuous. To see this, consider the relevant case Z S(•) < ∞ and treat first the situation when g(Z S(•) ) ≥ 0. Then in the limit t Z S(•) the best possible value for V (t) is null, attained with ϕ V = 0. When g(Z S(•) ) < 0, since g(•) is continuous and the total mass of ϕ V cannot be larger than one, in the limit t Z S(•) the best possible value for V (t) is g(Z S(•) ), attained for the law obtained setting λ(τ ) = u max /S(τ ). To see that in this case the mass is one it is enough to prove that ϕ V (Z - S(•) ) = 1, or equivalently -V (t) + min

λ(t)∈[0,umax/S(t)] (g(t) -V (t))λ(t) = 0, t < Z S(•) (16) V (Z S(•) ) = -g(Z S(•) ) - . (17) 
On the other hand, for t ≥ Z S(•) : V (t) =g(t)

and also V (t) = 0 for any t ≥ T max which means that on [Z S(•) , T max [ (if it is non-void) the value function V is solution of the HJB equation

-min{V (t), g(t) -V (t)} = 0, Z S(•) ≤ t < T max (18) 
V (T max ) = 0. ( 19 
)
Combining equations( 16)-( 17) and ( 18)-( 19) we obtain that V is the continuous viscosity solution of:

∀t ≤ T max : -min{V (t), V (t)S(t)+u max (g(t)-V (t))} = 0, V (T max ) = 0. (20) Note that, for any given g(•), S(•), the problem (20) can be written

-F g(•),S(•) (t, V, V ) = 0, V (T max ) = 0. ( 21 
)
where

F g(•),S(•) : [0, T max ] × R × R → R is defined as F g(•),S(•) (t, v, p) = min{p, pS(t) + u max (g(t) -v)}. (22) 
In particular F g(•),S(•) is continuous.

t g(t)

V(t)

t * 1 t * 2 Z S(•) V = 0 V S + u m ax(g -V ) = 0 V = 0 Fig. 2.
Representation of the functions g(t) (dashed line) and V (t) (solid line) for the situation g(t) ≥ 0 for all t ≥ Z S(•) . In this case the equation of V can either be V = 0 or V S + umax(g -V ) = 0.

2.20 section II.2 from Ref. 28). To this end consider W (t) = e t V (t), thus V (t) = e -t (W (t) -W (t)). We replace V (t) and V (t) in [START_REF] Bhattacharyya | Wait and see vaccinating behaviour during a pandemic: A game theoretic analysis[END_REF] and obtain that W (t) is solution of the following problem:

∀t ≤ T max : -min{W (t) -W (t), (W (t) -W (t))S(t) + u max (e t g(t) -W (t))} = 0, W (T max ) = 0. ( 24 
)
The uniqueness of the solution of ( 24) is obtained under assumptions of strict monotonicity of F W (t, v, p) = -min{p-v, (p-v)S(t)+u max (e t g(t)v)} with respect to its second argument. In practice one has to prove

∀t ≥ 0, ∀p ∈ R, ∀v 1 ≥ v 2 : F W (t, v 1 , p) -F W (t, v 2 , p) ≥ C m (v 1 -v 2 ), with C m > 0. (25) 
In our case, F W satisfies [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF] with C m = min(1, u max ) > 0.

To prove the second part of the result, we propose a solution candidate V. First of all, V(t) := -(g(t)) -on [min{Z S(•) , T max }, ∞[. In this case dϕ V is either null or a Dirac mass (depending on whether g is positive or negative).

For t < min{Z S(•) , T max } two alternatives appear:

• When Z S(•) < ∞ and g(Z S(•) ) < 0 then S(t)V (t)+u max (g(t)-V(t)) = 0 on some interval [t * 1 , Z S(•) [ with t * 1 the first (solving backwards from Z S(•) ) such that V(t * 1 ) = g(t * 1 ). In this case dϕ V = (1ϕ V )u max /S(t) on some interval and null elsewhere. On [0, t * 1 ], the function V(t) is constant.

• For other situations, denote t * 2 = inf{t ≥ 0|g(τ ) ≥ 0, ∀τ ≥ t}.

Then S(t)V (t) + u max (g(t) -V(t)) = 0 on some interval [t * 1 , t * 2 [ with t * 1 the first (solving backwards from t * 2 ) such that V(t * 1 ) = g(t * 1 ). In this case dϕ V = (1ϕ V )u max /S(t) on some interval and null elsewhere. On [0, t * 1 ], the function V(t) is constant. Elementary computations allow to prove that V is a solution of (20), therefore the unique solution, therefore V = V . In particular, this implies the alternatives 1-3. See Figures 2 and3 for an illustration.

Equilibrium

An equilibrium between the individual vaccination and the societal vaccination satisfies u(t) = S(t)λ(t) (see Ref. 21). The Lemma 3.2 suggests for any t ∈ [0, T max ]. The same works for I(•). But the convergence of T n 1 to T 1 and T n 2 to T 2 implies the uniform convergence of U n to U and thus uniform convergence of S n to S, I n to I; hence g n converges to g uniformly. This is enough to ensure the uniform convergence of F n to F . By Lemma 3.2 to any solution of equations ( 28) and ( 27) we can associate an element of K; using the compactness of K, we obtain the conclusion.

Fig. 1 .

 1 Fig. 1. Societal overall dynamics.
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  S(•) t u max /S(τ )dτ = ∞; the equation of S (t) integrated between Z S(•)and Z S(•) gives the upper bound S(Z S(•) -) ≤ u max and the conclusion follows.Thus settingV (Z S(•) ) =g(Z S(•) ) -we obtain that V (•) is continuous on [0, Z S(•)] and is a viscosity solution of the following Hamilton Jacobi Bellman equation (see Ref. 25):

Fig. 3. Representation of the functions g(t) (dashed line) and V (t) (solid line) for the situation g(Z S(•) ) < 0. With respect to the Figure 2 a new region appears, for t ∈ [Z S(•) , t * 2 ] where V = g.

Structure of individual optimal solutions

The considerations of the previous section allow to prove: Lemma 3.2. Let u be an arbitrary control in U and denote by S(•) and g(•) the corresponding solutions of (1). Then the value function V (•) defined in [START_REF] Galvani | Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum[END_REF] is the unique solution of the HJB equation [START_REF] Bhattacharyya | Wait and see vaccinating behaviour during a pandemic: A game theoretic analysis[END_REF]. Moreover V (0) is attained by at least one optimal strategy ϕ V having the following form:

(1) If inf t≥0 g(t) = 0 then V (0) = 0 and ϕ V = 0;

(2) If inf t≥0 g(t) < 0, let t u ≤ T max be such that g(t u ) = inf t≥0 g(t). If

In this case inf t≥0 g(t) < V (0) < 0.

Proof. The considerations in Section 3.1 ensure that the value function is solution of [START_REF] Bhattacharyya | Wait and see vaccinating behaviour during a pandemic: A game theoretic analysis[END_REF]. To prove the uniqueness, we apply the theorem 2. 

To prove the existence of an equilibrium we introduce

with the notations of the Lemma 3.2, the alternative 3 arises then set

Proof. An equilibrium corresponds to a fixed point of F. Moreover the definition (3) and equation [START_REF] Francis | Optimal tax/subsidy combinations for the flu season[END_REF] ensure that any point x * with x * ∈ F(x * ) corresponds necessarily to an admissible control (see also the arguments that allow to prove the continuity of V defined in equation ( 15)). We use the Kakutani fixed-point theorem and will check its assumptions:

The first property follows from the definition of F. For the second consider two sequences (x n = (T n 1 , T n 2 )) n≥0 , (y n ) n≥0 ⊂ K such that y n ∈ F(x n ), x n → x = (T 1 , T 2 ), y n → y. We have to prove that y ∈ F(x).

Denote u

We use the following stability properties from Ref. 25 page 176 : let (V n ) n≥1 satisfy (in the viscosity sense):

Suppose that the sequence (F n ) n≥1 converges uniformly on compact sets to some F and the sequence (

Here we take, F = F g(•),S(•) , S, g, I correspond to the control R(u x );

We use the a priori estimate (16) of the theorem 2.1 from Ref. 29 which asserts that, denoting U (t) =