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This paper analyzes individual optimal vaccination strategies for a Susceptible-

Infected-Recovered (SIR) model. The individuals vaccinate according to a

criterion taking into account the risk of infection, the possible side effects of
the vaccine and the overall epidemic course. We treat the situation when

the vaccination capacity is limited and the individual discounts the future at
some rate D > 0. Since the course of the epidemic is determined by the sum

of individual decisions a natural question is whether an equilibrium between

the individual decisions and the epidemic evolution exists. We show that the
answer is positive.
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1. Introduction

The vaccination, if available, is often invoked in order to limit the propa-

gation of epidemics. A “benevolent planner” approach can be used to find

the vaccination program that will strike the optimal balance between vac-

cination costs and benefits, expressed in terms of money, medical status,

QALY/ DALY (see Refs. 1–3). Refs. 4–9 focused on describing the opti-

mal vaccination policy as function of the vaccine cost, infection cost and

epidemic dynamics.

However, failures in vaccination campaigns were observed due to worries

related to the cost, risk, inefficiency or side-effects of the vaccine. The

individual perception and choices will therefore depart from the “benevolent

planner” approach and each individual will take his own best vaccination

decision according to his subjective perceived risks and costs. As such other

parameters should be taken into account and included in the model such

as the individual point of view. Individual decisions, whether vaccination
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is accepted or not may influence the propagation of an epidemic. Several

works analyzed this effect, see Refs. 10–20. We refer the reader to Ref. 21

for a recent literature review.

In this context, we use a SIR model and techniques from the “Mean

Field Games” theory to show that an equilibrium exists and determines

completely the individual optimal vaccination strategy. This work extends

the analysis in Ref. 21 to the situation when the discount factor D is strictly

positive but the vaccination capacity umax is limited. We prove the exis-

tence (but not the uniqueness) of an equilibrium.

The work is close in spirit to Refs. 22,23 that show existence and unique-

ness of the Mean Field Games equilibrium for a framework involving a finite

number of possible states, but the hypothesis used there do not apply here

(in particular the super-linearity of the cost with respect to the controls).

2. Model and nomenclature

We use a SIR model (see Refs. 8,24 for a general description and Ref. 21

for this particular model) described by the following equations:
S′(t) = −βS(t)I(t)− u(t), S(0) = S0,

I ′(t) =
(
βS(t)− γ

)
I(t), I(0) = I0,

ϕ′I(t) =
(

1− ϕI(t)
)
βI(t), ϕI(0) = 0,

(1)

Note that S(·), I(·), ϕI(·) depend on S0, I0 and u(t); however to simplify

notations this dependence will not be stated explicitly. The signification of

the parameters is as follows:

(1) the parameter β > 0 is the transmission rate of the disease and the

parameter γ > 0 is the recovery rate;

(2) S(t) ≥ 0, I(t) ≥ 0 and
∫ t

0
γI(s)ds ≥ 0 are the proportions of individuals

in the Susceptible, Infected and Recovered classes, respectively.

(3) u : [0,∞[→ [0, umax] is the vaccination rate; it is a measurable function;

umax < ∞ is the maximal vaccination capacity. Therefore
∫ t

0
u(s)ds

is the proportion of people that vaccinated by the time t. Since S(t)

cannot be negative, this imposes some constraints on the set of admis-

sible vaccination rates u(t) (no more vaccination once S(t) = 0). The

admissible vaccinations rates (at the societal level) are:

U =
{
u : [0,∞[→ [0, umax]

∣∣∣u measurable, S(t) ≥ 0 ∀t ≥ 0
}
. (2)
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We also introduce the projection to U . For any u : [0,∞[→ [0, umax]

let tu be the largest value t such that u · 1[0,t](·) ∈ U . Then:

R(u) := u · 1[0,tu](·). (3)

By convention for tu =∞ we take R(u) := u (in this case u ∈ U).

(4) ϕI(t) is the cumulative probability of infection in [0, t] (in absence of

vaccination). Its main use is to formulate the individual criterion for

vaccination, see below equation (6).

We suppose that β, γ, S0 > 0 and I0 > 0 (with S0 + I0 ≤ 1) are known

and fixed from now on.

The first two equations of the system (1) represent the societal dynamics

as illustrated in Figure 1; the individual dynamics is modeled by a contin-

uous time Markov chain with individual jumping between the Susceptible,

Infected, Recovered and Vaccinated classes (see Ref. 21 for the details of

the Markov process).

Susceptible Infected Recovered

Vaccinated

u(t)

βS(t)I(t) γI(t)

Fig. 1. Societal overall dynamics.

Moving from the Susceptible to the Vaccinated class depends only on

the will of the individual. Moreover, his choice will not influence, on a global

scale, the societal propagation dynamics. We suppose that each individual

is aware of the propagation dynamics at the societal level (1). Therefore,

the individual can choose between taking the risk of being vaccinated or

taking the risk of contracting the disease. He makes a choice only according

to his well-being.
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A coherence check of the model requires that the individual decisions

sum up to give the overall vaccination dynamics (thus epidemic evolution).

A natural question is whether such an equilibrium exists. We give a positive

answer in a particular case that has not yet been considered in the literature.

3. Optimal individual strategies

The individual strategy is described by ϕV (t) which is the probability of the

individual to vaccinate in [0, t]. By convention 1−ϕV (∞) is the probability

to never vaccinate. Thus ϕV is a cumulative distribution function (CDF)

on [0,∞[∪{∞}.
The requirement u(t) ≤ umax imposes some constraints on the CDF

ϕV , see Ref. 21 for a detailed discussion. Let

ZS(·) = min
τ≥0
{τ |S(τ) = 0}. (4)

By convention if S(·) is always strictly positive we set ZS(·) = ∞. Two

situations arise:

• On [0, ZS(·)[ we can work, by density, with functions satisfying:

ϕ′V (t) =
(

1− ϕV (t)
)
λ(t), ϕV (0) = 0, (5)

where λ(·) is a positive measurable function. The individual can choose

his instantaneous vaccination rate λ(·); the bound umax on the overall

societal vaccination rate u(t) induces a bound on λ(t) of the form λ(t) ≤
umax
S(t) .

• On the other side, S(·)∣∣∣[ZS(·),∞[
≡ 0 therefore on [ZS(·),∞[ there are

no susceptibles left to challenge the capacity of the vaccination centers

and thus an additional individual arriving into such a population can

vaccinate at any instant (s)he desires; consequently the function ϕV is

only required, as any CDF function, to be increasing, right-continuous

and with ϕV (∞) ≤ 1.

In order to choose his best vaccination strategy the individual defines a

cost, denoted Jindi(ϕV ;u):

Jindi(ϕV ;u) = rIΦI(∞) +

∫ ∞
0

[
rI“(ΦI(t)− ΦI(∞))

+rV e
−Dt(1− ϕI(t))

]
dϕV (t). (6)
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Here D > 0 is the discount factor, and ΦI(t) is a function describing

the risk of infection weighted according to the discount factor:

ΦI(t) =

∫ t

0

e−Dsϕ′I(s)ds =

∫ t

0

e−Ds(1− ϕI(s))βI(s)ds, ΦI(0) = 0. (7)

The parameter rV is the cost of the vaccination (measured in money or as

medical side-effects) and rI the cost of being infected.

Set:

g(t) = rI“(ΦI(t)− ΦI(∞)) + rV e
−Dt(1− ϕI(t)). (8)

In particular g(t) ∈ [−rI , rI + rV ], ∀t ≥ 0.

Thus, the individual wants to minimize Jindi(ϕV ;u) = rIΦI(∞) +∫∞
0
g(t)dϕV (t), which, after elimination of the term rIΦI(∞) (independent

of ϕV ), amounts to looking for a minimum of∫ ∞
0

g(t)dϕV (t) =

∫ ZS(·)

0

g(t)(1− ϕV (t))λ(t)dt+

∫ ∞
ZS(·)

g(t)dϕV (t). (9)

As in Ref. 21 the minimum of the second quantity is readily seen to be

−(1 − ϕV (Z−S(·))) ·
(

inft≥ZS(·) g(t)
)
−

(for any real number x, we denote

x− = max{−x, 0}).

3.1. The HJB equation associated to the individual optimal

solutions

Lemma 3.1. Let u ∈ U . Then

(1) I(t) vanishes to 0 at ∞ uniformly with respect to u ∈ U (but depending

on β, γ, S0, I0);

(2) there exists Tmax > 0 depending only on β, γ, S0, I0 such that the func-

tion g(t) is positive on [Tmax,∞[. In particular the optimal dϕV is null

on [Tmax,∞[.

Proof. Let us compute the derivative of g(t):

g′(t) = rIe
−Dt(1− ϕI(t))βI(t)−DrV e−Dt(1− ϕI(t))

− rV e−Dt(1− ϕI(t))βI(t)

= e−Dt(1− ϕI(t))
[
(rI − rV )βI(t)− rVD

]
.

(10)

The second equation in (1) shows that I(t) can be either decreasing

(if S0 ≤ γ/β) or increasing while S(t) ≥ γ/β and then decreasing. In
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particular I(t) can be larger than rV D
(rI−rV )β at most on some bounded in-

terval (depending on S0, I0, u). Thus in general g(t) has the form in Fig-

ures 2 and 3: decreasing, then increasing then decreasing again. Moreover

limt→∞ g(t) = 0.

The optimal dϕV is null on any interval [T,∞[ such that g(t) is decreas-

ing (thus positive) on the whole interval. Therefore it is enough to find

Tmax such that I(t) ≤ rV D
(rI−rV )β for t ≥ Tmax. To this end we will prove

that I(t) vanishes at infinity uniformly with respect to u (but depending

on S0, I0, γ and β).

Let C ≤ I0 and TC =
ln(

I0
C )+

S0
C

γ > 0, chosen such that I0e
−γt+S0

C ≤
C, ∀t ≥ TC . Suppose, by contradiction, that there exists t∗ ≥ TC with

I(t∗) > C (note that t∗ may depend on u). Thus, as I is continuous and

limt→∞ I(t) = 0, we find t∗∗ ≥ t∗ ≥ TC such that I(t∗∗) = C. But, since

C ≤ I0 , we also have that I(t∗∗) = C ≤ I0 implies I(t) ≥ C,∀t ≤ t∗∗ and

thus I(t) ≥ C, ∀t ≤ TC .

On the other side, S′(t) ≤ −βS(t)I(t) thus S(t) ≤ S0e
−βtC ,

∀t ≤ TC . Moreover I ′(t) =
(
βS(t)I(t) − γI(t)

)
implies : I(t) ≤

I0e
−γt+S0β

∫ t
0
e−βCτdτ < I0e

−γt+S0
C ≤ C, which is absurd.

Thus for any C small enough (C ≤ I0), there exists TC > 0 independent

of u such that I(t) ≤ C, ∀t ≥ TC which means that I vanishes at infinity

independently of u. This gives the first point of the result.

The second point follows from the behavior of the function g(t) and the

definition of the individual cost.

Remark 3.1. The point 1 of Lemma 3.1 can also be proved in the following

way: for any ε < I0 let tε be the unique point such that I(tε) = ε (unique

because I(t) can only decrease once it is below I0). Then for any t ≤ tε we

have I(t) ≥ I(tε) = ε. But since

1 ≥
∫ ∞

0

γI(t)dt ≥
∫ tε

0

γI(t)dt ≥ γI(tε)tε, (11)

one obtains tε ≤ 1
γε thus any t ≥ 1

γε has I(t) ≤ I(tε) = ε.

Note that on [ZS(·),∞[ the variable I(t) can only decrease. Thus, con-

sidering the arguments of Lemma 3.1 the function g(t) can be increasing

and then decreasing or only decreasing. In both situations, the minimum

value, if it is negative, is attained at point ZS(·) (otherwise it is null). Thus:

−
(

inf
t≥ZS(·)

g(t)
)
−

= −
(
g(ZS(·))

)
−
. (12)
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The individual minimization problem can therefore be rephrased as mini-

mizing∫ ∞
0

g(t)dϕV (t) =

∫ ZS(·)

0

g(t)(1−ϕV (t))λ(t)dt−(1−ϕV (Z−S(·))·
(
g(ZS(·))

)
−
.

(13)

For any t ≥ 0 we introduce the notation

V (t) :=inf
{∫∞

t
g(τ)dϕV (τ)

∣∣∣ϕV increasing, right continuous with left limits,

ϕV (t) = 0, ϕV (∞) ≤ 1, ϕ′V (τ) = (1− ϕV (τ))λ(τ),∀τ ∈ [t, ZS(·)[ with

0 ≤ λ(τ) ≤ umax/S(τ)
}
.

(14)

Previous arguments show that for t ∈ [0, ZS(·)[

V (t) := inf
{∫ ZS(·)

t
g(τ)(1− ϕV (τ))λ(τ)dτ − (1− ϕV (Z−S(·))) ·

(
g(ZS(·))

)
−

∣∣∣
ϕV (t) = 0, ϕV (∞) ≤ 1, ϕ′V (τ) = (1− ϕV (τ))λ(τ),∀τ ∈ [t, ZS(·)[ with

0 ≤ λ(τ) ≤ umax/S(τ)
}
.

(15)

Standard manipulations allow to see that V is continuous on

[0, ZS(·)[∪]ZS(·),∞[.

Moreover the limit limt↗ZS(·) V (t) equals −
(
g(ZS(·))

)
−

and can be at-

tained with a ϕV that is continuous. To see this, consider the relevant case

ZS(·) <∞ and treat first the situation when g(ZS(·)) ≥ 0. Then in the limit

t ↗ ZS(·) the best possible value for V (t) is null, attained with ϕV = 0.

When g(ZS(·)) < 0, since g(·) is continuous and the total mass of ϕV cannot

be larger than one, in the limit t↗ ZS(·) the best possible value for V (t) is

g(ZS(·)), attained for the law obtained setting λ(τ) = umax/S(τ). To see

that in this case the mass is one it is enough to prove that ϕV (Z−S(·)) = 1,

or equivalently
∫ ZS(·)
t

umax/S(τ)dτ = ∞; the equation of S′(t) integrated

between ZS(·) − ε and ZS(·) gives the upper bound S(ZS(·) − ε) ≤ εumax
and the conclusion follows.

Thus setting V (ZS(·)) = −
(
g(ZS(·))

)
−

we obtain that V (·) is continuous

on [0, ZS(·)] and is a viscosity solution of the following Hamilton Jacobi

Bellman equation (see Ref. 25):

−
[
V ′(t) + min

λ(t)∈[0,umax/S(t)]
(g(t)− V (t))λ(t)

]
= 0, t < ZS(·) (16)

V (ZS(·)) = −
(
g(ZS(·))

)
−
. (17)
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On the other hand, for t ≥ ZS(·): V (t) = −
(
g(t)

)
−

and also V (t) = 0

for any t ≥ Tmax which means that on [ZS(·), Tmax[ (if it is non-void) the

value function V is solution of the HJB equation

−min{V ′(t), g(t)− V (t)} = 0, ZS(·) ≤ t < Tmax (18)

V (Tmax) = 0. (19)

Combining equations(16)-(17) and (18)-(19) we obtain that V is the con-

tinuous viscosity solution of:

∀t ≤ Tmax : −min{V ′(t), V ′(t)S(t)+umax(g(t)−V (t))} = 0, V (Tmax) = 0.

(20)

Note that, for any given g(·), S(·), the problem (20) can be written

−Fg(·),S(·)(t, V, V
′) = 0, V (Tmax) = 0. (21)

where Fg(·),S(·) : [0, Tmax]× R× R→ R is defined as

Fg(·),S(·)(t, v, p) = min{p, pS(t) + umax(g(t)− v)}. (22)

In particular Fg(·),S(·) is continuous.

t

g(t)

V(t)

t∗1 t∗2
ZS(·)

V′ = 0

V
′ S
+
u
m
a
x
(g
−
V
)
=
0

V′ = 0

Fig. 2. Representation of the functions g(t) (dashed line) and V (t) (solid line) for the
situation g(t) ≥ 0 for all t ≥ ZS(·). In this case the equation of V can either be V ′ = 0

or V ′S + umax(g − V ) = 0.
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t

g(t)

V(t)

t∗1

t∗2

ZS(·)

V′ = 0

V
′ S
+
u
m
a
x
(g
−
V
)
=

0

V
=

g

V′ = 0

Fig. 3. Representation of the functions g(t) (dashed line) and V (t) (solid line) for

the situation g(ZS(·)) < 0. With respect to the Figure 2 a new region appears, for

t ∈ [ZS(·), t
∗
2] where V = g.

3.2. Structure of individual optimal solutions

The considerations of the previous section allow to prove:

Lemma 3.2. Let u be an arbitrary control in U and denote by S(·) and

g(·) the corresponding solutions of (1). Then the value function V (·) defined

in (14) is the unique solution of the HJB equation (20). Moreover V (0) is

attained by at least one optimal strategy ϕV having the following form:

(1) If inft≥0 g(t) = 0 then V (0) = 0 and ϕV = 0;

(2) If inft≥0 g(t) < 0, let tu ≤ Tmax be such that g(tu) = inft≥0 g(t). If

tu ≥ ZS(·) then dϕV = δtu and V (0) = g(tu);

(3) If tu < ZS(·) there exist t1u, t
2
u with 0 ≤ t1u ≤ tu < t2u ≤ min{ZS(·), Tmax}

such that: {
dϕV (t) = (1− ϕV )umaxS(t) dt, t ∈ [t1u, t

2
u[

dϕV (t) = 0, t /∈ [t1u, t
2
u[.

(23)

In this case inft≥0 g(t) < V (0) < 0.

Proof. The considerations in Section 3.1 ensure that the value function

is solution of (20). To prove the uniqueness, we apply the theorem 2.4

page 26 from Ref. 26 (see also chapter II.3 from Ref. 27 and the equation
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2.20 section II.2 from Ref. 28). To this end consider W (t) = etV (t), thus

V ′(t) = e−t(W ′(t)−W (t)). We replace V (t) and V ′(t) in (20) and obtain

that W (t) is solution of the following problem:

∀t ≤ Tmax :

−min{W ′(t)−W (t), (W ′(t)−W (t))S(t) + umax(etg(t)−W (t))} = 0,

W (Tmax) = 0. (24)

The uniqueness of the solution of (24) is obtained under assumptions of

strict monotonicity of FW (t, v, p) = −min{p−v, (p−v)S(t)+umax(etg(t)−
v)} with respect to its second argument. In practice one has to prove

∀t ≥ 0,∀p ∈ R,∀v1 ≥ v2 : FW (t, v1, p)− FW (t, v2, p) ≥ Cm(v1 − v2),

with Cm > 0.
(25)

In our case, FW satisfies (25) with Cm = min(1, umax) > 0.

To prove the second part of the result, we propose a solution candidate

V. First of all, V(t) := −(g(t))− on [min{ZS(·), Tmax},∞[. In this case

dϕV is either null or a Dirac mass (depending on whether g is positive or

negative).

For t < min{ZS(·), Tmax} two alternatives appear:

• When ZS(·) <∞ and g(ZS(·)) < 0 then S(t)V ′(t)+umax(g(t)−V(t)) = 0

on some interval [t∗1, ZS(·)[ with t∗1 the first (solving backwards from

ZS(·)) such that V(t∗1) = g(t∗1). In this case dϕV = (1− ϕV )umax/S(t)

on some interval and null elsewhere. On [0, t∗1], the function V(t) is

constant.

• For other situations, denote

t∗2 = inf{t ≥ 0|g(τ) ≥ 0,∀τ ≥ t}. (26)

Then S(t)V ′(t) +umax(g(t)−V(t)) = 0 on some interval [t∗1, t
∗
2[ with t∗1

the first (solving backwards from t∗2) such that V(t∗1) = g(t∗1). In this

case dϕV = (1 − ϕV )umax/S(t) on some interval and null elsewhere.

On [0, t∗1], the function V(t) is constant.

Elementary computations allow to prove that V is a solution of (20), there-

fore the unique solution, therefore V = V . In particular, this implies the

alternatives 1-3. See Figures 2 and 3 for an illustration.

3.3. Equilibrium

An equilibrium between the individual vaccination and the societal vac-

cination satisfies u(t) = S(t)λ(t) (see Ref. 21). The Lemma 3.2 suggests
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that an equilibrium is necessarily of the form u(t) = umax1[T∗1 ,T
∗
2 ](t) with

T ∗1 , T
∗
2 ≤ Tmax.

To prove the existence of an equilibrium we introduce K = {(t1, t2) ∈
[0, Tmax]2|t1 ≤ t2} and the function F : K → 2K (2K are the sub-ensembles

of K) defined as follows. For any x = (T1, T2) ∈ K consider V x the solution

of the HJB equation (20) corresponding to ux(t) = R(umax1[T1,T2](·)). If,

with the notations of the Lemma 3.2, the alternative 3 arises then set

F(x) = {(t1ux , t2ux)}; otherwise set F(x) = {(t, t)|0 ≤ t ≤ Tmax}.
Theorem 3.1. An equilibrium strategy exists. It is of the form ue =

umax1[T e1 ,T
e
2 ](·), (T e1 , T

e
2 ) ∈ K.

Proof. An equilibrium corresponds to a fixed point of F . Moreover the

definition (3) and equation (11) ensure that any point x∗ with x∗ ∈ F(x∗)

corresponds necessarily to an admissible control (see also the arguments

that allow to prove the continuity of V defined in equation (15)). We use

the Kakutani fixed-point theorem and will check its assumptions:

• for all x ∈ K, F(x) is a non-empty convex subset of K ;

• the graph of the set-valued function F is closed in K ×K.

The first property follows from the definition of F . For the second

consider two sequences (xn = (Tn1 , T
n
2 ))n≥0, (yn)n≥0 ⊂ K such that yn ∈

F(xn), xn → x = (T1, T2), yn → y. We have to prove that y ∈ F(x).

Denote ux = umax1[T1,T2](·), uxn = umax1[Tn1 ,T
n
2 ](·).

We use the following stability properties from Ref. 25 page 176 : let

(Vn)n≥1 satisfy (in the viscosity sense):

−Fn(t, Vn(t), V ′n(t)) = 0, t ≤ Tmax, Vn(Tmax) = 0. (27)

Suppose that the sequence (Fn)n≥1 converges uniformly on compact sets

to some F and the sequence (Vn)n≥1 converges to V in C([0, Tmax]). Then

V is a viscosity solution of

−F (t, V (t), V ′(t)) = 0, t ≤ Tmax, V (Tmax) = 0. (28)

Here we take, F = Fg(·),S(·), S, g, I correspond to the control R(ux);

Fn = Fgn(·),Sn(·), Sn, gn, In correspond to the control R(uxn).

We use the a priori estimate (16) of the theorem 2.1 from Ref. 29 which

asserts that, denoting U(t) =
∫ t

0
R(ux)(τ)dτ , Un(t) =

∫ t
0
R(uxn)(τ)dτ ,

there exists a constant C such that:

|S(t)−Sn(t)|+
∫ t

0

|S(τ)−Sn(τ)|dτ ≤ C
[
|U(t)−Un(t)|+

∫ t

0

|U(τ)−Un(τ)|dτ
]
,

(29)
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for any t ∈ [0, Tmax]. The same works for I(·). But the convergence of

Tn1 to T1 and Tn2 to T2 implies the uniform convergence of Un to U and

thus uniform convergence of Sn to S, In to I; hence gn converges to g

uniformly. This is enough to ensure the uniform convergence of Fn to F .

By Lemma 3.2 to any solution of equations (28) and (27) we can associate

an element of K; using the compactness of K, we obtain the conclusion.
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