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Abstract

Background

Dietary selenium is of fundamental importance to maintain optimal immune function and

enhance immunity during infection. To this end, we examined the effect of selenium on mac-

rophage bactericidal activities against Staphylococcus aureus.

Methods

Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured

with S. aureus and different concentrations of selenium.

Results

Infected and selenium-supplemented animals have significantly decreased levels of serum

nitric oxide (NO) production when compared with infected but non-selenium-supplemented

animals at day 7 post-infection (p < 0.05). A low dose of 5 ng/mL selenium induced a signifi-

cant decrease in macrophage NO production, but significant increase in hydrogen peroxide

(H2O2) levels (respectively, p = 0.009, p < 0.001). The NO production and H2O2 levels were

significantly increased with increasing concentrations of selenium; the optimal macrophage

activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced

a significant decrease in the bacterial arginase activity but a significant increase in the mac-

rophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of

bacterial growth (p < 0.0001) and a significant increase in macrophage phagocytic activity,

NO production/arginase balance and S. aureus killing (for all comparisons, p < 0.001).
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Conclusions

Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and

bacterial killing suggesting that inadequate doses may cause a loss of macrophage bacteri-

cidal activities and that selenium supplementation could enhance the in vivo control of

immune response to S. aureus.

Introduction
S. aureus is one of the most frequently isolated pathogens that often cause severe nosocomial
infections, such as bloodstream infections, skin and soft tissue infections, and pneumonia. It is
also responsible for a variety of suppurative infections and toxin-mediated diseases [1]. The
nasal carriage has been associated with several infections including bacteremia, postoperative
and diabetic foot ulcer infections, subjects colonized with S. aureus being at greater risk of sub-
sequent infection than uncolonized individuals [2].

Macrophages are the primary professional scavenger cells. They can engulf microorganisms,
proteins and other smaller cells using several mechanisms, such as Fc receptor- and comple-
ment-mediated phagocytosis, pinocytosis and endocytosis [3]. Macrophages are known to pro-
duce various molecules such as nitric oxide (NO) and reactive oxygen species (ROS) in
response to phagocytosis and ligands of pattern recognition receptors (PRRs) [4]. The produc-
tion of ROS and reactive nitrogen species (RNS) radicals are under the control of nicotinamide
adenine dinucleotide phosphate oxidase (NOX) and inducible nitric oxide synthase (iNOS),
respectively [5].

Activated macrophages produce NO by inducible NO synthase (iNOS), encoded by the
NOS2 gene [6], by two successive monooxygenations of L-arginine (L-Arg) [7]. Hydrogen per-
oxide (H2O2) is one of the most active oxygen species, which is produced in the mitochondria
by MnSOD (manganese-containing superoxide dismutase, SOD2) as an end product of plasma
membrane associated-reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase during the respiratory burst in activated macrophage [8]. Both NO and H2O2 play an
important role as cell-signaling molecules and are effector agents for the microbicidal and cyto-
toxic response of macrophages after stimulation [9]. S. aureus cells can protect themselves
against microbicidal agents generated by phagocytes by the expression of numerous virulence
factors that allow them to colonize host tissues, to proliferate, and to escape the killing effect of
the immune system [10].

Of note, S. aureus can survive intracellularly within phagocytes including neutrophils [11]
and macrophages [12], and consequently evade host defenses and antibiotic treatment. Among
S. aureus resistance mechanisms to phagocytosis, its ability to cleave the heavy chains of
opsonic antibodies, using V8 protease (staphylococcal serine protease A, SspA) has been
described [13]. This and other proteolytic enzymes may also be able to degrade the host antimi-
crobial peptide agents and tissue components [14]. The pathogenicity of S. aureus can also be
linked to its ability to produce arginase. S. aureus arginase production modulates the immune
system by consumption of the host arginine, resulting in reduced substrate for iNOS, thereby
generating reduced amount of NO [15].

In the context of translational medicine, new therapeutic strategies against infectious patho-
gens using trace elements like selenium have been suggested to counteract pathogen immune
evasion. Hence, selenium was used to prevent bacterial colonization on biomaterial surfaces
[16] and S. aureus biofilm formation [17]. Supplementation with this micronutrient is usually
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required for optimum immune response through several enzymes, known as selenoproteins,
involved in both innate and adaptive immunity [18]. Here, we tested the role of selenium sup-
plementation on macrophage activities during S. aureus infection.

Materials and Methods

Ethics statement
The study was carried out with Good Laboratory Practices (GLP), and was reviewed and
approved by the Institutional Ethics Committee of Tlemcen University. The necessary mea-
sures have been planned to prevent and minimize potential animal suffering if pain and dis-
tress are observed. In order to assess health and welfare, animals were regularly monitored and
ongoing reviews of several criteria of such discomforts were used, including poor grooming,
anorexia, decrease in water consumption, dehydration, decreased urination or stool output,
vomiting or diarrhea, weight loss or loss of body condition, disorder in body temperature, dis-
order in pulse or respiratory rate, etc.

Staphylococcus aureus strain
The S. aureus isolate was obtained from the Neonatology Department of Tlemcen University
Medical Centre, Algeria. The isolate was a methicillin-susceptible S. aureus (MSSA) as deter-
mined by both phenotypic, i.e., disk diffusion method using oxacillin (5 mg) and cefoxitin (30
mg) disks (Bio-Rad) performed and interpreted according to recommendations of the Antibio-
gram Committee of the French Society of Microbiology, and genotypic methods performed as
described previously [19] and showing no amplification of themecA gene (S1 Fig).

In vivo assays: animals, selenium supplementation and infection
methods
A total of eighty (80) male golden Syrian hamsters (Mesocricetus auratus), six-week of age,
weighing 60–80 g, were enrolled for a cross-sectional case/control study over six weeks. Ham-
sters were randomly divided into four equal groups; group 1, SA+/Se+ (n = 20, infected by the
MSSA isolate and supplemented with selenium); group 2, SA+/Se- (n = 20, infected by the
MSSA isolate and not supplemented with selenium); group 3, SA-/Se+ (n = 20, not infected but
supplemented with selenium); group 4, SA-/Se- (n = 20, not infected and not supplemented
with selenium, control group). Each group was divided into four subgroups of five hamsters to
assess the concentration of circulating nitric oxide in regular time intervals and the levels of
immunoglobulins and specific antibodies to evaluate the in vivo effect of selenium supplemen-
tation on feedback loop regulating immune response. Groups 1 and 2 were infected at the sec-
ond week by intraperitoneal injection of S. aureus in a dose of 1 X 107 CFU per mL in 1 mL
sterile physiological saline with incomplete Freund's adjuvant. The control group was injected
with 1 mL of 0.9% sterile physiological saline. Animals were monitored for clinical signs of S.
aureus infection, such as hunched posture and reduced activity [20]. No mortality was
recorded. In addition to clinical symptoms, infection was checked by microbiological culture
procedure on Chapman medium [21]. The animals did not show signs of pain or distress dur-
ing the experiment, except for the infection signs seen quite early. Intraperitoneal fluid samples
were collected from the third day post-infection to isolate S. aureus and quantify bacterial load
in infected groups (SA+/Se+ and SA+/Se-). Selenium supplementation was performed by oral
administration of sodium selenite [22], at 0.6 mg/kg/day [23–25]. The amount of selenium in
the basal diet was 0.1 mg/kg/day feed as minimal nutrient needs for animals [26]. Supplemen-
tation began 2 weeks before infection and continued until 1 day before sacrifice. On days 7, 14,
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21 and 28 post-infection, the animals were weighed, and blood samples and intraperitoneal
macrophages were collected. For the animal sacrifices, hamsters were euthanized with an over-
dose of intraperitoneal injection of sodium pentobarbital (150 mg/kg).

Study design
Our experiments were carried out on serum samples, cell lysates and peritoneal macrophages
(Fig 1). The evaluation of selenium effects on the serum levels of immunoglobulins, S. aureus-
specific antibodies and NO was carried out in hamsters, supplemented (Se+) or not (Se-) with
selenium and infected (SA+) or not (SA-) by S. aureus. Bacterial and macrophage lysates were
used to measure the effect of selenium on the bacterial and the macrophage arginase activity,
respectively. The effect of selenium on the levels of macrophage NO production, H2O2, bacte-
rial growth, phagocytosis and bacterial killing were performed on a mixture of macrophages
(2 × 106 cells/mL) from normal hamsters, cultured with S. aureus cells (2 × 107 CFU/mL) and
diverse concentrations of selenium (0, 5, 10, 20, 30 and 40 ng/mL). The ex vivomacrophage
activation was performed using the NO production and H2O2 assays. Fetal bovine serum (FBS)
used in ex-vivo assays was quantified for each selenium level added to the medium. Each exper-
iment was repeated at least four times.

Sample preparation
For the preparation of peritoneal macrophages, hamster macrophages were aseptically har-
vested from the peritoneal cavity at various time-points by lavage with at least 10 mL sterile
ice-cold phosphate-buffered saline (PBS) twice, injected intraperitoneally with gentle abdomi-
nal massage, as described elsewhere [27,28]. Macrophages were enriched after the incubation
of total peritoneal cells harvested for 2 hours at 37°C to allow macrophages to adhere to tissue
culture plastic [28–30]. Macrophages were seeded at 2 × 106 cells/mL in cell culture media.
Cells were counted using a hemocytometer under microscopy [31]. Macrophage cells were

Fig 1. Study flow-chart.

doi:10.1371/journal.pone.0135515.g001

Selenium and Staphylococcus aureus Eradication by Macrophage

PLOS ONE | DOI:10.1371/journal.pone.0135515 September 4, 2015 4 / 18



cultured as reported [32] in Dulbecco's modified Eagle's medium-high glucose (DMEM-HG,
Sigma, Germany) with L-glutamine and supplemented with 10% (vol/vol) FBS, without
antibiotics.

For the bacterial lysis assay, S. aureus was initially cultured using Brain-Heart Infusion
Broth (BHIB) enrichment medium. Nine test tubes each containing 10 mL of BHIB medium
were prepared, and 5, 10, 20, 30 and 40 ng/mL of selenium standard solution were respectively
added to five of them. Then, each of the 9 tubes were inoculated with a bacterial suspension,
and incubated at 37°C for 24 hours. In the next step, the bacterial cells were lysed. To this end,
cells were firstly centrifuged at 20,000 x g for 20 min. After removal of the supernatants, the
pellets were washed at least 3 times, to remove any remaining culture medium until the
medium became colorless. The wash was performed by adding to the cell pellet, 1 mL of PBS
buffer, and then continued by centrifugation at 1000 x g for 10 min. The pellet was suspended
in 1 mL of lysis solution, 1% Triton X-100, 10 mM Tris-HCl pH 7. After a rigorous mixing fol-
lowed by centrifugation at 20,000 x g for 20 min, the bacterial lysate was collected from the
supernatant and protein content was measured. For the macrophage lysis assay, peritoneal
macrophages were washed three times with 1.0 mL of PBS and then lysed by exposure to ice-
cold 1% Triton X-100 buffer as reported [33,34]. The protein content of the supernatants was
then measured.

Experimental procedures
Protein assay. Protein concentration was measured at 540 nm by the colorimetric Biuret

method using Thermo Scientific kit (Thermo Fisher Scientific Inc., Middletown, USA).
Immunoglobulins and specific antibodies assays. Total serum IgM and IgG antibody

levels were measured quantitatively by agarose gel single radial immunodiffusion (SRID) assay
using anti-golden Syrian Hamster IgG (goat, H + L) and IgM (rabbit, μ-chain specific) (Rock-
land Immunochemicals Inc., Gilbertsville, PA, USA), and respective isotype controls from
serum of normal hamsters (BioLegend, San Diego, CA, USA). Specific antibodies were detected
spectrophotometrically by ELISA reader at 490 nm using cell lysate, S. aureus antigen and
plates treated with peroxidase-conjugated anti-IgG or anti-IgM as described [35].

Nitric oxide assay. NO levels were assayed by measuring the accumulation of stable oxida-
tive metabolites (NOx, nitrite and nitrate) with the sensitive colorimetric Griess reaction, using
trichloracetic acid (TCA), Vanadium (III) chloride and Griess reagent, as previously described
[36]. For macrophage NO production, peritoneal macrophages were incubated overnight. One
hundred microliters of supernatant was treated with 100μL of Griess reagent (1% sulphanila-
mide, 0.1% naphtylethylenediamine dihydrochloride, and 5% orthophosphoric acid), and the
mixture was incubated at room temperature for 5min. The absorbance was measured at
540nm in a microplate reader. The amount of nitrite in the sample was determined using
sodium nitrite for the standard curve [37].

Arginase activity assays. The tests were carried out using a spectrophotometric assay
based on the determination of the production of urea after the addition of L-arginine [38,39].
Bacterial and macrophage lysates were used to measure the effect of selenium on the bacterial
and macrophage arginase activities, respectively: the bacterial arginase assay was carried out on
a culture without macrophages; the macrophage arginase was performed on removed adherent
macrophage cells from the tissue culture plastic after culture in the presence of S. aureus.
Briefly, 25 μL of bacterial or macrophage cell lysate were added to 200 μL aliquot of arginine
buffer (10 mM L-arginine, pH 6.4), and the mixture was incubated at 37°C for 60 min. The
reaction was stopped by adding 750 μL of acetic acid [40], and the amount of urea generated by
arginase [41] was analyzed at 600 nm using a commercial kit (UREA/BUN—COLOR,
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BioSystems, S.A. Costa Brava 30, Barcelona, Spain). The arginase activity was expressed as
nmol urea/mg proteins/1hr.

Hydrogen peroxide assay. H2O2 measurement was carried out spectrophotometrically
using commercial kit according to the manufacturer instructions (Sigma-Aldrich, St. Louis,
Missouri, USA).

Bacterial growth and CFUs count assay. The effect of diverse concentrations of selenium
(0, 5, 10, 20, 30 and 40 ng/mL) added to the media on bacterial growth was assayed according
to the arginase activity. After culture for one hour with macrophage cells, a volume of 0.2 mL
of diluted bacterial suspension was plated on the surface of Chapman medium. Following incu-
bation for 24 hours at 37°C, a counting of bacterial colony forming units (CFUs) was per-
formed using ImageJ software (NIH, USA), as reported [42].

Phagocytosis and bacterial killing assays. Tests of phagocytosis and bacterial killing were
performed using a bactericidal assay as described in detail elsewhere [43], with some modifica-
tions. Assays were made at 0 and 60 minutes on six-well plates containing either a mixture of
macrophages and S. aureus cells with the different concentrations of selenium or bacterial cells
alone. The number of viable bacteria was determined microbiologically based on the counting
of CFUs on Chapman medium as reported above. The results were expressed as a percentage
of phagocytosis and bacterial cells killing, calculated as follows:

percentage of phagocytosis

¼ M0� 100�
EC

bacterial growth

� �

M0
; percentage of bacterial killing ¼ 100� 100 �M60

M0

with bacterial growth = C60/C0 where C0 and C60 correspond to control sample at 0 minute
and 60 minutes respectively. The percentage of viable bacteria = 100 � M60

M0
. M0 corresponds to

mixture assay sample at 0 minute and M60 corresponds to mixture assay sample at 60 minutes.
EC, mixture assay sample supernatant after centrifugation.

Statistical analysis
All data are expressed as the means ± standard error. Non-parametric Mann-Whitney U test
was used to compare the differences between two groups. Comparison of more than two inde-
pendent groups was carried out using Kruskal-Wallis test. Statistical analyses were performed
using SPSS 16.0 (Statistical Package for the Social Sciences, SPSS Inc., Chicago, IL, USA) soft-
ware. A p-value less than 0.05 was considered statistically significant.

Results

In vivo effect of selenium
All the clinical and behavioral characteristics of the four animal groups were similar at the
beginning of the experiment. Additionally, all the last group of hamsters resumed normal and
same habit at the end of the experiment, i.e. at day 28 post-infection. For both groups of
infected animals, we observed that the number of bacteria decreases progressively and
significantly from the third day post-infection (p< 0.001). Although circulating levels of S.
aureus-specific antibodies were significantly higher in selenium-supplemented animals com-
pared with those not supplemented (S2 Fig, S1 File), the bacterial eradication appeared later in
the first week after infection in selenium-supplemented group (p< 0.01). At day 7 post-infec-
tion, the circulating levels of NO were significantly decreased in infected animals compared to
non-infected animals, supplemented or not with selenium (respectively, p< 0.01, p< 0.05).
They remain decreased until the end of the experiment in infected animals compared to
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non-infected animals, but the difference did not reach statistical significance (p> 0.05). Addi-
tionally, infected and selenium-supplemented animals have significantly decreased levels of
serum NO when compared with infected but not selenium-supplemented animals at day 7
post-infection (p< 0.05). In contrast, no significant difference was revealed between the four
groups of animals from day 14 post-infection (Fig 2).

Effect of selenium on peritoneal macrophage activation
The addition of a low selenium concentration (5 ng/mL) induced a significant decrease in NO
production, but significant increase in H2O2 levels (Fig 3). Additionally, the NO production
and H2O2 levels were significantly increased with increasing concentrations of selenium, but
then significantly decreased again at 40 ng/mL; the optimal macrophage activity levels were
reached between 20 ng/mL and 30 ng/mL (for both variables, p< 0.0001 by Kruskal-Wallis
test).

Effect of selenium on bacterial and peritoneal macrophage arginase
activity
The concentration of 5 ng/mL of selenium induced a significant decrease in the activity of the
bacterial arginase. This activity varied in the Gaussian form according to selenium concentra-
tion and reached a maximum at 20 ng/mL (Fig 4). In contrast, the concentration of 5 ng/mL
selenium induced a significant increase in the macrophage arginase activity. This activity also
changed as a Gaussian distribution, but reached the optimum at 10 ng/mL. The Kruskal-Wallis
test gave p-value< 0.0001 for the two comparisons.

Effect of selenium on peritoneal macrophage NO production/arginase
and arginase/NO production ratios
The NO production/arginase ratio decreased significantly with a low selenium concentration
corresponding to 5 ng/mL, and then increased significantly from 10 ng/mL to reach the opti-
mal level at 20 ng/mL (Fig 5). Additionally, NO production/arginase ratio changed as a

Fig 2. Effect of selenium supplementation on serum nitric oxidemeasured by colorimetric Griess
reaction. SA+/Se+: animals infected by S. aureus and with oral supplementation by 0.6 mg/kg/day selenium,
SA+/Se-: infected animals without selenium supplementation, SA-/Se+: non-infected selenium-supplemented
animals, controls: not infected and not supplemented group (SA-/Se-). NO: nitric oxide production [NOx, nitrite
(NO2-) and nitrate (NO3-)]. d7, d14, d21, d28: numbers of days post-infection. The asterisks indicate a
significant difference between infected and control animals as follows: •,*p < 0.05, **p < 0.01. The black dots
indicate the difference between SA+/Se+ and SA+/Se-.

doi:10.1371/journal.pone.0135515.g002
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Gaussian distribution. In contrast, the arginase/NO production ratio reached the optimal level
with a concentration of 5 ng/mL selenium, and then decreased significantly from 10 ng/mL to
reach a lowest level with a dose of 20 ng/mL selenium. For both comparisons, p-value = 0.0001
were obtained by Kruskal-Wallis test.

Effect of selenium on S. aureus growth according to the overall arginase
activity
The bacterial growth rate was simultaneously increased with increased of overall arginase activ-
ity at selenium concentrations between 0 and 10 ng/mL. From 10 to 20 ng/mL selenium, both
the rate of bacterial growth and overall arginase activity decreased; nevertheless, the decrease in
the arginase activity does not reach the significance level (respectively, p< 0.0001; p = 0.120 by
Mann-Whitney U test). Between the doses of 20–40 ng/mL selenium, arginase activity signifi-
cantly decreased (p = 0.022), but the S. aureus growth rate significantly increased (p = 0.000).
For all comparisons using the Kruskal-Wallis test, p-values were< 0.0001 and< 0.001 for bac-
terial growth and arginase activity, respectively (Fig 6).

Effect of selenium on peritoneal macrophage phagocytosis and bacterial
killing
Selenium progressively decreased the phagocytic activity in the range of 5 ng/mL to 10 ng/mL
selenium; this activity increased significantly to reach an optimal level with a dose of 20 ng/mL
selenium (Fig 7). Inversely, selenium gradually increased the activity of bacterial lysis from a
dose of 5 ng/mL. Similarly to the phagocytic activity, bacterial lysis reached an optimal level

Fig 3. Effects of diverse selenium concentrations on activation of peritoneal macrophage from non-
infected and non-selenium-supplemented hamsters cultured in the presence of S. aureus. The ex vivo
macrophage activation was performed using the NO production and H2O2 assays. NO: nitric oxide production
[NOx, nitrite (NO2-) and nitrate (NO3-)], H2O2: hydrogen peroxide. P-values are given with significance
degree indicated by asterisks. ***p < 0.0001 by Kruskal-Wallis test.

doi:10.1371/journal.pone.0135515.g003
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Fig 4. Effect of diverse selenium concentrations on arginase activity of cell lysates from S. aureus or
peritoneal macrophages from non-infected and non-selenium-supplemented hamsters cultured in the
presence of S. aureus. Arginase activity assays were carried out using a spectrophotometric method based
on the determination of the production of urea after the addition of L-arginine. P-values are given with
significance degree indicated by asterisks: ***p < 0.0001 by Kruskal-Wallis test.

doi:10.1371/journal.pone.0135515.g004

Fig 5. Effect of diverse selenium concentrations on NO production/arginase and arginase/NO
production ratios of peritoneal macrophage from non-infected and non-selenium-supplemented
hamsters cultured in the presence of S. aureus. P-values are given with significance degree indicated by
asterisks. **p < 0.001 by Kruskal-Wallis test.

doi:10.1371/journal.pone.0135515.g005
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Fig 6. Effect of diverse selenium concentrations on S. aureus growth according to the overall
arginase activity. Bacterial culture was performed on Chapman medium and counting of CFUs was
determined using ImageJ software (NIH, USA). Overall arginase activity was determined as the amount of
arginase activity of both peritoneal macrophage and bacteria cultured in the presence of diverse
concentrations of selenium (0, 5, 10, 20, 30 and 40 ng/mL). CFU: colony forming unit. P-values are given with
significance degree indicated by asterisks. **p < 0.001, ***p < 0.0001 by Kruskal-Wallis test.

doi:10.1371/journal.pone.0135515.g006

Fig 7. Effect of diverse selenium concentrations on peritoneal macrophage phagocytosis and S.
aureus killing.Macrophages were isolated from non-infected and non-selenium-supplemented hamsters.
Assays were made at 0 and 1hr on six-well plates containing either a mixture of macrophages and S. aureus
cells with the differente concentrations of selenium or bacterial cells alone. The results were expressed as a
percentage of phagocytosis and bacterial cells killing. P-values are given with significance degree indicated
by asterisks. ***p < 0.0001 by Kruskal-Wallis test.

doi:10.1371/journal.pone.0135515.g007

Selenium and Staphylococcus aureus Eradication by Macrophage

PLOS ONE | DOI:10.1371/journal.pone.0135515 September 4, 2015 10 / 18



with a dose of 20 ng/mL selenium. The activity of S. aureus killing by peritoneal macrophage
changed as a Gaussian distribution. P-value was< 0.0001 for the two comparisons using the
Kruskal-Wallis test.

Discussion
Selenium is the main component of selenoproteins and functions as a redox centre [44]. It is
transported in blood with selenoprotein P (SePP) and can be stored as selenomethionine
(SeMet) in different tissues and organs, such as liver, kidney, pancreas, heart, brain and spleen.
Sodium selenite, a common dietary form of selenium, is an essential micronutrient as well as a
toxic trace element in animal and human nutrition.

The strong involvement of selenoproteins in various metabolic pathways may explain the
importance of selenium status in several vital functions like immune defense. It has been sug-
gested that it modifies the interactions between macrophages and lymphocytes or acts as an
antioxidant on the cells involved in immunological reactions [45]. It also acts as a modulator of
inflammatory and immune responses by helping to control peroxide concentration at sites of
inflammation, and by decreasing leukotriene synthesis and stimulating cellular immunity [46].
Additionally, selenium: i) plays an important role in the regulation of the expression of pro-
inflammatory genes and cytokines and of their receptors on immune cells [47], ii) can suppress
the expression of cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), interferon (IFN)-regula-
tory factor 3 (IRF3) and tumour necrosis factor (TNF)-α, and modulate both myeloid differen-
tiating factor 88 (MyD88)- and TIR-domain-containing adapter-inducing interferon-β
(TRIF)-dependent signaling pathways of toll-like receptors (TLRs) leading to decreased
inflammatory gene expression [48], iii) can reduce markers of inflammation in patients with
systemic inflammatory response syndrome (SIRS) and sepsis [49], and iv) can mediates inhibi-
tion of the activation of the transcription factor NF-kB, which regulates genes that encode
inflammatory cytokines [50]. In this context, our study aimed at investigating the role of sele-
nium supplementation on macrophage activity during S. aureus infection and significant
effects of selenium were demonstrated on macrophage activation, phagocytosis and bacterial
killing.

In vivo effect of selenium on serum nitric oxide
The activation of the immune system by bacterial products induces the release of reactive oxy-
gen or nitrogen species. Among these, NO is useful in the initial phase of the innate immune
response by acting as a proinflammatory molecule and can act as a potent microbicidal agent,
which prevents the development of a number of microorganisms, including viruses, bacteria,
fungi, and parasites. The antimicrobial properties of NO can be the result of several actions on
DNA, proteins and lipids. Besides these antimicrobial properties, it can also induce apoptosis
and cell cycle arrest [51].

On the other hand, NO is also critically involved in the regulation of a number of diverse
biological processes, including innate immunity and immunological host defense against
invading pathogens and wound healing [52]. It is produced from L-arginine by the enzyme
NOS from different cells. Various inflammatory cytokines or TLR agonists may induce the
expression of iNOS. The production of NO particularly through expression of the isoform
iNOS induced by inflammatory cytokines or TLR agonists occurs in a variety of microbial
infections as an effective antimicrobial agent. Several studies have shown that serum NO levels
were significantly higher in many animal species during inflammation due to microbial infec-
tion, and that these levels decrease under anti-inflammatory treatment [53,54]. Consequently,
NO can be used as a clinical marker to evaluate the efficacy of anti-inflammatory drugs.
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Contrarily to these previous observations, the serum NO levels were significantly decreased in
early S. aureus infection in our study. Moreover, selenium supplementation induces further
decreasing of NO levels, which may reflect the role of selenium as a modulator of inflammatory
responses. Thereby, our results corroborate those of previous researches showing the inhibitory
effect of selenium on the levels of NO production [48,55].

The inhibition of bacterial growth was shown less important during the first week of infec-
tion in selenium-supplemented animals compared with those not supplemented. Although S.
aureus-specific antibodies levels were higher in supplemented animals compared with those of
not supplemented, those of NO were decreased. Altogether, these results suggested that the
process of in vivo eradication of S. aureus would be much more effective in the presence of
mediators of non-adaptive immunity, like NO.

Effect of selenium on peritoneal macrophage activation
Macrophages are considered as key components of the innate immune system, but also as
orchestrator of adaptive immunity [56]. They can directly kill microorganisms and promote
their clearance by phagocytosis. Their activation and microbicidal function are characterized
by the release of many effectors, like NO and H2O2 [57,58].

H2O2 generated from activated macrophage is produced by respiratory/oxidative burst
based on the increased activation of membrane-associated NADPH oxidase complexes [59],
and may be induced by pathogens opsonized with complement factor C3b/iC3b, IgG-coated
bacteria to Fc receptors, C3a- and C5a-mediated chemotaxis, etc. [60,61]. It can enhance the
bacterial killing power, but can also have adverse effects on the cells and the surrounding
healthy tissue. H2O2 also functions as a signaling agent, particularly in higher organisms [62].
It is freely diffusible within and between cell membranes, but can be decomposed biologically
by catalase, produced by some bacteria, such as S. aureus, to protect against the host respiratory
burst [63], and consequently to evade hosts' immune defense to a certain extent.

It has been recently demonstrated that optimal selenium concentration is critical for macro-
phage activation and resolution of inflammation [64]. We observed that selenium affects mac-
rophage activation in a dose-dependent manner, a low dose impairing NO production but
increasing H2O2 levels. These results are in accordance with previous studies showing that dur-
ing infection, antioxidant nutrients commonly included in the diet such as selenium are abso-
lutely necessary to regulate the reactions that release free radicals [65]. Indeed, selenium affects
NF-κB activation, which regulates genes that encode inflammatory cytokines [66], may be able
to downregulate the LPS-induced expression of iNOS and other proinflammatory genes in
macrophages, and its deficiency increases the expression of iNOS [67,68].

Effect of selenium on bacterial arginase activity
Among many virulence factors, arginases secreted by S. aureus can compete with iNOS for
their common substrate, the amino acid L-arginine (L-Arg) [69]. Consequently, the NO pro-
duction in activated macrophages will be reduced, since its translation is strongly dependent
on the availability of L-Arg in the macrophage. The decreased levels of NO then influence neg-
atively on bactericidal activity and phagocytosis, and impact the expression of an NO-inducible
L-lactate dehydrogenase (Sa-LDH-1) by S. aureus [70]. This ultimately results in improved
resistance of S. aureus to oxidative stress, increased growth, bacterial survival and persistence.

We showed a dose-dependent effect of selenium on the activity of both bacterial and macro-
phage arginase. A low concentration of selenium of 5 ng/mL induced a strong alteration of the
bacterial arginase activity, thereby counteracting the effects described above for this virulence
factor.
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Effect of selenium on peritoneal macrophage arginase activity and NO
production/arginase balance
The lower concentration of selenium tested (5 ng/mL) also induced a significant decrease in
the concentration of NO production, a significant increase in the macrophage arginase activity,
and, consequently, a significant decrease in NO production/macrophage arginase activity ratio.
In contrast, high concentrations of selenium could allow optimum expression of NO and a
sharp decrease in the arginase activity. It is therefore important to remember that arginases
and various NOS compete for the same substrate L-Arg and that their enzymatic activities can
be inhibited reciprocally [71–73]. The use the NO production/arginase balance and not the
results of NO production or arginase activity alone to evaluate the bactericidal efficacy against
the bacterial escape is therefore essential.

Nevertheless, the concentration of NO produced by macrophages in vitromay not fully
reflect the concentration of NO in vivo. The differences between the in vivo and in vitro assays
could partly be due to dose effects, selenium metabolism and pharmacology.

Effect of selenium on S. aureus growth according to the overall arginase
activity
Several new therapeutic approaches using various selenium compounds and nanoparticles
have been developed to inhibit S. aureus growth and pathogenesis. Among them, selenium
nanoparticles synthesized from sodium selenite were shown to inhibit S. aureus growth in vitro
[74,75]. Selenium concentration that may be delivered by such nanoparticules at the infection
site has to be considered with caution because we showed that dose-dependent effects of sele-
nium on S. aureus growth, 20 ng/mL selenium causing both significant growth inhibition of S.
aureus and decrease of arginase activity while doses higher than 20 ng/mL could, on the con-
trary, increase bacterial colony number despite their ability to decrease the overall arginase
activity.

Effect of selenium on peritoneal macrophage phagocytosis and bacterial
killing
We showed that selenium supplementation can enhance phagocytosis and bactericidal capacity
in a dose-dependent manner reaching a maximum level for a 20 ng/mL selenium dose. How-
ever, mechanisms impacted by selenium could not be totally deciphered because of the com-
plexity and diversity of involved factors. Indeed, several well-defined surface components
present in most clinical isolates of S. aureus also prevent opsonization and phagocytosis, such
as polysaccharide capsule [76]. Additionally, most strains produce chemotaxis inhibitory pro-
tein [77] that can delay leukocyte migration toward the site of infection [78] and secrete various
C3 complement inhibitors [79]. Finally, the ability of S. aureus to form three-dimensional bio-
films during the infectious cycle [80] can also prevents phagocytosis [81]. Currently, the impact
of selenium on these different factors remain largely unknown despite selenium has been
shown to influence several cells or functions involved in innate immunity like lymphokine acti-
vated killer cells and macrophages, the tumor cytotoxicity by mouse macrophages, and the
phagocytic function of neutrophils and macrophages [82–85].

Conclusions and Future Prospects
Selenium supplementation can enhance the in vivo control of immune response to S. aureus.
To the best of our knowledge, we reported here for the first time that during the initial phase of
infection, the in vivo bacterial eradication processes would strongly be based on the mediators
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of the non-adaptive immunity, such as NO. In fact, during this phase, the selenium administra-
tion induced a decrease in circulating levels of NO, and simultaneously a low inhibition of bac-
terial growth. In the ex vivo experiments, we observed that selenium acts in a dose-dependent
manner on macrophage activation, phagocytosis and bacterial killing, suggesting that inade-
quate doses may cause a loss of macrophage bactericidal activities. These results warrant fur-
ther investigations and among others, it would be of particular interest to: i) complete arginase
activity study by qPCR-based expression or western immunoblotting assays, ii) conduct a
kinetic study in hamsters using different doses of sodium selenite, iii) check whether it would
be possible to replicate our results using other cellular models of macrophage from different
origins, such as bone marrow and spleen, and iv) monitor bacterial load in peritoneal fluid
samples and follow disease progression and outcome. In fine, clinical evaluation will still be
required to determine the in vivo impact and optimal conditions of selenium administration in
patients with S. aureus infection.
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