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Major objectives
Improve ECGI inverse problem reconstruction
Introduce new mathematical approches to the field of the 
ECGI inverse problem
Compare the performance of the new mathematical 
approaches to the state-of-the-art methods, mainly the MFS 
method used in commercial devices.
In silico validation of the new approches.
Assessment of some simplification hypothesis: Torso 
inhomogeneity 
Propose some uncertainty quantification apronches to deal 
with measurements errors 

Context and objectives

Optimal control approach 

Mathematical model

In silico gold standard

Results

Torso Heterogeneity effect

Conclusions

Forward model
If we know the heart potential we can compute the electrical 
potential 

Inverse problem
If we know the electrical potential and the 

current density at the outer boundary of the  
torso and we look for the electrical  potential at 
the heart surface

Computational heart and torso anatomical models + electrodes 
position

Computational torso meshes: 250 nodes mesh (blue). More 
accurate FE mesh with  6400 nodes (green)

Remarks
Introducing the torso heterogeneity is natural with 
FEM. also anisotropy could be introduced
The error is more important in the left ventricle 

Main results and perspectives
New mathematical approches for solving the inverse 
problem in electrocardiography imaging based on 
optimal control 
Over all the 20 cases used in this study the optimal 
control method performs better than the MFS both in 
terms of relative error and correlation coefficient:
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uT is described by the Laplace equation.
(

div(�TruT) = 0, in ⌦T,

�TruT · nT = 0, on �ext.
(2)

where �T stands for the torso conductivity tensor and nT is
the outward unit normal to the torso external boundary �ext.

⌦T

⌦H
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⌃

Fig. 1. Two-dimensional geometrical description: heart domain ⌦H, torso
domain ⌦T (extramyocardial regions), heart-torso interface ⌃ and torso
external boundary �ext.

The heart-torso interface ⌃ is supposed to be a perfect
conductor. Then we have a continuity of current and potential
between the extra-cellular myocardial region and the torso
region.
(

ue = uT, on ⌃,

(�e + �i)rue · nT = �TruT · nT, on �ext.
(3)

Other works [9], [10], [11] consider that the electrical current
does not flow from the heart to the torso by assuming
that the heart is isolated from torso. This approximation
is appealing in terms of computational cost because it
uncouples the Laplace equation (2) in the torso from the
bidomain equations in the heart (1), which allows to reduce
the size of the linear system to solve. It is even more
appealing when the interest is only on the ECG computation,
in that case the ECG solution could be an ”off line” matrix
vector multiplication after solving the bidomain equation,
details about computing the transfer matrix could be found
in [12]. Although this approach is very appealing in terms
of computational cost, numerical evidence has shown that it
can compromise the accuracy of the ECG signals (see e.g.
[11], [4], [13]). Thus, in order to accurately compute ECGs
we consider the the state-of-the-art heart-torso full coupled
electrophysiological problem (1)-(3) representing the cardiac
electrical activity from the cell to the human body surface.

III. INVERSE PROBLEM

The inverse problem in electrocadiography imaging
(ECGI) is a technique that allows to construct the electrical
potential on the heart surface ⌃ from data measured on the
body surface �ext. We assume that the electrical potential is
governed by the diffusion equation in the torso as shown
in the previous paragraph. For a given potential data T

measured on the body surface �ext, the goal is to find ue on
⌃ such that the potential data in the torso domain satisfies

8
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>:

div(�TruT) = 0, in ⌦T,

�TruT.n = 0, and uT = T, on �ext,

uT =?, on ⌃.

(4)

In order to find ue, for a given boundary value distribution
�on ⌃, we propose to define uD(�) and uN(�) as follows,
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>:

div(�TruD(�)) = 0, in ⌦T,

uD(�) = T, on �ext,

uD(�) = �, on ⌃.

(5)

uN satisfies uN(x0) = uD(x0) and
8
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>:

div(�TruN(�)) = 0, in ⌦T,

�TruN(�).n = 0, on �ext,

uN(�) = �, on ⌃.

(6)

Let’s define the cost function as follows

J(�) =
1

2

Z

⌦
T

(ruD(�)�ruN(�))2
. (7)

This means that if J(�) = 0, we have ruD(�) = ruN(�)
and then ruD(�).n = ruN(�).n on the boundary and in
particular on �ext. Therefore, since uD = uN = � on ⌃
and by uniqueness of the Laplace solution, we obtain that
uD(�) = uN(�) in all the domain ⌦T. Which means that
both of solutions uD(�) and uN(�), satisfy both Neumann
and Dirichlet boundary conditions on �ext at the same time.

We need to minimize the cost function J . Since we are
able to calculate the gradient of the cost function, we can
use a gradient descent method. For any test function �, the
gradient of J reads:

hr�J(�),�i =

⌧Z

⌦
T

(ruD �ruN)r�(ruD �ruN),�

�

=

⌧Z

⌦
T

(ruD �ruN)r�(ruD),�

�

�
⌧Z

⌃

(ruD �ruN)r�(ruN),�

�

(8)
Applying the Green formula on both terms we find

r�J(�) = (ruD �ruN).n (9)

For a given initial guess �, we compute the incomplete
boundary condition following this algorithm:

Algorithm 1 Algorithm
for i = first time step to last time step do

load the known boundary data uT(ti)/�
ext

compute uD(�)
compute uN(�)
compte r�J(�) = (ruD �ruN).n
while (kr�J(�) k> tolerence) do

� �� � ⇤r�J(�)
compute uD(�)
compute uN(�)
compte r�J(�) = (ruD �ruN).n

end while
save uT(ti)/⌃ = �

end for

Cases metric MFS + CRESO O.C 
interpolated 

data 

O.C refined 
data 

Single and 
double 

stimulus
(6 cases) 

RE 0.81±0.04 0.71±0.02 0.59±0.06

CC 0.57±0.07 0.7±0.03 0.8±0.04

Re-entry (VT)
(14 cases)

RE 0.78±0.06 0.67±0.04 0.59±0.05

CC 0.6±0.08 0.73±0.04 0.83±0.04

All 20 cases
RE 0.79±0.06 0.69±0.04 0.59±0.05

CC 0.59±0.07 0.72±0.04 0.82±0.04
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Figure 1. Two-dimensional geometrical description: heart
domain ⌦H, torso domain ⌦T (extramyocardial regions),
heart-torso interface ⌃ and torso external boundary �ext.

conditions of the monodomain problem. The precise def-
initions of g and Iion depend on the electrophysiological
transmembrane ionic model. In the present work we make
use of one of the human myocyte model Beeler Reuter
[5].⌦H stands for the heart domain which is in our case
the atria. In order to simulate the body surface potential
we first need to compute the extracellular potential in the
heart. Supposing the the extracellular conductivity tensor
�e = ��i, where �i is the intracellular conductivity tensor
and � 2 R. The extracellular potential satisfies

(� + 1) div(�irue) = � div(�irvm). (2)

One can easily check that

ue =
1

(1 + �)
(< vm > �vm) (3)

is a solution of equation (2). Morover, it is the unique so-

lution satisfying
✓Z

⌦H

ue

◆
= 0.

Here, < vm >=
1

|⌦H|
Z

⌦H

vm is the mean value of vm in

space. In order to compute the body surface potential we
need to solve a Laplace equation on the torso with a Dirich-
let boundary condition on the heart-torso interface [4].
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>:

div(�TruT) = 0, in ⌦T,

�TruT.n = 0, on �ext,

uT = ue, on ⌃.

(4)

The forward problem algorithm is: (a) compute the trans-
membrane potential by solving equation (1), (b) compute
the extracellular potential using the formula (3), (c) com-
pute the torso potential by solving (4). As it was explained
in the introduction we build a synthetic data base of BSPs
and their correspondant EGMs. Each sample of BSPs and
EGMs corresponds to a stimulation location. We simulated
n heart beats, each one corresponds to a given Istim. We
use finite element method in order to solve equations (1)
and (4), a space discretisation of the heart and torso do-
mains is then needed. Since we are interested in targeting
ectopic beats in the atria, we only consider the electrical

Figure 2. Finite element computational domains: Atria
geometry with the different locations of stimulus used to
construct the training data set (lfet). Torso geometry with
different BSP measurements locations (right).

activation in the atria. The finite element geometry of atria
is given in Figure 2.1 (left). it was embedded in a torso
geometry given in Figure 2.1 (right) [6].

2.2. Inverse problem: a regression method

As explained in the previous paragraph, we have
n samples of BSP and EGMs. The sequence
(BSPi, EGMi)i=1...n 2 Rp⇥m ⇥ Rq⇥m is the data set
of our metamodel. Here p (respectively, q) is the num-
ber of potential measurement locations on the body sur-
face (respectively, on the heart surface), and m is the
number of time steps. We denote by (xk)k=1...p (re-
spectively, (yk)k=1...q) the positions of the BSP measure-
ments (respectively, positions of EGMs measurements)
and (tl)l=0...m�1 the times of the recordings. For the
i

th element of our data set we have, BSPi 2 Rp⇥m,
where BSPi(l ⇥ p + k) = uT(xk, tl), for k = 1, ..., p
and l = 0, ...,m � 1, and EGMi 2 Rq⇥m where,
EGMi(l ⇥ q + k) = ue(yk, tl), for k = 1, ..., q and
l = 0, ...,m� 1.

The main goal is to build a function f able to accurately
map a BSP to an EGM. We use a kernel ridge regression
method based on the gaussian kernel

K(x,y) = e

�
|x� y|2
2�

2
, 8x,y 2 R m⇥p

.

We look for f in a Reproducing Kernel Hilbert Space
(RKHS) (H, h·, ·iH) characterized by the following prop-
erty,

8f 2 H, 8x 2 Rm⇥p
, f(x) = hf(·),K(·,x)iH.

(5)
where h·, ·iH is the inner product in H. The use of the
Gaussian kernel can be motivated by the following prop-
erty (see [7]): given a compact subset K of Rm⇥p, the set
of the restriction to K of functions from H is dense in the
set of continuous functions from K to R. In other word,MFS approach 
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Fig. 1. Two-dimensional geometrical description: heart domain ⌦H, torso
domain ⌦T (extramyocardial regions), heart-torso interface ⌃ and torso
external boundary �ext.

between the extra-cellular myocardial region and the torso
region.

(
ue = uT, on ⌃,

(�e + �i)rue · nT = �TruT · nT, on ⌃.
(3)

Other works [9], [10], [11] consider that the electrical current
does not flow from the heart to the torso by assuming
that the heart is isolated from torso. This approximation
is appealing in terms of computational cost because it
uncouples the Laplace equation (2) in the torso from the
bidomain equations in the heart (1), which allows to reduce
the size of the linear system to solve. It is even more
appealing when the interest is only on the ECG computation,
in that case the ECG solution could be an ”off line” matrix
vector multiplication after solving the bidomain equation,
details about computing the transfer matrix could be found
in [12]. Although this approach is very appealing in terms
of computational cost, numerical evidence has shown that it
can compromise the accuracy of the ECG signals (see e.g.
[11], [5], [13]). Thus, in order to accurately compute ECGs
we consider the the state-of-the-art heart-torso full coupled
electrophysiological problem (1)-(3) representing the cardiac
electrical activity from the cell to the human body surface.

B. Inverse problem

The inverse problem in electrocadiography imaging
(ECGI) is a technique that allows to construct the electrical
potential on the heart surface ⌃ from data measured on the
body surface �ext. We assume that the electrical potential is
governed by the diffusion equation in the torso as shown
in the previous paragraph. For a given potential data T
measured on the body surface �ext, the goal is to find ue on
⌃ such that the potential data in the torso domain satisfies
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(4)

In order to find ue, for a given boundary value distribution
�on ⌃, we propose to define uD(�) and uN(�) as follows,
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div(�TruN(�)) = 0, in ⌦T,

�TruN(�).n = 0, on �ext,

uN(�) = �, on ⌃.

(6)

Let’s define the cost function as follows

J(�) =
1

2

Z

⌦
T

(ruD(�) �ruN(�))2. (7)

This means that if J(�) = 0, we have ruD(�) = ruN(�)
in the whole domain ⌦T and then ruD(�).n = ruN(�).n
on the boundary and in particular on �ext. Therefore, since
uD = uN = � on ⌃ and by uniqueness of the Laplace
solution, we obtain that uD(�) = uN(�) in all the domain
⌦T. Which means that both of solutions uD(�) and uN(�),
satisfy both Neumann and Dirichlet boundary conditions on
�ext at the same time. This means that � is the solution of
the inverse problem.

Our goal is to minimize the cost function J . Since we are
able to calculate the gradient of the cost function, we can
use a gradient descent method. For any test function �, the
gradient of J reads:

hr�J(�),�i =

⌧Z

⌦
T

�T(ruD �ruN)r��T(ruD �ruN),�

�

=

⌧Z

⌦
T

�T(ruD �ruN)r�(�TruD),�

�

�
⌧Z

⌦
T

�T(ruD �ruN)r�(�TruN),�

�

=

⌧Z

@⌦
T

�T(ruD �ruN).nu⇤
D(�)

�

�
⌧Z

@⌦
T

(uD(�) � uN(�))�Tru⇤
N(�).n

�

(8)
where u⇤

D(�) is solution of the following problem
8
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>:

div(�Tru⇤
D(�)) = 0, in ⌦T,

u⇤
D(�) = 0, on �ext,

u⇤
D(�) = �, on ⌃,

(9)

and u⇤
N(�) is solution of the following problem
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>:

div(�Tru⇤
N(�)) = 0, in ⌦T,

�Tru⇤
N(�).n = 0, on �ext,

u⇤
N(�) = �, on ⌃.

(10)

Since, u⇤
D(�) = 0, on �ext, uD(�) = uN(�) = � on ⌃

and �Tru⇤
N(�).n = 0 on �ext, we then obtain

r�J(�) = �T(ruD(�) �ruN(�)).n/⌃ (11)

1) Iterative solver: We can solve the problem iteratively
as in [] For a given initial guess �, we compute the incom-
plete boundary condition following the algorithm 1.

In practice, putting � = 0 out of the time loop reduces
the number of iterations in the ”for” loop. This could be
explained by the fact that the solution at time t+�t is closer
to the solution at time t than it is to zero.

⌦T

⌦H

�ext

⌃

Fig. 1. Two-dimensional geometrical description: heart domain ⌦H, torso
domain ⌦T (extramyocardial regions), heart-torso interface ⌃ and torso
external boundary �ext.

between the extra-cellular myocardial region and the torso
region.
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(�e + �i)rue · nT = �TruT · nT, on ⌃.
(3)

Other works [9], [10], [11] consider that the electrical current
does not flow from the heart to the torso by assuming
that the heart is isolated from torso. This approximation
is appealing in terms of computational cost because it
uncouples the Laplace equation (2) in the torso from the
bidomain equations in the heart (1), which allows to reduce
the size of the linear system to solve. It is even more
appealing when the interest is only on the ECG computation,
in that case the ECG solution could be an ”off line” matrix
vector multiplication after solving the bidomain equation,
details about computing the transfer matrix could be found
in [12]. Although this approach is very appealing in terms
of computational cost, numerical evidence has shown that it
can compromise the accuracy of the ECG signals (see e.g.
[11], [5], [13]). Thus, in order to accurately compute ECGs
we consider the the state-of-the-art heart-torso full coupled
electrophysiological problem (1)-(3) representing the cardiac
electrical activity from the cell to the human body surface.

B. Inverse problem

The inverse problem in electrocadiography imaging
(ECGI) is a technique that allows to construct the electrical
potential on the heart surface ⌃ from data measured on the
body surface �ext. We assume that the electrical potential is
governed by the diffusion equation in the torso as shown
in the previous paragraph. For a given potential data T
measured on the body surface �ext, the goal is to find ue on
⌃ such that the potential data in the torso domain satisfies
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on the boundary and in particular on �ext. Therefore, since
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⌦T. Which means that both of solutions uD(�) and uN(�),
satisfy both Neumann and Dirichlet boundary conditions on
�ext at the same time. This means that � is the solution of
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Our goal is to minimize the cost function J . Since we are
able to calculate the gradient of the cost function, we can
use a gradient descent method. For any test function �, the
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that the heart is isolated from torso. This approximation
is appealing in terms of computational cost because it
uncouples the Laplace equation (2) in the torso from the
bidomain equations in the heart (1), which allows to reduce
the size of the linear system to solve. It is even more
appealing when the interest is only on the ECG computation,
in that case the ECG solution could be an ”off line” matrix
vector multiplication after solving the bidomain equation,
details about computing the transfer matrix could be found
in [12]. Although this approach is very appealing in terms
of computational cost, numerical evidence has shown that it
can compromise the accuracy of the ECG signals (see e.g.
[11], [5], [13]). Thus, in order to accurately compute ECGs
we consider the the state-of-the-art heart-torso full coupled
electrophysiological problem (1)-(3) representing the cardiac
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on the boundary and in particular on �ext. Therefore, since
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solution, we obtain that uD(�) = uN(�) in all the domain
⌦T. Which means that both of solutions uD(�) and uN(�),
satisfy both Neumann and Dirichlet boundary conditions on
�ext at the same time. This means that � is the solution of
the inverse problem.

Our goal is to minimize the cost function J . Since we are
able to calculate the gradient of the cost function, we can
use a gradient descent method. For any test function �, the
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1) Iterative solver: We can solve the problem iteratively
as in [] For a given initial guess �, we compute the incom-
plete boundary condition following the algorithm 1.

In practice, putting � = 0 out of the time loop reduces
the number of iterations in the ”for” loop. This could be
explained by the fact that the solution at time t+�t is closer
to the solution at time t than it is to zero.
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
M∑

j=1

a j f (∥xk − y j∥) = uT (xk),

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(2)

Neumann condition :
M∑

j=1

a j
∂ f (∥xk−y j∥)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Âa⃗ = b⃗ (4)

where, Â =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (∥x1 − y1∥) · · · f (∥x1 − yM∥)
...

... · · ·
...

1 f (∥xN − y1∥)
... f (∥xN − yM∥)

0
∂ f (∥x1 − y1∥)

∂n
· · · ∂ f (∥x1 − yM∥)

∂n
...

... · · ·
...

0
∂ f (∥xN − y1∥)

∂n
· · · ∂ f (∥xN − yM∥)

∂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a⃗ =

⎛

⎜⎜⎜⎝

a0

a1
...

aM

⎞

⎟⎟⎟⎠
, b⃗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT (x1)
...

uT (xN )
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ !E , y j ∈ !̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial
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coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Âa⃗ = b⃗ (4)

where, Â =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (∥x1 − y1∥) · · · f (∥x1 − yM∥)
...

... · · ·
...

1 f (∥xN − y1∥)
... f (∥xN − yM∥)

0
∂ f (∥x1 − y1∥)

∂n
· · · ∂ f (∥x1 − yM∥)

∂n
...

... · · ·
...

0
∂ f (∥xN − y1∥)

∂n
· · · ∂ f (∥xN − yM∥)

∂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a⃗ =

⎛

⎜⎜⎜⎝

a0

a1
...

aM

⎞

⎟⎟⎟⎠
, b⃗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT (x1)
...

uT (xN )
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ !E , y j ∈ !̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial

Solve the linear system 

Regularization with CRESO

f(r) =
1

4⇡r

Anatomical data
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surface, is computed every millisecond during the cardiac
cycle. The time series of reconstructed epicardial potential
maps are then organized by location to provide temporal
electrograms for any given point on the epicardium. A re-
constructed epicardial electrogram provides the potential
variation with time at a given point on the epicardium dur-
ing the cardiac cycle. Epicardial isochrone maps (a map of
the epicardial activation sequence) are computed by taking
the time of maximum negative duE

dt of the temporal electro-
gram (“intrinsic deflection”) at a given location as the time
of epicardial activation at that location.

Experimental Methods and Protocols

MFS ECGI reconstructions were performed on data
from four studies: (i) Single-site pacing in an isolated ca-
nine heart suspended in a human torso-shaped tank; data
were obtained during pacing from a right ventricular (RV)
anterior epicardial location;62 (ii) RV endocardial pacing
in a patient undergoing bi-ventricular pacing for cardiac
resynchronization therapy (CRT); (iii) Simultaneous RV
endocardial pacing and left ventricular (LV) epicardial pac-
ing in a patient undergoing bi-ventricular pacing for CRT;
(iv) Normal atrial activation in a healthy human subject.65

Isolated Canine Hearts Suspended in a Human
Torso-Shaped Tank 62

The performance of MFS in ECGI was evaluated using
data from a human torso-shaped tank.62 The setup consisted
of an isolated canine heart suspended in a homogenous elec-
trolytic medium in the correct anatomical position inside a
tank molded in the shape of a ten-year old boy. The tank had
384 surface electrodes recording torso potentials and 242
rods with electrodes at their tips that formed an epicardial
recording envelope around the heart. The complete sets
of torso-surface potentials and epicardial potentials were
obtained by recording over several beats. The directly mea-
sured epicardial potentials by the rod-tip electrodes served
as a “gold standard” for MFS ECGI validation. The torso-
surface potentials provided the input data for MFS ECGI
noninvasive reconstruction of epicardial potentials, electro-
grams and isochrones, which were then evaluated by com-
parison with the directly measured “gold standard”. Details
were provided in previous ECGI publications.15,61,62,70

To simulate focal arrhythmogenic activity, the heart
was paced from an anterior epicardial location. The same
datasets were used in BEM ECGI and reported in previous
publications.62 Here, these datasets are used to evaluate
MFS ECGI and compare its performance to that of BEM
ECGI. The pacing protocol also provided a measure of
MFS ECGI spatial accuracy (its accuracy in locating the
known pacing site). After pacing, a quasi-elliptical region
of intense epicardial negativity forms around the pacing
site.61,62,70,74

Bi-Ventricular Pacing In Human Subjects 65

We also applied MFS ECGI to clinical data from patients
with an implanted bi-ventricular pacing device. For the bi-
ventricular pacing data, MFS ECGI accuracy in locating the
pacing sites was evaluated by comparison with the pacing
electrodes’ positions as determined from CT images. The
reconstructed activation pattern was evaluated based on the
known patterns of activation generated by pacing.

Data from two heart failure patients undergoing cardiac
resynchronization pacing therapy65 are presented. Subject
1 was paced from a right ventricular (RV) endocardial site,
close to the RV apex. Subject 2 was paced simultaneously
from an RV endocardial site and from a left ventricular (LV)
epicardial site. Body surface potentials were recorded with
a 224-channel mapping system using an electrode-vest as
previously described.65 Epicardial geometry and location
of the torso electrodes were obtained from CT images of
the thorax. The locations of the cardiac pacing leads were
also determined from these CT images.65

Normal Atrial Activation in a Healthy Human Subject 65

MFS ECGI was applied to reconstruct atrial activa-
tion in a healthy young adult. The same data were used
in BEM ECGI and reported in a previous study.65 The
atrial activation pattern was reconstructed from recorded
P-wave body surface potential maps with 224 channels,
together with a subject-specific torso and atrial geometry
obtained using CT. The directly measured normal atrial
activation pattern in isolated human hearts (Durrer et al.25),
was used for qualitative evaluation of the MFS ECGI
reconstruction.

Informed consent was obtained according to Institu-
tional Review Board guidelines at University Hospitals of
Cleveland, which approved all human studies protocols.

Evaluation Procedures

For the tank-torso protocols, measures in terms of rela-
tive error (RE) and correlation coefficients (CC) were com-
puted with respect to the measured data to quantitatively
evaluate the accuracy of ECGI; RE and CC were defined
previously.71 RE gives an estimate of the amplitude differ-
ence and CC gives an estimate of the similarity of potential
patterns or electrogram morphologies between the mea-
sured and computed data:

RE =
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For potential maps, L is the number of epicardial points
at which potentials are measured and computed. V C

i is
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surface, is computed every millisecond during the cardiac
cycle. The time series of reconstructed epicardial potential
maps are then organized by location to provide temporal
electrograms for any given point on the epicardium. A re-
constructed epicardial electrogram provides the potential
variation with time at a given point on the epicardium dur-
ing the cardiac cycle. Epicardial isochrone maps (a map of
the epicardial activation sequence) are computed by taking
the time of maximum negative duE

dt of the temporal electro-
gram (“intrinsic deflection”) at a given location as the time
of epicardial activation at that location.

Experimental Methods and Protocols

MFS ECGI reconstructions were performed on data
from four studies: (i) Single-site pacing in an isolated ca-
nine heart suspended in a human torso-shaped tank; data
were obtained during pacing from a right ventricular (RV)
anterior epicardial location;62 (ii) RV endocardial pacing
in a patient undergoing bi-ventricular pacing for cardiac
resynchronization therapy (CRT); (iii) Simultaneous RV
endocardial pacing and left ventricular (LV) epicardial pac-
ing in a patient undergoing bi-ventricular pacing for CRT;
(iv) Normal atrial activation in a healthy human subject.65

Isolated Canine Hearts Suspended in a Human
Torso-Shaped Tank 62

The performance of MFS in ECGI was evaluated using
data from a human torso-shaped tank.62 The setup consisted
of an isolated canine heart suspended in a homogenous elec-
trolytic medium in the correct anatomical position inside a
tank molded in the shape of a ten-year old boy. The tank had
384 surface electrodes recording torso potentials and 242
rods with electrodes at their tips that formed an epicardial
recording envelope around the heart. The complete sets
of torso-surface potentials and epicardial potentials were
obtained by recording over several beats. The directly mea-
sured epicardial potentials by the rod-tip electrodes served
as a “gold standard” for MFS ECGI validation. The torso-
surface potentials provided the input data for MFS ECGI
noninvasive reconstruction of epicardial potentials, electro-
grams and isochrones, which were then evaluated by com-
parison with the directly measured “gold standard”. Details
were provided in previous ECGI publications.15,61,62,70

To simulate focal arrhythmogenic activity, the heart
was paced from an anterior epicardial location. The same
datasets were used in BEM ECGI and reported in previous
publications.62 Here, these datasets are used to evaluate
MFS ECGI and compare its performance to that of BEM
ECGI. The pacing protocol also provided a measure of
MFS ECGI spatial accuracy (its accuracy in locating the
known pacing site). After pacing, a quasi-elliptical region
of intense epicardial negativity forms around the pacing
site.61,62,70,74

Bi-Ventricular Pacing In Human Subjects 65

We also applied MFS ECGI to clinical data from patients
with an implanted bi-ventricular pacing device. For the bi-
ventricular pacing data, MFS ECGI accuracy in locating the
pacing sites was evaluated by comparison with the pacing
electrodes’ positions as determined from CT images. The
reconstructed activation pattern was evaluated based on the
known patterns of activation generated by pacing.

Data from two heart failure patients undergoing cardiac
resynchronization pacing therapy65 are presented. Subject
1 was paced from a right ventricular (RV) endocardial site,
close to the RV apex. Subject 2 was paced simultaneously
from an RV endocardial site and from a left ventricular (LV)
epicardial site. Body surface potentials were recorded with
a 224-channel mapping system using an electrode-vest as
previously described.65 Epicardial geometry and location
of the torso electrodes were obtained from CT images of
the thorax. The locations of the cardiac pacing leads were
also determined from these CT images.65

Normal Atrial Activation in a Healthy Human Subject 65

MFS ECGI was applied to reconstruct atrial activa-
tion in a healthy young adult. The same data were used
in BEM ECGI and reported in a previous study.65 The
atrial activation pattern was reconstructed from recorded
P-wave body surface potential maps with 224 channels,
together with a subject-specific torso and atrial geometry
obtained using CT. The directly measured normal atrial
activation pattern in isolated human hearts (Durrer et al.25),
was used for qualitative evaluation of the MFS ECGI
reconstruction.

Informed consent was obtained according to Institu-
tional Review Board guidelines at University Hospitals of
Cleveland, which approved all human studies protocols.

Evaluation Procedures

For the tank-torso protocols, measures in terms of rela-
tive error (RE) and correlation coefficients (CC) were com-
puted with respect to the measured data to quantitatively
evaluate the accuracy of ECGI; RE and CC were defined
previously.71 RE gives an estimate of the amplitude differ-
ence and CC gives an estimate of the similarity of potential
patterns or electrogram morphologies between the mea-
sured and computed data:
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Comparison of the optimal control solution for heterogeneous 
(bleu) and homogeneous (green) torso conductivities 

The operator Srhs maps the BSP T to the residual part
SrhsT , the solution of the following problem on ⌃

8
><

>:

div(�Tru) = 0, in ⌦T,

u = T, on �ext,

�Tru.n = 0, on ⌃.

(8)

Note that if we consider a static geometry, operators SN , SD

and Srhs are computed once for all, since they depend only
on the mesh and the conductivities in the torso represented
by �T. Computing SN , SD and Srhs avoids solving a 3D
finite element problem at each iteration and allows a real
time solving of the inverse problem.

III. NUMERICAL RESULTS

We start by generating synthetic data using an ECG
simulator based on the bidomain model. We generate BSPs
for two heart cases, a healthy and a fibrillation conditions.
The model parameters are the same in both cases they only
differ by the stimulation protocols: In the first case, the heart
is stimulated in the apex and the electrical wave propagates
from apex to base. We refer to this simulation as a normal or
healthy case. In the second case we apply a S1-S2 protocol,
in order to produce a re-entry wave, we refer to this case
as a fibrillation or re-entree case. These two cases will be
considered as our gold standard data. Further informations
about the forward problem modelling could be found in [6],
[7]. For each time step, we extract BSPs, we add 5% of
noise and we use it as the given data T . we then solve the
inverse problem following the KMF method explained in the
previous paragraph. In Fig.3 (respectively, Fig.4), we show
snapshots of the electrical potential distribution in the body
(including heart surface and torso volume), in these snap-
shots we compare the inverse solution to the gold standard
normal (respectively, re-entree) case. The distribution of the

Fig. 3. Snapshots of the potential distribution in the normal case. Forward
solution (left) and Inverse solution (right). The color bar scale is in mV.

reconstructed electrical potential is synchronized with the
gold standard electrical potential distribution in both normal
and re-entree cases. We remark that the wave front is well
captured but in the inverse solution it is much more smoother
than in the exact solution. As shown in previous study [8],
the wave front in the normal case is much accurate than in
the re-entree case. Hence we will focus our study on the
re-entree case. In Fig.5 (left) (respectively right), we show
a comparison between the inverse and the exact solutions

Fig. 4. Snapshots of potential distribution for re-entry case. Forward
solution (left) and Inverse solution (right). The color bar scale is in mV.

of the heart potential time course at a point located in the
left (respectively right) epicardium. Although signals are
synchronized in both location, the magnitude of the electrical
potential is clearly more accurate in the right ventricle than
it is in the left one. In Fig.6 (left) (respectively, right), we
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Fig. 5. Left (respectively, right): Comparison of exact (red) and inverse
(blue) solutions at a given point located in the surface the left (respectively
right) ventricle in the re-entree case. X-axis: time (ms) and Y-axis: potential
(mV)

show the spatial distribution of the relative error in time by
computing the l2 relative error in time at each point of the
heart surface geometry. We see that the error is much higher
in the left ventricle where its maximum reaches 75% while
in the right ventricle surface it doesn’t exceed 35%. In Fig

Fig. 6. Left (respectively, right): left (respectively, right) ventricle view of
the heart showing the l2 relative error in time at each point of the geometry.
The color bar is dimensionless.

7 (left), we show the time evolution of the space relative
error by computing at each time step the spatial l2 relative
error. The mean of the relative error both in space and time
is 0.45. In In Fig 7 (right), we show the time evolution of
the correlation coeficient (CC) which gives an idea about
the spatial correlation of the inverse solution to the gold

Space distribution of the RE over time: Left (left) and 
right (right) ventricles views

Space distribution of the error

CT scan of a 43 years old women (left) and computational mesh 
obtained after segmentation (right )

 

 

 MFS + CRESO (blue line)

Optimal Control + Tikhonov 
data from vest interpolated 
on Finer mesh (black line) 

Optimal Control + Tikhonov 
more rich data from Finer 
mesh (red line) 

RE was improved from 0.79±0.06 to 0.59±0.05
CC was improved from 0.59±0.07 to 0.82±0.04

Our results show that the heterogeneity in the torso 
has an impact on the accuracy of the solution both in 
terms of RE and CC.

We are working on other new approches for solving 
ECGI problem and also quantifying the effect of the 
torso conductivity uncertainties on the ECGI solution  

Inria Bordeaux Sud-Ouest, IHU-LIRYC, CHU-Bordeaux, Université de Bordeaux.

x1, . . . , xN : Torso points

y1, . . . , yM : Heart points

Discretization with Finite elements method.


