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Context and objectives
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In silico gold standard

Major objectives
< Improve ECGI inverse problem reconstruction

+ Introduce new mathematical approches to the field of the
ECGI inverse problem

< Compare the performance of the new mathematical
approaches to the state-of-the-art methods, mainly the MFS
method used in commercial devices.

< In silico validation of the new approches.

« Assessment of some simplification hypothesis: Torso
Inhomogeneity

« Propose some uncertainty quantification apronches to deal
with measurements errors

Mathematical model

Forward model

< If we know the heart potential we can compute the electrical
potential

div(aTVuT) = 0, 1n O,
O'TVUT.’n — O, on I\exta

UT = Ue, ON 2. Text | S Q,

Inverse problem
< If we know the electrical potential and the
current density at the outer boundary of the

torso and we look for the electrical potential at

the heart surface
div(erVur) =0, in Qr,
O'TVUT.TL = O, and uTt = T, on Fexta

urT :?, on X.

MFS approach

< Solve the linear system

—

Aa = b
(1 fllxi =y Slxr = ymlD
. . . ur(x1)
L fdlxy = yil) Jlxn = yamll) ao :
A=, &=yl vyl | @ | 2 | ure)
on on a = b= 0
o af<||xzavn— nlh 3f(||ngn— yl) “M ;
1 .
f(?“) — _— _ X1,...,TN :Torso points
A7y
Yi,---,YM : Heart points

+ Regularization with CRESO

Optimal control approach

« Poincaré—Steklov variational formulation of the inverse
problem.

< Minimize the following energy functional

I =5 [ (Fun(h) = Va2

Subject to

div(erVup(A)) =0, in Qr,
up(A) =T, on Ty,
up(A) = A, on X.

diV(O'TVUN()\)) =0, in Q,
O'TVUN()\).TL = 0, on L'ex,
un(A) = A, on 3.

+ Descent gradient methods
V)\J()\) = O'T(V”LLD()\) — V’UJN()\))TL/E

« Discretization with Finite elements method.

Anatomical data

Computational heart and torso anatomical models + electrodes
position

obtained after segmentation (right )
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CT scan of a 43 years old women (left) and computational mesh
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Computational torso meshes: 250 nodes mesh (blue). More
accurate FE mesh with 6400 nodes (green)
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Comparison of the optimal control solution for heterogeneous
(bleu) and homogeneous (green) torso conductivities

Simulated cases

< 14 reentry cases

~ 6 single and double stimuli

Space distribution of the error
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Results

Space distribution of the RE over time: Left (left) and

Relative error and correlation coefficient right (right) ventricles views

0.C O.C refined

MFS + CRESO interpolated data

metric

Cases

Remarks

Single and
double

0.81+£0.04 0.71£0.02  0.59+0.006

< Introducing the torso heterogeneity is natural with
FEM. also anisotropy could be introduced

(sg'(':‘ai':; CC 0.57+0.07 0.7+0.03  0.8+0.04
< The error is more important in the left ventricle
RE 0.78+0.06  0.67+0.04 0.59+0.05
Re-entry (VT)
(14 cases) uyets 0.6+0.08 0.73+0.04  0.83+0.04
RE 0.79+0.06  0.69+0.04 0.59+0.05

Conclusions

All 20 cases
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< MFS + CRESO (blue line) problem in electrocardiography imaging based on

optimal control
< Over all the 20 cases used in this study the optimal

data from vest interpolated W s
on Finer mesh (black line)
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< Optimal Control + Tikhonov

more rich data from Finer 0.2}
mesh (red line) 01l

terms of relative error and correlation coefficient:

< RE was improved from 0.79+0.06 to 0.59+0.05
~ CC was improved from 0.59+0.07 to 0.82+0.04
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< Our results show that the heterogeneity in the torso

terms of RE and CC.
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< We are working on other new approches for solving
ECGI problem and also quantifying the effect of the
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3 :: torso conductivity uncertainties on the ECGI solution
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< New mathematical approches for solving the inverse

control method performs better than the MFS both in

has an impact on the accuracy of the solution both in



